Supplementary Materials and Methods

Animals: The absence of *Helicobacter* species, including *H. bilis*, *H.* ganmani, *H.* hepaticus, *H.* rodentium and *H. typhlonius* was confirmed by PCR of fecal samples (IDEXX Laboratories, Columbia MO). Wild type (C57BL/6J), *II10^{-/-}*, *Tnfr2^{-/-}* and *Rag2^{-/-}* mice were from The Jackson Laboratory (Bar Harbor, ME).

Chemicals, reagents and antibodies: Dextran Sodium Sulfate (36–50 KDa) was from MP Biomedicals (Burlingame, CA). AOM was from Wako (Richmond, VA). Recombinant murine IFN and TNF were from Peprotech (Rocky Hill, NJ). Rat anti–Ki-67 was from Dako. Rabbit antibodies for Cleaved Caspase-3, pH-H3, and phospho–histone H2AX were from Cell Signaling Technology (Beverly, MA). E-cadherin, MPO and 8-hydroxyguanosine antibodies were from Abcam (Cambridge, MA). Flow cytometry antibodies for CD16/32, TNF, Biotin-TNFR2, CD3, CD4, CD8 and were from BD Biosciences (San Jose, CA).

Colonoscopy. Mice were anesthetized with ketamine and xylazine. Distal colonoscopy was performed using a KARL STORZ Veterinary Endoscope (Karl Storz, Tuttlingen, Germany) to track the development of disease using a previously described scoring system ¹.

Barrier Function Assay: Colonic *in vivo* permeability was measured using a previously described method ². Briefly, mice were anesthetized with ketamine and xylazine, and plasma fluorescence was measured at 30 min following intrarectal administration of 4 kDa FITC-dextran (Sigma-Aldrich, St Louis, MO); baseline plasma fluorescence was used as the blank.

Tissue harvesting and histology: Mice were euthanized as per institutional guidelines, colons were dissected free from the anus to distal to the cecum, emptied of fecal contents, weighed, opened longitudinally and fixed in 10% neutral buffered formalin followed by routine paraffin

embedding. After paraffin embedding, 5µm longitudinal cross sections were cut and stained by H&E, or as noted. H&E sections were scored by a pathologist (MKW) in a blinded manner for colitis scores and tumor scores, as previously described ¹. Neoplastic lesions were classified as adenomas with low-grade or high-grade dysplasia, intramucosal carcinoma, or invasive carcinoma ³.

AOM/DSS tumor model: Adult 8 week-old mice received a single injection of AOM (12.5 mg/kg, i.p.); one week later, mice were given three rounds of DSS (3% w/v in drinking water) for 7 days with two week intervals of drinking water without DSS between each round, as indicated in Fig 2. Mice were euthanized 66 days following the start of the first round of DSS. Tumor progression scores indicate normal, 0; Low-grade dysplasia 1; High-grade dysplasia 2; Intramucosal adenocarcinoma 3; Invasive adenocarcinoma 4.

Immunohistochemistry. Paraffin-embedded colon sections were de-paraffinized, rehydrated, and pretreated with 3% hydrogen peroxide in methanol. Heat-induced antigen retrieval was performed in citrate buffer (10mM citrate, pH 6). After blocking with 10% normal goat serum, sections were incubated with primary antibody overnight at 4°C. Rat antibodies were detected using biotinylated anti-rat secondary antibody (Vector Laboratories, Burlingame, CA), followed by streptavidin-labeled horseradish peroxidase (HRP, Life Technologies, Carlsbad, CA). Rabbit antibodies were detected using HRP-labeled anti-rabbit secondary antibody (Envision, Dako, Carpinteria, CA). DAB (Sigmafast, Sigma-Aldrich) was used to develop signal, and hematoxylin served as counterstain. TUNEL staining was performed using the peroxidase in situ cell death detection kit (ApopTag kit, EMD Millipore, Billerica, MA). Quantification of pH-H2AX and TUNEL was determined by the number of positive epithelial cells per mm in longitudinal colonic cross sections, and Ki67 was determined by counting the number of positive cells per hemicrypt (100 crypts/colon section) in *II*10^{-/-} and *II*10^{-/-} Colonic sections

Cell based Caspase-3 activity assay: Caspase-3 activity for was measured using a previously described method ¹. Briefly, cells were treated for 1 h with a fluorescent caspase-3 substrate (Li-Cor Biosciences, Lincoln, NE) and in cell caspase-3 activity was determined by measuring resultant fluorescence (Odyssey System, Li-Cor Biosciences).

Cell based peroxidase induced DNA damage: For cell-based peroxide-induced DNA colonic epithelial damage assay, cells were stained for phospho–histone H2AX, and the relative expression was determined by quantitative in-cell Western analysis (Odyssey System, Li-Cor Biosciences), as we have previously published ¹.

Generation of cDNA from RNA: Bio-Rad iScript kit was used to generate cDNA from isolated RNA (Bio-Rad Laboratories, Irvine, CA).

Real-time qPCR. Validated primer sets designed by Primer Bank (http://pga.mgh.harvard.edu/primerbank/) were used for real-time qPCR. Real-time qPCR was carried out with Maxima SYBR Green qPCR master mix (Thermo Scientific, Waltham, MA). Actin was the housekeeping gene used to normalize target gene expression.

Colon Explant Culture: Colon explant cultures were carried out according to a previously described procedure¹. Culture supernatants were collected after 4 h. Cytokines were measured in colon explant culture supernatants for Th1, Th2, Th17 cytokines using ELISA array (SABiosciences, QIAGEN Inc., Valencia, CA). Protein concentration of culture supernatant was measured and used to calculate the cytokine concentration in pg/mg.

Flow Cytometry and Intracytoplasmic Cytokine Staining. For flow cytometry, whole colon was minced and digested with Collagenase, dispase II and DNAse (Sigma-Aldrich), and then stained with the indicated antibodies, as previously described². Intracytoplasmic cytokine staining of colonic lymphocytes used a previously described protocol². Basal apoptosis levels were measured using Annexin V Apoptosis Detection Kit (BD Pharmingen). Samples were analyzed using a Becton Dickinson LSRII (BD Biosciences) at the Children's Hospital Los Angeles Flow Core and data were analyzed using FlowJo software (Tree Star Inc., Ashland, OR).

RNA seq and data analysis: Total RNA from entire colons of 8 week-old male wildtype C57BI/6 and Tnfr2^{-/-} mice (n=3 each) was isolated using the PureLink RNA kit (Ambion, Life Technologies). RNA samples were submitted to the Genomic Services Lab at the HudsonAlpha Institute for Biotechnology (Huntsville, AL) for multiplex library preparation, mRNA enrichment, and sequencing. Sequencing was performed to an average depth of 50M paired-end 50bp reads per sample (HiSeq, Illumina, San Diego, CA). Data files containing raw reads were aligned to the mouse genome using Tophat2/Bowtie2⁴. Alignments were assembled into transcript representations with Cufflinks, and statistical tests for differential expression were performed with Cuffdiff 2⁴. An adjusted P value < 0.05 (q<0.05) from the Cuffdiff 2 output was used as the cutoff for statistical significance. Human protein-protein interactions were downloaded from the Reactome Pathway Database (www.reactome.org, accessed 4/2014, Fig 5C) ^{5,6}. All first-order interactions were isolated for human homologs of mouse colonic TNFR2regulated genes. IBD GWAS risk loci were color-coded using a previously published list ⁷; CD8⁺ T cell-enriched TNFR2 genes were identified using transcriptomic data from the Immunological Genome Project (www.immgen.org, accessed 4/2014)⁸. Computational analysis, including the generation of a Simple Interaction File (.sif), was performed using custom-written scripts in Python and R. Cytoscape 3.1 was used to plot the interaction networks⁹.

