
MATERIALS AND METHODS 

Study Population  

We used the SNP level association p-value results from all 14 of the discovery GWAS analyzed by the 

transatlantic Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) 

consortium as well as two GWAS conducted by the Ottawa Heart Institute.1-3  A summary of the core 

phenotypic details for these GWAS is presented in Table 1. We divided the 16 GWAS into 2 sets: a Stage 

1 Discovery Set and a Stage 2 Replication Set. Further details on each of the cohorts included are 

provided in the Methods section in the online-only Data Supplement.   

 

Genotyping and Quality Control 

Details on genotyping and quality control procedures for all GWAS datasets included in this analysis 

have been previously reported.1, 3  All datasets were restricted to subjects of white/European descent 

either through self-report, principal components analysis, or a combination of the two.  Prior to 

performing association testing, all CARDIoGRAM genome-wide datasets were imputed up to ~2.5 

millions SNPs using HapMap2 release 22 (build 36) white (CEU; Center d’Etude du Polymorphisme 

Humain) sample as the reference panel. The SNP call rate filter used on genotyped SNPs pre-imputation 

was >0.90 and for a majority >0.95.  These SNPs were then used to impute approximately 2.5 million 

HapMap SNPs.   Imputed SNPs were then excluded based on missing frequency in cases or controls > 

0.02 (Missing), minor allele frequency in cases (MAF cases) or controls (MAF controls) < 0.01, quality of 

the imputation (INFO) < 0.5, and deviation from Hardy-Weinberg equilibrium in controls (HWE) p < 

0.0001.   One further filter that was applied to the discovery GWAS used in this analysis was the removal 

of any imputed SNP with an overall SNP call rate of < 0.75.   The call rate was applied to imputed SNPs by 

only counting an imputed call if the posterior probability of one of the three possible genotypes was 

>90%, i.e. imputed with a high level of certainty.  We also removed any SNP that was present in 2 or less 

of the Stage 1 studies and any SNP that was present in 4 or less of the Stage 2 studies. 

 

Stage 1 and Stage 2 GWAS Meta Analysis 

We conducted the meta-analysis of the two sets of GWAS using an analytic approach that was very 

similar to that used previously by the CARDIoGRAM consortium.2 . We then proceeded with a fixed-

effects inverse-variance-weighted meta-analysis together with a Q- and I- measure of homogeneity.  Any 

SNPs that were significantly heterogeneous based on Q and I statistics (at p<0.001) were analyzed using 

random effects.4  



 

Gene Set Enrichment Analysis  

Pathway information for gene set enrichment analysis was obtained from the Reactome gene sets 

available in the Molecular Signatures Database v3.1 (MSigDB).5, 6 Although a wide choice of pathway 

databases exist, we selected the expert-authored and manually curated Reactome database due to its 

transparent structural hierarchy, high generalizability and internally consistent ‘reaction-based’ data 

model encompassing a wide variety of biological processes.  A total of 639 Reactome pathways were 

utilized for pathway enrichment analysis, after removing 35 pathways with <10 or >200 gene members7-

9. 

 

For SNP-to-gene mapping, a SNP, Si, was first mapped to gene, Gj (j=1,….N) if Si was located within the 

primary transcript of the gene or a window of 100 kilobases on either end of the gene (additional details 

in Figure S1 in the online-only Data Supplement).  Associations between pathways and CAD were 

examined through a gene-set enrichment analysis (GSEA) procedure5, 10 via the  iGSEA4GWAS tool 

(Improved Gene Set Enrichment Analysis for Genome-Wide Association Study at 

http://gsea4gwas.psych.ac.cn/inputPage.jsp).11 iGSEA4GWAS examines the enrichment of significantly 

associated variants within or near a priori defined gene sets by determining if a particular gene-set ranks 

higher than a randomly distributed set, based on a running-sum statistic on the ranked list of genes 

(ranked by association p-values or an equivalent statistic) (Figure 1) (additional details in Methods 

section of online-only Data Supplement).   The ‘improvement’ in iGSEA4GWAS over traditional GSEA 

approaches is realized by focusing on gene sets with high proportions of significant genes instead of 

relying solely on the overall gene set significance that may sometimes originate from only a few genes. 

Pathways achieving a permutation-based nominal p-value of ≤0.05 (at <25% false discovery rate, FDR) in 

the Stage 1 discovery studies were taken forward for replication in a meta-analysis of the Stage 2 

studies.   Pathways were a priori defined as replicated if they also achieved a p-value of <0.05 

(corresponding to FDR<12.5%) in the Stage 2 set of GWAS. Additional analysis was also conducted to 

test for the effects of linkage disequilibrium (LD) patterns among SNPs and among pathway genes on 

GSEA results (Methods section of online-only Data Supplement).   

 

Bioinformatic Analysis to Prioritize Genes in Replicated Pathways 

After identifying the replicated pathways, we sought to recover higher level functional interactions 

between the pathways, as well as between genes within a pathway. To accomplish this, we mapped the 

http://gsea4gwas.psych.ac.cn/inputPage.jsp


genes from the replicated pathways onto well-curated interaction networks, and assessing the networks 

for (i) the probability that such networks can arise by chance (ii) the presence of biologically relevant 

clustering of genes within the network, and (iii) the relative contributions of pathway genes on the 

topology of pathway networks.   

 

(i) Statistical evaluation of networks: To statistically evaluate the degree to which networks derived from 

the query genes could arise at random, we first mapped a total of 770 candidate genes (derived from 

the GWAS replicated pathways) to the highly curated and high confidence InWeb protein-protein 

interaction network (PPI)12. Next, we created random networks via 1000 rounds of within-degree, node-

label permutation of the InWeb PPI network, and compared parameters of network connectivity (node-

degree and edge number) in sub-networks arising from the candidate genes in the original vs. the 

random networks. This analysis was conducted in the Disease Association Protein-Protein Link Evaluator 

(DAPPLE) software environment13. 

 

(ii) Mapping of replicated pathway genes to functionally interacting networks: The 770 genes from the 

replicated pathways were next mapped to a functional interaction network obtained from Reactome 

(ReactomeFI, 2012 version), and visualized in Cytoscape (v 2.8.2) (Methods section of online-only Data 

Supplement). The mapped interactome network was subjected to spectral partition clustering to 

identify internal modular sub-structures.14 We subsequently tested the resulting sub-networks for 

overrepresentation of biological processes via Gene Ontology-Biological Process terms.   

 

(iii) Analysis of network topologies: Lastly, we converted the replicated Reactome pathways into 

functional network modules and analyzed their network centrality properties, via the Centiscape tool15. 

Assuming that the critical functions of a network are largely governed by central nodes which connect 

several different neighborhoods of the network, we assessed the relative importance of networks and 

their constituent nodes (genes) by the centrality measures of ‘degree’ and ‘betweenness’ (Methods 

section , online-only Data Supplement). 16  Although other network centrality descriptors exist, ‘degree’ 

and ‘betweenness’ have been proposed as key correlates of gene and protein function in biological 

networks. Of them, ‘betweenness’ has been proposed to the more relevant metric when studying 

network dysfunction in disease (genes with high ‘degree’ are usually essential for life and therefore may 

not be investigatable in the context of disease)17-19  More specifically, recent data further show that 

genes with intermediate connectivity (betweenness) have the highest probability of harboring germ-line 



disease mutations (compared to essential genes) and correlate with pleiotropy,20 and crosstalk between 

functional modules.21  
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