Statistics. All data are presented as mean ± SEM, except where noted. Non-parametric methods (Mann-Whitney test) were used for categorical data sets (i.e. colitis scores and tumor scores). Parametric methods (Student's t test or ANOVA) were used for data sets that were non-categorical. Kaplan-Meier survival curves were compared using the log-rank test. Statistical analyses were performed using GraphPad Prism (GraphPad Software Inc., La Jolla, CA), except where noted above for RNAseq analyses.

Supplementary Materials and Methods References:

- 1. Dube PE, Yan F, Punit S, et al. Epidermal growth factor receptor inhibits colitisassociated cancer in mice. J Clin Invest 2012;122:2780-92.
- 2. Garrett WS, Lord GM, Punit S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 2007;131:33-45.
- 3. Boivin GP, Washington K, Yang K, et al. Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology 2003;124:762-77.
- 4. Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013;14:R36.
- 5. Croft D, O'Kelly G, Wu G, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 2011;39:D691-7.
- Milacic M, Haw R, Rothfels K, et al. Annotating cancer variants and anti-cancer therapeutics in reactome. Cancers (Basel) 2012;4:1180-211.
- 7. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012;491:119-24.
- Heng TS, Painter MW, Immunological Genome Project C. The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol 2008;9:1091-4.

9. Cline MS, Smoot M, Cerami E, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2007;2:2366-82.

gono	locus	WТ		(fold change)	
gene	chr6:60000410 60000006	5 33760	0.862105	-2 63028	0 0455420
_	chr6:68807182-68807725	3 80312	0.350133	-3 47495	0.0433423
_	chr2:127561969 127562224	0.62258	0.00100	-5.01306	0.0310573
-	obr16-99022906 99024262	11 4503	1 71 200	-2 7/103	0.0310373
-	chi 10.00923090-00924203	0 408204	0.063004	-2.081/1	0.0255902
-	chr12:115822048 115824420	5 50516	0.003094	-2.50141	0.0230092
-	obr4:120017206 120026559	1 1 1 1 0 6	7 7073	0.011617	0.0133330
-	ohr11:00640207 00650210	4.14490	0 131583	-3 75861	0.00710552
-	chi11.99049297-99030219	1.70090	0.131303	-3 /1076	0.00431037
-	chr16:80084028 80084507	3 54076	0.174339	-4 34405	0.00413311
-	obre:e0544256 60544062	J.34070	18 757	2 10253	0.00330270
_	chr16:80063406 80063007	12 138	0 659544	-/ 20102	1 27E-06
N21Rik Krt81 Kr	chr15:101/21012 101/01512	22 938	3 50712	-2 67283	7.77E-08
Δ530008C11Rik	chr1:44000200 44020006	11 3308	3.02544	-1 90503	0.00709003
	chr9:122801766 122804726	1026.66	273 082	-1 9058	5.43E-06
	chr2:114047288 114052811	20 2002	1 1007	-2 26601	2.60E-08
Acto?	ohr12:12:000000 122000000000000000000000000	10 /028	4.1997 8.23535	-1.23636	2.09L-00
Actn3	chr10:4961222 4977994	60 7075	6 15332	-3 50374	0
	clii 19.400 1222-4077004	660 506	1222 70	1 00294	0 00800442
Adipog	chilo: 136277302-136291345	2 62921	101260	1.00204	0.00009442
Adipoq Adaal1	CIII 16.23 146535-23 157 968	3.02021	0 42245	1 50204	0.0237237 5 25E 07
AUSSI I	cnr12:112620046-112641355	23.2790	0.43313	-1.30304	0.50E-07
AKI	Chr2:32621757-32635698	20.7709	10.4997	-1.4000	9.00E-07
	cnr1:36530190-36547205	22.9002	0.00107	-1.00070	1.29E-00
Anos Ara1	CNF7:51511028-51598709	1.10909	0.360072	-1.04552	0.00620937
Arg I	cnr10:24915206-24927470	19.3359	0.10120	-1.24019	0.00109602
	chr7:102101741-102111152	9.01142	2.10007	-2.17545	0.0300011
ASD TU	chr5:24532696-24540448	2.01921	0.439219	-2.20070	0.00313140
Alp Taz	chr1:1/22/1/08-1/2298064	17.393	9.04203	-0.001097	
Alpza I	cnr7:126428434-126463073	103.150	43.311	-2.06020	1.03E-10
	chr19:36925840-37014061	11.0002	0.00200	-1.21092	0.000169109
	chr17:57203972-57228136	20.2505	12.9202	-0.047043	0.0412950
Cachars	cnr1:136052800-136119822	4.30512	7 1 4 0 6 7	-1.09020	2.02E-00
Cachyl	chr11:10//03217-10//16476	21.0002	1.14007	-1.01391	0.04E-05
Camilio	chr13:3802892-3804318	20.9000	14.0002	-0.634405	0.04720
Carrie Carrie	Chr11:5969663-6065748	20.793	00.0701	1.49003	3.75E-10
Cars	chr3:14863537-14872373	405.31	129.17	-1.04093	4.20E-09
Casy I Cada100b	chr1:172209893-172219895	2 46659	10.0107	-1.07102	1.10E-12
Cdcruob	chr3:129914942-129970206	3.40058	1.01328	-1.77448	0.0362877
Cusii	CNF17:35543105-35557180	12.2021	0.721071	-1.0403	0.0330013
Clim	chr2:119351241-119354327	2.97904	102 222	-2.02703	2 505 07
Ckmt2	chr7:19410932-19422841	121.701	192.333	-1.90793	3.30E-07
CKIIIZ	chr13:91853382-91876894	13.3000	5.06057 1.07290	-1.39073	0.000311969
Cifiyab	chr13:93040713-93144724	5.41929	1.97209	-1.40779	0.0007100
	cnr7:25367615-25369724	0.0059779	0.00001	-1.22211	0.00007190
Collean	chr1:24177609-24252738	0.0256776	0.22691	3.13233	0.0171097
Coxea	chr7:1281/3945-128206366	39.20	12.5762	-1.04230	0.000233727
Coxed	chr/:140898941-140900446	98.4386	40.2187	-1.29130	0.00849591
Crott	chr3:93014204-93015686	58.2449	23.1631	-1.3303	0.000163268
USID	cnr19:5344/04-5349574	35.2405	13.9259	-1.33946	1.17E-07
Ctgr	cnr10:24595441-24598682	37.2639	22.9451	-0.69959	0.0239166
	chr15:82555046-82559756	12.4793	20.019	1.09292	0.00200931
Dalt41	chr3:13/623671-137628332	5.81605	1.70009	-1.//443	0.000227166
Duox2	chr2:122279242-122298791	4.566/8	8.0337	0.814888	0.0108848
	chr14:21676571-21714576	1.6588	0.118556	-3.8065	0.000305999
Eet1a2	chr2:181146211-181157026	36.669	11.8558	-1.62897	5.13E-09

gene	locus	WТ	TNFR2-/-	(fold change)	Adi P
Efna3	chr3:89302835-89322879	0.942056	3 36966	1 83872	0 00920654
Elovl4	chr9:83778691-83806305	27 4063	12 3533	-1 14961	0.000186097
Eabp4	chr3:10204342-10208576	128 586	69 0142	-0 897771	0.00146387
Fabr5	chr3:10012605-10016610	142 478	83 1034	-0 77776	0.0150444
Fal2	chr5:21202060 21424677	35 83/5	21 121	-0 762673	0.0100444
T GIZ	cili5.21292900-21424077	17 3701	8 53101	-1.02582	0.00002927
Fitm1	obr14:55575672 55576052	11 7072	2 71814	-7.1067	0.000402
For	chi 14.35373073-35370932	25 6197	50 0477	0 720245	0.00113470
FUS Ead2	chi 12.85473900-85477270	2 51509	0 512612	0.729245	0.0107905
FSUZ Cobrr2	chi17.81534353-81506981	2.01000	0.012012	-2.29400	0.000347941
Gabriz	cnr4:33063111-33095865	1.33311	0.12000	-3.37332	0.00069139
Gauri Chrit	chr9:115909454-116076176	0.076077	0.114222	-2.33442	0.0120494
	chr3:142594846-142619176	0.201031	10.0071	0.24092	
Gm10229	chr16:89015276-89015846	08.2913	4.77851	-3.83707	1.20E-11
Gm11559	chr11:99864475-99865571	2.91148	0.483039	-2.59154	0.0118839
Gm11562	chr11:99619597-99620404	12.3767	1.0899	-3.50537	2.34E-06
Gm11563	chr11:99657941-99658959	5.00477	0.474914	-3.39756	0.000219417
Gm11567	chr11:99879186-99880229	3.65561	0.242567	-3.91366	5.96E-05
Gm11568	chr11:99857916-99859060	1.61685	0.262336	-2.6237	0.0329983
Gm11570	chr11:99984702-99986593	0.502986	0.029653	-4.08426	0.00849588
Gm11595	chr11:99771713-99772913	1.81241	0.166468	-3.44459	0.00348309
Gm11937	chr11:99609793-99610189	19.0506	1.48169	-3.68452	4.91E-05
Gm11938	chr11:99602645-99603308	19.5271	1.57113	-3.6356	3.46E-07
Gm13177	chr4:144613659-144623602	22.7452	2.84583	-2.99864	5.59E-05
Gm14446	chr19:34592887-34601968	70.744	42.7764	-0.725792	0.0177925
Gm17821	chr12:67656741-67669271	4.08606	7.76544	0.926356	0.000137196
Gm5105	chr3:138048760-138081498	5.53513	1.11309	-2.31405	1.50E-06
Gna14	chr19:16435666-16610950	11.9394	20.736	0.796406	0.0200774
Gpai	chr15:99717592-99725007	19.1847	9.39952	-1.02929	0.000292091
	cnr/:1425/5528-1425/8146	41.4779	11.400	-1.00240	1.13E-12
	cnr3:98871466-98893273	40.3753	2 26424	1 00169	0.00200100 4 46E 06
	CNF3:96525165-96529216	0.20644	3.20424	-1.90100	4.10E-00
IIIC Inh1	chi1.45335268-45338972	9.39044	1 20576	-1.34704	0.000704797
Jprn 1	chr1:16994939-17097889	3.59512	1.39570	-1.30499	0.043939
JSIP I Khthd10	chr10:80808495-80813498	10.0339	5.05007 7.60104	-1.55574	2 05 5 09
	chr2:69670119-69684239	23.2039	7.09194	-1.59000	5.95E-00 5.40E.05
	chr9:77636731-77660122	2.00014	0.704290	-1.92000	5.40E-05
	cnr7:43781053-43785410	420.20	9.03703	-1.42009	0.31E-03
Kitis Krt14	chr11:100117595-100121495	120.20	09.2919 45.9202	-1.11339	2.77 E-00
Krt15	chi11:100203161-100207510	25 1000	40.0093	-1.02124	0.000102937
Kitij Krt17	chi 11.100131758-100135949	20.1099	12.9003	-0.900001	0.000000019
Krt25	chi11.100236216-100260989	10 7400	1 69772	-1.14702	2.000101323
Krt26	chr11:00228482.00227065	0 306487	0.020870	-2.07117	0.00/31857
Krt27	chi 11.99326465-99337903	0.330407	0.020079	2 07221	1 02E 06
Krt21	chi11:100046645 100050551	4 75308	0.303082	-2 74476	0.000265438
Krt220	chi 11:100046645-100050551	6 01 01	0.709119	-2.74470	6 09E 06
Krt33h	chr11:100023633 100020268	0.5101	0.023910	-3.00013	6.14E-07
Krt3/	chr11:100023055-100029868	10 7382	1 18057	-3 17/2/	0.14E-07
Krt35	chr11:100037330-100041334	0.003515	0 102680	-2 36627	0.03/5510
Krt30	chr11:00514622.00521258	0.590010	0.192009	-3 801/0	0.0343313
Krt5	chr15.101707060-101715501	59 2600	33 2014	-0 831032	0.0212217
Krt6a	chr15:101689911-10169/390	34 5912	15 5146	-1 15678	4 64F-05
Krt6h	chr15:101676022-1016240220	15 4807	7 98799	-0 955403	0 0120494
Krt71	chr15:101733048-101743007	14 4172	1 58227	-3 18773	5.55E-12
Krt86	chr15:101431013-101491512	10.4141	1.19505	-3.1234	1.29E-05

				1092	
gene	locus	WT	TNFR2-/-	(fold_change)	Adj P
Krtap1-3	chr11:99590460-99591339	4.05164	0.473569	-3.09686	0.00089139
Krtap1-4	chr11:99582548-99583677	3.37664	0.369144	-3.19333	0.00135292
Krtap1-5	chr11:99579976-99581016	21.9583	1.93945	-3.50105	1.40E-09
Krtap11-1	chr16:89570175-89571183	5.25532	0.649658	-3.01602	0.00200338
Krtap13-1	chr16:88728861-88729611	9.30868	0.666353	-3.80422	2.44E-06
Krtap14	chr16:88825290-88826145	18.8462	1.64959	-3.5141	6.33E-07
Krtap15	chr16:88829008-88829844	30.6764	2.83718	-3.4346	1.49E-09
Krtap16-1	chr16:88873664-88874269	25.7315	1.86191	-3.78868	5.35E-07
Krtap16-10b	chr16:88931803-88932264	34.4121	2.77599	-3.63184	4.03E-06
Krtap16-2	chr16:88868917-88869410	10.1058	1.28761	-2.97241	0.00261628
Krtap16-3	chr16:88962197-88981822	55.6081	3.75644	-3.88786	1.48E-06
Krtap16-4	chr16:88884785-88885089	31.1103	2.46176	-3.65963	0.000448136
Krtap16-5	chr16:88877512-88878038	31.8244	2.9375	-3.43747	7.76E-07
Krtap16-7	chr16:89403026-89403774	16.4001	1.98106	-3.04936	3.01E-06
Krtap16-8	chr16:89040926-89047899	19.1432	1.47129	-3.70168	0.0319524
Krtap16-8	chr16:89040926-89047899	21.4573	2.13572	-3.32867	3.31E-05
Krtap2-4	chr11:99614016-99614846	17.8348	1.60981	-3.46973	1.99E-07
Krtap22-2	chr16:89010379-89010759	61.4747	5.55908	-3.46707	7.14E-07
Krtap3-1	chr11:99566026-99566630	43.7644	4.71037	-3.21585	1.14E-09
Krtap3-2	chr11:99555822-99556853	11.2799	1.24545	-3.17902	3.23E-06
Krtap3-3	chr11:99550131-99550863	20.4513	2.07503	-3.30099	2.57E-07
Krtap4-1	chr11:99627228-99628239	9.67631	0.900547	-3.42558	2.40E-06
Krtap4-16	chr11:99850654-99851605	2.96777	0.713751	-2.05589	0.0348264
Krtap4-2	chr11:99634113-99635084	5.09036	0.42189	-3.59283	1.29E-05
Krtap4-6	chr11:99665042-99665960	7.85043	0.676577	-3.53645	2.38E-05
Krtap4-7	chr11:99643111-99644089	6.93128	0.548229	-3.66027	5.33E-06
Krtap5-1	chr7:142296376-142297069	1.97541	0.075278	-4.71378	0.00921907
Krtap5-5	chr7:142228794-142229971	1.40354	0.072081	-4.2833	0.00513224
Krtap6-1	chr16:89031698-89032292	23.9881	2,18791	-3.45469	2.71E-06
Krtap6-2	chr16:89419322-89420111	15.3314	1.89842	-3.01361	2.56E-06
Krtap7-1	chr16:89507702-89508323	61.6646	6.02257	-3.35599	1.28E-11
Krtap8-1	chr16:89487373-89487952	62.707	5.37746	-3.54363	4.11E-11
Krtap8-2	chr16:88895967-88896449	25.0741	2.96015	-3.08246	0.000149928
Krtap9-1	chr11:99873388-99874000	2.93878	0.218168	-3.75171	0.0019124
Krtap9-3	chr11:99597347-99598106	20.8753	1.90765	-3.45193	4.03E-07
Ky	chr9:102506137-102546239	4.12539	1.11047	-1.89336	6.08E-06
Lbx1	chr19:45232713-45235808	1.34027	0.256194	-2.38722	0.00783287
Ldb3	chr14:34526634-34588695	42.9426	17.4104	-1.30246	0.000251198
Lrrc15	chr16:30269301-30283254	1.16855	0.342837	-1.76912	0.0146999
Lrrc30	chr17:67630964-67632723	0.969811	0.13755	-2.81774	0.00892244
Ltf	chr9:111019291-111042766	5.60136	1.87672	-1.57756	0.00146387
Ly6d	chr15:74762055-74763567	65.1309	33.6943	-0.950835	0.0123799
Ly6g6c	chr17:35062545-35070048	32.3802	15.6088	-1.05275	0.012171
Mal	chr2:127633225-127656695	12.1092	6.53365	-0.890139	0.0177535
Mb	chr15:77015486-77057108	320.667	92.7827	-1.78915	1.01E-07
Mef2c	chr13:83504033-83667079	9.30064	4.70928	-0.981824	0.00405399
Miip	chr4:147860746-147868719	8.95524	3.49203	-1.35866	0.0238179
MIf1	chr3:67374096-67400000	18.3635	4.40731	-2.05887	5.67E-06
Mstn	chr1:53061662-53068079	2.72847	0.890945	-1.61468	0.0470183
Mybpc1	chr10:88518278-88605179	34.4867	13.1925	-1.38632	0.000373
Mybpc2	chr7:44501698-44524669	48.8537	5.95129	-3.03719	0
Myf6	chr10:107492859-107494729	6.03631	1.54239	-1.9685	0.00508676
Myh1	chr11:67200093-67225805	147.604	44.616	-1.72609	5.48E-05
Myh2	chr11:67171026-67197517	7.64859	3.44067	-1.15251	0.000185448
Myh4	chr11:67238028-67260446	8.25773	0.620914	-3.73328	0

dene	locus	wт	TNFR2-/-	(fold change)	Adi P
Myh8	chr11:67277123-67308633	115 281	46 6084	-1 30649	0 000522751
My/10	chr1:66924293-66945460	418 012	77 9928	-2 42213	0.000022701
Myl3	chr9:110763680-110769794	275 574	115 996	-1 24836	2 71E-06
Mylk2	chr2:152911351-152923065	6 10214	2 4857	-1 29567	0.00647093
Mylk4	chr13:32700826-32784031	6 33977	1 35512	-2 22601	1.62E-06
Mylof	chr7.127211607-12721/287	724 247	163 54	-2 14684	4 77E-13
Myo18b	chr5:112688874-112896391	3 22949	1 26267	-1 35483	0.000225585
Myord1	chr7:46376473-46379092	1 03446	0 201878	-2 35733	0.000220000
Myom2	chr8:15057642-15133422	16 2818	5 29587	-1 62032	8 95E-05
Myot	chr18:44334073-44355844	14 9377	5 56074	-1 42561	7 58E-05
Myoz1	chr14:20646937-20656615	63 6254	15 7957	-2 01007	7.00E 00
Myoz3	chr18:60573148-60591716	4 40677	1 37367	-1 68169	0 0019124
Myon	chr10:63115794-63203952	2 92098	0.952372	-1 61685	0.000843286
Neb	chr2:52136603-52338798	14 3612	4 531	-1 66427	1 91E-06
NIrp6	chr7:140920711-140929289	31 4519	51 9749	0 724667	0.0199874
Nr4a1	chr15:101254249-101274797	19 9203	7 47922	-1 41328	3.59E-06
Padi3	chr4:140785368-140810648	0 490051	0.095555	-2 35853	0.0455429
Pdk4	chr6:5483350-5496278	9 72671	2 83732	-1 77742	3 01E-07
Pfkm	chr15:98038743-98132514	53 2471	22 164	-1 26449	9 15E-07
Pgam2	chr11:5787963-5804820	101 923	30 8297	-1 72508	4 61E-05
Phka1	chr5:129846989-129879083	4 67363	0 910646	-2 35958	0.00360299
Pkia	chr3:7366603-7445365	10 98	5 51814	-0.992622	0.0291995
Pla2d12a	chr3.129878621-129895821	10 8404	5 01344	-1 11255	0.0417252
Pobo	chr5:90768517-90770060	23 9357	6 90384	-1 79369	1 29E-05
Pnn1r3a	chr6:14713821-14755274	1 63191	0.500822	-1 70419	0.00323354
Ppp1r3c	chr19:36731730-36736604	15 0891	7 3409	-1 03948	0.00020004
Prkad3	chr1:74738921-74748955	2 39464	0.686718	-1 80202	0.00100400
Prr9	chr3:92122203-92123947	6 51331	0.532655	-3 61212	1.95E-07
Psapl1	chr5:36017178-36398139	26 5408	13 5304	-0.972009	0.00783287
Psca	chr15:74714838-74717065	45 8833	14 8946	-1 62318	3 01E-06
Ptp4a3	chr15:73723144-73758766	21.2656	12.0562	-0.818739	0.0455429
Ptorr	chr10:116018362-116274933	8.51919	15.5292	0.866196	0.025175
Pvalb	chr15:78191117-78206351	141.822	21.8878	-2.69589	0
Pyam	chr19:6384428-6398459	107.824	31,2957	-1.78464	1.58E-11
Rab6b	chr9:103112073-103185270	3.77634	1.36788	-1.46505	0.000883689
Rarres1	chr3:67478885-67515523	23.2937	10.7593	-1.11435	0.00307416
Rp[3]	chr17:24727828-24736149	17.4549	4.56317	-1.93552	0.000140649
Rtn2	chr7:19282666-19296160	41.8777	18.2823	-1.19573	0.000405712
Ryr1	chr7:29003339-29125151	6.52168	1.54312	-2.07939	4.11E-11
S100a3	chr3:90600214-90602702	6.25594	1.33995	-2.22304	0.00839983
Saa1,Saa3	chr7:46711997-46743053	696.923	1402.52	1.00895	0.000254025
Saa2	chr7:46751832-46754314	46.5193	89.9619	0.951486	0.00206188
Scd3	chr19:44203191-44244267	20.4953	10.0611	-1.0265	0.000545779
Scn1b	chr7:31116523-31126945	20.0843	10.3668	-0.954098	0.0172084
Scn4a	chr11:106317546-106349461	1.37366	0.482064	-1.51073	0.0132089
Scn4b	chr9:45139041-45154061	1.52774	0.496177	-1.62248	0.031792
Serpina3j	chr12:104300715-104321456	17.5039	9.42055	-0.893796	0.0255982
Serpinf1	chr11:75410028-75422623	34.962	19.7283	-0.82552	0.0103384
Sim2	chr16:94085259-94127032	3.18008	1.00484	-1.6621	0.00487532
Slc20a1	chr2:129198772-129211617	52.1808	87.7445	0.749789	0.00660277
Slc25a4	chr8:46207340-46211009	356.431	198.071	-0.847603	0.00438501
Slc37a2	chr9:37225183-37255738	26.5171	75.0227	1.5004	7.00E-08
Slc38a3	chr9:107651154-107668968	1.25028	0.31098	-2.00735	0.0417252
Slc38a4	chr15:96994822-97055956	1.71098	0.448675	-1.93108	0.00381629
SIn	chr9:53850250-53853849	146.534	54.8915	-1.41658	2.82E-06

	l	ACCEPTE	D MANU	ISCR log2	
gene	locus	WТ	TNFR2-/-	(fold_change)	Adj P
Slpi	chr2:164354069-164356507	112.778	67.2185	-0.746558	0.0162615
Smtnl2	chr11:72388923-72411771	11.9626	3.28244	-1.86568	2.77E-06
Smyd1	chr6:71213939-71262281	6.90551	1.9436	-1.82902	0.00179486
Sprr1a	chr3:92483880-92485972	169.905	69.7195	-1.2851	2.40E-06
Sprr3	chr3:92456500-92458722	40.4301	16.1081	-1.32765	5.25E-05
Srl	chr16:4476265-4541829	12.1762	4.82447	-1.33562	1.41E-05
St3gal4	chr9:35046572-35175987	54.934	95.5484	0.798533	0.0310573
St8sia5	chr18:77185846-77255450	2.09293	6.05265	1.53204	0.00642593
Synpo2l	chr14:20658948-20668308	2.55221	0.793296	-1.68582	0.00375708
Sypl2	chr3:108212265-108226599	7.21149	1.69685	-2.08744	6.58E-07
Syt8,Tnni2	chr7:142434855-142444414	592.741	207.222	-1.51623	2.34E-06
Tat	chr8:109986063-109999804	5.5205	11.7475	1.08948	0.0130277
Tbx15	chr3:99253759-99354260	3.74846	1.55151	-1.27262	0.031792
Тсар	chr11:98383810-98384953	86.2479	32.7099	-1.39876	6.58E-07
Tchh	chr3:93442311-93449077	4.96052	0.739328	-2.7462	6.38E-08
Tchhl1	chr3:93468753-93471980	0.752094	0.061542	-3.61128	0.00524689
Tmem38a	chr8:72571212-72587286	33.5368	14.4231	-1.21737	0.000101787
Tmem41b	chr7:109972186-109986230	14.7794	8.76794	-0.753274	0.0243661
Tmod4	chr3:95124473-95129209	16.0244	5.02884	-1.67198	0.000500115
Tnfrsf1b	chr4:145212367-145246870	7.89982	1.06101	-2.89638	0
Tnnc2	chr2:164777161-164779734	837.557	291.08	-1.52477	5.35E-07
Tnnt3	chr7:142460847-142516017	677.388	212.902	-1.6698	0.000119894
Trdn	chr10:33083335-33478046	3.25336	0.689966	-2.23733	0.0123799
Trdn	chr10:33083335-33478046	12.6342	5.06271	-1.31936	0.00430626
Trim54	chr5:31116611-31137626	9.42906	2.81292	-1.74504	0.00122811
Trim63	chr4:134315119-134329629	2.91352	0.848967	-1.77898	0.0255982
Txlnb	chr10:17796218-17845754	3.90334	1.51275	-1.36753	0.0100553
Ubiad1	chr4:148434496-148444763	5.04125	9.8057	0.95984	0.0393959
Ucp3	chr7:100472990-100486432	1.58003	0.280035	-2.49627	0.00145637
Xirp2	chr2:67446001-67526618	2.6327	1.01333	-1.37743	0.000556385
Zfp534	chr4:147673502-147702553	0.0718613	0.640609	3.15616	0.00013417
Zmynd17	chr14:20482863-20496901	17.3346	2.89415	-2.58244	3.61E-10

NOTES:

*Two transcripts mapped to the Trdn gene locus. " - " indicates a previously unidentified transcript. Isly L

	Max_	Median_AC	Which	Fold_	UKIP I	
Gene	Exprs	Exprs	Max	Change	FClog	Cell Type
Car3	54.9659	35.98265	14	1.527567	0.611235	Blood Endothelium
Ctgf	917.779	155.2055	14	5.913315	2.563967	Blood Endothelium
Fabp4	1274.17	23.08425	14	55.19651	5.786505	Blood Endothelium
Fabp5	432.336	83.03575	14	5.206625	2.380348	Blood Endothelium
Klk10	92.5803	76.76105	14	1.206084	0.270331	Blood Endothelium
Mlf1	17.5898	13.06015	14	1.34683	0.429568	Blood Endothelium
Pdk4	479.213	29.59365	14	16.1931	4.017307	Blood Endothelium
Rarres1	52.1398	41.3356	14	1.261378	0.335	Blood Endothelium
Slc38a3	92.4815	49.4532	14	1.870081	0.903101	Blood Endothelium
St3gal4	611.279	255.8965	14	2.388774	1.256271	Blood Endothelium
A530098C11Rik	27.9519	20.21175	10	1.382953	0.467752	CD4 DC
Cacng1	81.2063	67.21555	10	1.208148	0.272797	CD4 DC
Cox6a2	211.782	150.8665	10	1.403771	0.489307	CD4 DC
Gm11563	337.698	256.599	10	1.316053	0.396218	CD4 DC
Hrc	74.0203	60.61635	10	1.221128	0.288214	CD4 DC
Ly6g6c	93.8809	59.9765	10	1.565295	0.646434	CD4 DC
Myf6	32.5893	28.79415	10	1.131803	0.178623	CD4 DC
Mylk2	76.0112	58.3924	10	1.301731	0.380431	CD4 DC
Pgam2	119.643	73.7381	10	1.62254	0.698254	CD4 DC
Prr9	25.3363	22.24675	10	1.138876	0.187611	CD4 DC
S100a3	41.3311	33.1688	10	1.246084	0.317401	CD4 DC
Saa1	12.7903	10.1412	10	1.261222	0.334822	CD4 DC
Acta1	200.916	150.6235	4	1.333895	0.415646	CD4 T
Actc1	192.921	159.1475	4	1.212215	0.277646	CD4 T
Adipoq	21.0798	17.7445	4	1.187962	0.248489	CD4 T
Ano5	25.7272	21.8656	4	1.176606	0.234632	CD4 T
Camk2b	116.101	80.28135	4	1.446176	0.532244	CD4 T
Cmya5	82.3801	64.7319	4	1.272635	0.347819	CD4 T
Cst6	41.9017	35.8033	4	1.170331	0.226916	CD4 T
Cyp2d12	19.4047	16.32815	4	1.18842	0.249045	CD4 T
Gabrr2	128.577	68.84555	4	1.867615	0.901197	CD4 T
Krt25	59.051	40.52325	5	1.457213	0.543212	CD4 T
Krt26	24.8054	22.24715	5	1.114992	0.157034	CD4 T
Krt27	109.312	63.0236	4	1.734461	0.794488	CD4 T
Krt31	76.3496	63.26845	4	1.206756	0.271134	CD4 T
Krt39	45.8357	32.0924	5	1.428242	0.51424	CD4 T
Krt86	43.9563	25.4467	5	1.727387	0.788591	CD4 T
Lrrc15	71.4131	44.26435	5	1.613332	0.690044	CD4 T
Myh4	39.3143	32.36985	4	1.214535	0.280403	CD4 T
Mylpf	79.8908	48.3563	4	1.652128	0.724326	CD4 T
Ppp1r3a	18.3939	13.20605	5	1.392839	0.478028	CD4 T
Rab6b	269.584	138.3965	4	1.947911	0.961927	CD4 T
Rpl3l	39.7774	33.6215	4	1.183094	0.242565	CD4 T
Scd3	49.1698	33.8439	5	1.452841	0.538877	CD4 T
SIn	52.7484	43.14145	5	1.222685	0.290053	CD4 T
Casq1	48.3378	42.83065	11	1.12858	0.174508	CD8 DC
Krt6a	76.4866	53.12225	11	1.439822	0.525891	CD8 DC
Saa2	13.9205	11.9507	11	1.164827	0.220116	CD8 DC
Scn4b	57.0591	38.16435	11	1.495089	0.580231	CD8 DC

	Max_	Median_	Which_	Fold_		
Gene	Exprs	Exprs	Max	Change	FClog	Cell Type
Smyd1	48.9394	38.6965	11	1.264698	0.338793	CD8 DC
Sprr1a	87.862	67.57835	11	1.30015	0.378678	CD8 DC
Tnnt3	254.265	161.837	11	1.571118	0.651791	CD8 DC
Actn2	120.91	71.00925	2	1.702736	0.767855	CD8 T
Ankrd23	178.807	115.42	1	1.549186	0.63151	CD8 T
Arg1	56.233	38.8528	2	1.447335	0.533398	CD8 T
Art1	109.642	73.41755	2	1.493403	0.578604	CD8 T
Asb10	92.3681	69.80845	2	1.323165	0.403993	CD8 T
Cacna1s	66.5446	49.8867	2	1.333915	0.415666	CD8 T
Calml3	34.202	30.10705	2	1.136013	0.183979	CD8 T
Cdsn	150.982	93.75335	2	1.610417	0.687434	CD8 T
Chac1	165.262	120.4365	2	1.372192	0.456482	CD8 T
Ckm	121.306	74.9309	2	1.618905	0.695018	CD8 T
Ckmt2	41.6323	27.8768	2	1.493439	0.578638	CD8 T
Cnfn	219.882	141.123	2	1.558088	0.639776	CD8 T
Col9a1	109.604	85.7255	2	1.278546	0.354504	CD8 T
Cox8b	93.3048	65.34945	2	1.427782	0.513776	CD8 T
Ddit4I	86.6861	57.3527	2	1.511456	0.595939	CD8 T
Dupd1	192.122	137.35	2	1.398777	0.484166	CD8 T
Eef1a2	147.328	124,1055	2	1.187119	0.247465	CD8 T
Efna3	60.1566	40.5051	2	1.485161	0.570619	CD8 T
Fitm1	60.4819	48.8239	2	1.238777	0.308916	CD8 T
Gadl1	54.2578	42.0121	2	1.29148	0.369026	CD8 T
Gm10229	24.1568	18.31245	2	1.319146	0.399605	CD8 T
Gm11559	13.885	10.4313	2	1.33109	0.412608	CD8 T
Gm11567	22.7365	18.56565	1	1.224654	0.292374	CD8 T
Gm13177	40.1918	36.07565	1	1.114098	0.155876	CD8 T
Gm5105	97.3833	66.0552	2	1.474272	0.560002	CD8 T
Gpd1	79.0393	62.60185	2	1.262571	0.336365	CD8 T
H19	97.5551	80.9888	2	1.204551	0.268495	CD8 T
Hfe2	104.958	69.6826	2	1.50623	0.590942	CD8 T
Jsrp1	336.888	211.1755	2	1.595299	0.673827	CD8 T
Klhl31	78.7352	52.7957	2	1.491318	0.576588	CD8 T
Krt13	52.5097	37.7052	2	1.392638	0.47782	CD8 T
Krt14	61.7941	50.3034	2	1.228428	0.296813	CD8 T
Krt15	80.3277	61.4221	2	1.307798	0.38714	CD8 T
Krt17	56.81	41.79185	2	1.359356	0.442923	CD8 T
Krt33a	62.8482	43.8797	2	1.432284	0.518318	CD8 T
Krt33b	411.303	270.989	2	1.517785	0.601967	CD8 T
Krt34	80.1967	58.8778	2	1.362087	0.445819	CD8 T
Krt35	97.1659	65.07035	2	1.493244	0.57845	CD8 T
Krt5	45.2961	36.3504	2	1.246096	0.317416	CD8 T
Krt6b	13.573	10.2774	2	1.320665	0.401264	CD8 T
Krt71	74.7779	57.8991	2	1.291521	0.369071	CD8 T
Krtap14	44.1425	31.9071	2	1.38347	0.468291	CD8 T
Krtap15	14.3805	11.05145	2	1.301232	0.379878	CD8 T
Ky	64.6469	45.30215	2	1.427016	0.513002	CD8 T
Lbx1	204.383	127.4585	2	1.603526	0.681248	CD8 T
Ldb3	128.775	92.67065	2	1.389599	0.474668	CD8 T

	Max_	Median_	Which_	Fold_		
Gene	Exprs	Exprs	Max	Change	FClog	Cell Type
Lrrc30	84.6899	68.6722	2	1.233249	0.302464	CD8 T
Mal	102.676	65.43275	2	1.569184	0.650014	CD8 T
Mb	118.952	85.6105	2	1.389456	0.47452	CD8 T
Miip	343.326	249.175	1	1.377851	0.46242	CD8 T
Mstn	34.6701	20.79805	2	1.666988	0.737244	CD8 T
Mvbpc1	70.9431	46.49815	2	1.525719	0.609489	CD8 T
Mybpc2	74.8514	47.38915	2	1.579505	0.659473	CD8 T
Myh1	35.224	29,73765	2	1.184492	0.244268	CD8 T
Myh2	57.0271	41,2945	2	1.380985	0.465698	CD8 T
Myh8	63 9911	50 37515	2	1 270291	0.345159	CD8 T
Myl1	23 4096	19 26895	2	1 214887	0.280822	CD8 T
Myl3	80 846	65 91505	2	1 226518	0.200022	CD8 T
Mylk <i>A</i>	21 6585	18 97405	2	1 1/11/18	0.204000	
Mynta Myntab	12/ 756	83 72225	2	1 /00118	0.130300	
Myo100	105 383	82 1732	2	1 282/5	0.373420	
Myom 2	100.000	02.1732	2	1.20245	0.0005002	
Wyorn∠ Myot	42.2199	32.2744	2	1.306134	0.30/333	
	41.0700	35.0177	2	1.190127	0.201110	
IVIYOZ3	181.067	109.958	2	1.646692	0.719571	
iviypn	35.0759	22.20735	2	1.579473	0.659443	
Neb	70.3659	36.10315	2	1.949024	0.962752	
Nirp6	93.2744	/3.65/65	2	1.266323	0.340646	CD8 I
Padi3	121.42	80.9755	2	1.499466	0.584449	CD8 I
Prkag3	134.77	93.5242	2	1.441017	0.527088	CD8 I
Psapl1	114.883	85.66505	2	1.341072	0.423387	CD8 T
Psca	51.2223	39.52295	2	1.296014	0.374081	CD8 T
Ptprr	65.608	43.4942	2	1.508431	0.593049	CD8 T
Pvalb	54.5752	37.3585	2	1.460851	0.546809	CD8 T
Ryr1	82.6806	66.00785	2	1.252587	0.324911	CD8 T
Scn4a	77.7898	55.814	2	1.393733	0.478954	CD8 T
Sim2	58.3201	39.37015	2	1.481328	0.566891	CD8 T
Sprr3	29.9162	23.89235	1	1.252125	0.324378	CD8 T
St8sia5	37.3147	31.5128	2	1.184112	0.243806	CD8 T
Synpo2l	88.1433	64.2715	2	1.371421	0.455672	CD8 T
Sypl2	92.0231	68.28925	2	1.347549	0.430338	CD8 T
Syt8	111.134	88.7088	2	1.252796	0.325151	CD8 T
Tat	66.4435	40.42155	2	1.643764	0.717003	CD8 T
Tbx15	28.0711	20.7949	2	1.349903	0.432856	CD8 T
Тсар	85.5632	66.5705	2	1.285302	0.362107	CD8 T
Tchh	91.6129	47.8785	2	1.913445	0.936173	CD8 T
Tnnc2	106.815	70.76575	2	1.509417	0.593991	CD8 T
Trdn	82.1907	63.4863	2	1.294621	0.37253	CD8 T
Trim54	100.34	58.65395	2	1.710712	0.774597	CD8 T
Trim63	90.7309	58.603	2	1.54823	0.630619	CD8 T
Ucp3	71.2701	45.97475	2	1.550201	0.632455	CD8 T
Xirp2	29.9763	23.22585	2	1.290644	0.368091	CD8 T
Zmynd17	121.427	70.84985	2	1.713864	0.777253	CD8 T
Ankrd39	208.164	148.144	1	1.405146	0.49072	CD8 T
Nr4a1	7411.4	2226.59	9	3.328588	1.73491	DC
Slc20a1	1246.87	589.9215	9	2.11362	1.079716	DC

	Max_	Median_	Which_	Fold_	UKIP I	
Gene	Exprs	Exprs	Max	Change	FClog	Cell Type
Tnni2	292.285	141.2025	9	2.06997	1.04961	DC
Actn3	98.2603	61.39435	12	1.600478	0.678503	Fibroblasts
Adh1	2351.42	57.21215	12	41.10001	5.361067	Fibroblasts
Ak1	262.727	72.6759	12	3.61505	1.854016	Fibroblasts
Atp1a2	1243.09	77.07815	12	16.12766	4.011465	Fibroblasts
C3	13097.5	108.6502	12	120.5474	6.913457	Fibroblasts
Elovl4	56.009	39.4477	12	1.419829	0.505717	Fibroblasts
Fos	6448.97	1657.16	12	3.89158	1.960356	Fibroblasts
Gna14	89.4295	44.8382	12	1.994494	0.996022	Fibroblasts
Pfkm	346.188	156.5525	12	2.211322	1.144909	Fibroblasts
Phka1	43.9753	22.64475	12	1.941964	0.957517	Fibroblasts
Pkia	121.465	14.2564	12	8.520033	3.090859	Fibroblasts
Ppp1r3c	161.559	34.31755	12	4.707766	2.235043	Fibroblasts
Pyam	518.532	80,7812	12	6.418969	2.682342	Fibroblasts
Rtn2	165 427	55 0313	12	3 006053	1 58787	Fibroblasts
Serpinf1	1586.27	76 7605	12	20 66519	4 36913	Fibroblasts
Slc25a4	1006.27	621 7925	12	1 618434	0.694598	Fibroblasts
Saa3	36 9202	22 4639	12	1.643535	0.004000	Fibroblasts
	97 9309	35 36115	12	2 760101	1 /60/6/	Lymphatic Endothelium
Inh1	50 13	<i>J</i> 1 82815	13	1 /136/1	0.400416	Lymphatic Endothelium
Scn1b	520.062	41.02015	13	5 02/020	2 220102	Lymphatic Endothelium
Slo38a4	183	27 8180	13	5.024929	2,329103	Lymphatic Endothelium
Sicola Smtnl2	164 276	72 06405	12	2 240724	1 1607/9	Lymphatic Endothelium
Btof1	104.370	101 211	13	1.750242	0.007627	
	150 146	494.341	0	2 62/00/	1 957070	Macrophage
Ealo	2017 62	41.41905	0	22 66706	1.001919 5.000765	Macrophage
Fyiz Fod2	5917.05	26 05225	0	1 502475	0.5079703	Macrophage
rsuz Chrit	20.02	20.90230	0	75 40004	0.007041	Macrophage
Gup I	2932.03	50.0010	0	10.40021	0.230179	Macrophage
	106.7	59.2326	8	1.801373	0.849097	Macrophage
IVIYOZ'I Dalar	51.8313	39.60695	8	1.308642	0.38807	Macrophage
Ррор	30.6144	16.57345	8	1.847195	0.885336	Macrophage
	850.939	92.53055	8	9.196303	3.201054	Macrophage
	229.87	135.3335	8	1.698545	0.764299	Macrophage
	1453.95	539.7885	8	2.693555	1.429512	Macrophage
	70.4584	48.09125	8	1.465098	0.550997	Macrophage
Atp2a1	113.506	88.85965	/	1.277363	0.353168	Mature B
Crct1	46.8429	31.7126	/	1.4//10/	0.562774	Mature B
Hao2	25.5545	19.079	/	1.339405	0.421592	Mature B
Ly6d	4650.27	110.2315	7	42.1864	5.398706	Mature B
Met2c	2073.18	272.5945	7	7.605363	2.927017	Mature B
Ptp4a3	1424.66	522.4705	7	2.726776	1.447196	Mature B
Tchhl1	115.644	87.16075	7	1.32679	0.40794	Mature B
Tmod4	50.3935	38.8674	7	1.296549	0.374677	Mature B
Ubiad1	64.2903	30.35845	7	2.117707	1.082503	Mature B
Adssl1	519.579	62.57405	6	8.303426	3.053707	Progenitor B
Fhl3	290.378	164.255	6	1.767849	0.821995	Progenitor B
Ltf	190.632	29.3154	6	6.502794	2.70106	Progenitor B
Pla2g12a	102.187	82.8843	6	1.232887	0.302041	Progenitor B
Slpi	97.3631	70.3139	6	1.384692	0.469565	Progenitor B

Sup	plementary	y Table 2. Immune cell-	specific expressi	ion of TNFR2-regulated	genes
-----	------------	-------------------------	-------------------	------------------------	-------

	Max	Median ^{ACC}	Which	Fold	CKIPI	
Gene	Exprs	Exprs	Max	Change	FClog	Cell Type
Tmem38a	79.5859	46.5519	6	1.709617	0.773673	Progenitor B
Srl	96.7261	35.0546	3	2.759298	1.464301	Progenitor T
						7
				Y		
				Y		
	2					

the man

IBD Susceptibility	CD	CD8 ⁺ T cell IBD		
Loci 1				signature 4
ATP2A1	ACTN3	H19	PGAM2	ACTN2
CACNA1S	ADH1C	HAO2	PHKG1	CCDC109B
CDSN	ADSSL1	HRC	PKIA	H19
CST6	AK1	KRT27	PSCA	KRT71
EEF1A2	ARG1	KRT33A	PTP4A3	MSTN
FOS	ASB10	KRT35	PYGM	MYBPC2
H19	BTAF1	KRT5	S100A3	МҮН8
MYLPF	CA3	KRT6A	SAA1	NEB
MYOZ3	CAMK2B	KRTAP8-1	SERPINF1	NR4A1
PPBP	CASQ1	LDB3	SLC20A1	PDK4
TCAP	CKMT2	LTF	SLC25A4	TCHHL1
TNNT3	CNFN	MAL	SLC37A2	TNFRSF1B
TRIM54	EEF1A2	MIIP	SLC38A4	
	EFNA3	MLF1	SMYD1	
	FABP5	MYH4	ST3GAL4	
	FGL2	MYL1	SYNPO2L	
	FOS	MYL3	TBX15	
	FSD2	MYLK4	TNFRSF1B	
	GABRR2	MYLPF	TNNC2	
	GADL1	MYOZ1	ZMYND17	
	GBP1	NR4A1		
	GNA14	PFKM		

Supplementary Table 3. TNFR2-regulated genes involved in CD8⁺ T cells and IBD

- 1. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012;491:119-24.
- 2. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545-50.
- 3. Wang M, Windgassen D, Papoutsakis ET. Comparative analysis of transcriptional profiling of CD3+, CD4+ and CD8+ T cells identifies novel immune response players in T-cell activation. BMC Genomics 2008;9:225.
- 4. Lee JC, Lyons PA, McKinney EF, et al. Gene expression profiling of CD8+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis. J Clin Invest 2011;121:4170-9.

Supplemental figure 1:

(A) Barrier function assay showing mean plasma fluorescence following intra-rectal FITC-dextran administration of 16 week-old wildtype (WT), $Tnfr2^{-/-}$, $II10^{-/-}$, and $II10^{-/-}Tnfr2^{-/-}$ mice; ***P<0.001, ns not significant. (B) TNF-induced apoptosis in TNFR2^{-/-} mouse colon epithelial cell lines stably transduced with wildtype TNFR2 (WT) add-back, or empty vector, measured by incell caspase-3 activity assay; ***P<0.001, ns not significant. (C) Hydrogen peroxide-induced DNA damage in $Tnfr2^{-/-}$ mouse colon epithelial cell lines stably transduced with wildtype TNFR2 (WT) add-back, or empty vector, measured by pH-H2AX expression by quantitative in-cell Western analysis; ***P<0.001, ns not significant. (D) Representative images and quantification of epithelial DNA-damage by phosphohistone-H2AX staining (red), apoptosis by TUNEL staining and proliferation by Ki67 staining in WT and $Tnfr2^{-/-}$ colonic sections, as in Figure 1; n=5; ***P < 0.001, ns not significant; scale bars: 100µm.

Supplementary figure 2

Supplemental figure 2:

(A) Scatter plot depicting RNAseq gene expression profiles of *Tnfr2*^{-/-} (Y-axis) and WT (X-axis) colonic mRNA. Differentially expressed genes are represented by red dots. Inset histogram represents distribution of total read counts. (B) Volcano plot depicting relationship between p-value (Y-axis) and fold change (X-axis). Differentially expressed genes are represented by red dots. (C) qPCR validation of down-regulated genes of interest. (D) qPCR validation of up-regulated genes of interest.

Supplemental figure 3:

(A) Representative histogram showing TNFR2 expression in CD3⁺CD8⁺ T cells (%) from mesenteric lymph nodes of 8 week-old WT mice; $Tnfr2^{-/-}$ mice were used as negative control; n=5. (B) Representative histogram showing TNFR2 expression in naïve CD8⁺ T cells (CD44^{low}CD62⁺CD8⁺) (%) from the peripheral lymph nodes of 8 week-old WT mice; $Tnfr2^{-/-}$ mice were used as negative control: n=5.