MATERIALS AND METHODS

Study Population

We used the SNP level association p-value results from all 14 of the discovery GWAS analyzed by the
transatlantic Coronary ARtery Dlsease Genome wide Replication and Meta-analysis (CARDIoGRAM)

3 A summary of the core

consortium as well as two GWAS conducted by the Ottawa Heart Institute.
phenotypic details for these GWAS is presented in Table 1. We divided the 16 GWAS into 2 sets: a Stage
1 Discovery Set and a Stage 2 Replication Set. Further details on each of the cohorts included are

provided in the Methods section in the online-only Data Supplement.

Genotyping and Quality Control

Details on genotyping and quality control procedures for all GWAS datasets included in this analysis
have been previously reported. * All datasets were restricted to subjects of white/European descent
either through self-report, principal components analysis, or a combination of the two. Prior to
performing association testing, all CARDIoOGRAM genome-wide datasets were imputed up to ~2.5
millions SNPs using HapMap2 release 22 (build 36) white (CEU; Center d’Etude du Polymorphisme
Humain) sample as the reference panel. The SNP call rate filter used on genotyped SNPs pre-imputation
was >0.90 and for a majority >0.95. These SNPs were then used to impute approximately 2.5 million
HapMap SNPs. Imputed SNPs were then excluded based on missing frequency in cases or controls >
0.02 (Missing), minor allele frequency in cases (MAF cases) or controls (MAF controls) < 0.01, quality of
the imputation (INFO) < 0.5, and deviation from Hardy-Weinberg equilibrium in controls (HWE) p <
0.0001. One further filter that was applied to the discovery GWAS used in this analysis was the removal
of any imputed SNP with an overall SNP call rate of <0.75. The call rate was applied to imputed SNPs by
only counting an imputed call if the posterior probability of one of the three possible genotypes was
>90%, i.e. imputed with a high level of certainty. We also removed any SNP that was present in 2 or less

of the Stage 1 studies and any SNP that was present in 4 or less of the Stage 2 studies.

Stage 1 and Stage 2 GWAS Meta Analysis

We conducted the meta-analysis of the two sets of GWAS using an analytic approach that was very
similar to that used previously by the CARDIOGRAM consortium.” . We then proceeded with a fixed-
effects inverse-variance-weighted meta-analysis together with a Q- and I- measure of homogeneity. Any
SNPs that were significantly heterogeneous based on Q and | statistics (at p<0.001) were analyzed using

random effects.*



Gene Set Enrichment Analysis

Pathway information for gene set enrichment analysis was obtained from the Reactome gene sets
available in the Molecular Signatures Database v3.1 (MSigDB).> ¢ Although a wide choice of pathway
databases exist, we selected the expert-authored and manually curated Reactome database due to its
transparent structural hierarchy, high generalizability and internally consistent ‘reaction-based’ data
model encompassing a wide variety of biological processes. A total of 639 Reactome pathways were

utilized for pathway enrichment analysis, after removing 35 pathways with <10 or >200 gene members”
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For SNP-to-gene mapping, a SNP, Si, was first mapped to gene, Gj (j=1,....N) if Si was located within the
primary transcript of the gene or a window of 100 kilobases on either end of the gene (additional details
in Figure S1 in the online-only Data Supplement). Associations between pathways and CAD were

0 via the iGSEA4GWAS tool

examined through a gene-set enrichment analysis (GSEA) procedure® *
(Improved Gene Set Enrichment Analysis for Genome-Wide Association Study at

http://gseadgwas.psych.ac.cn/inputPage.jsp).'* iIGSEAAGWAS examines the enrichment of significantly

associated variants within or near a priori defined gene sets by determining if a particular gene-set ranks
higher than a randomly distributed set, based on a running-sum statistic on the ranked list of genes
(ranked by association p-values or an equivalent statistic) (Figure 1) (additional details in Methods
section of online-only Data Supplement). The ‘improvement’ in iGSEA4AGWAS over traditional GSEA
approaches is realized by focusing on gene sets with high proportions of significant genes instead of
relying solely on the overall gene set significance that may sometimes originate from only a few genes.
Pathways achieving a permutation-based nominal p-value of <0.05 (at <25% false discovery rate, FDR) in
the Stage 1 discovery studies were taken forward for replication in a meta-analysis of the Stage 2
studies.  Pathways were a priori defined as replicated if they also achieved a p-value of <0.05
(corresponding to FDR<12.5%) in the Stage 2 set of GWAS. Additional analysis was also conducted to
test for the effects of linkage disequilibrium (LD) patterns among SNPs and among pathway genes on

GSEA results (Methods section of online-only Data Supplement).

Bioinformatic Analysis to Prioritize Genes in Replicated Pathways
After identifying the replicated pathways, we sought to recover higher level functional interactions

between the pathways, as well as between genes within a pathway. To accomplish this, we mapped the


http://gsea4gwas.psych.ac.cn/inputPage.jsp

genes from the replicated pathways onto well-curated interaction networks, and assessing the networks
for (i) the probability that such networks can arise by chance (ii) the presence of biologically relevant
clustering of genes within the network, and (iii) the relative contributions of pathway genes on the

topology of pathway networks.

(i) Statistical evaluation of networks: To statistically evaluate the degree to which networks derived from
the query genes could arise at random, we first mapped a total of 770 candidate genes (derived from
the GWAS replicated pathways) to the highly curated and high confidence InWeb protein-protein
interaction network (PPI)*2. Next, we created random networks via 1000 rounds of within-degree, node-
label permutation of the InWeb PPl network, and compared parameters of network connectivity (node-
degree and edge number) in sub-networks arising from the candidate genes in the original vs. the
random networks. This analysis was conducted in the Disease Association Protein-Protein Link Evaluator

(DAPPLE) software environment ™.

(ii) Mapping of replicated pathway genes to functionally interacting networks: The 770 genes from the
replicated pathways were next mapped to a functional interaction network obtained from Reactome
(ReactomeFl, 2012 version), and visualized in Cytoscape (v 2.8.2) (Methods section of online-only Data
Supplement). The mapped interactome network was subjected to spectral partition clustering to
identify internal modular sub-structures."* We subsequently tested the resulting sub-networks for

overrepresentation of biological processes via Gene Ontology-Biological Process terms.

(iii) Analysis of network topologies: Lastly, we converted the replicated Reactome pathways into
functional network modules and analyzed their network centrality properties, via the Centiscape tool™.
Assuming that the critical functions of a network are largely governed by central nodes which connect
several different neighborhoods of the network, we assessed the relative importance of networks and
their constituent nodes (genes) by the centrality measures of ‘degree’ and ‘betweenness’ (Methods
section , online-only Data Supplement). ** Although other network centrality descriptors exist, ‘degree’
and ‘betweenness’ have been proposed as key correlates of gene and protein function in biological
networks. Of them, ‘betweenness’ has been proposed to the more relevant metric when studying
network dysfunction in disease (genes with high ‘degree’ are usually essential for life and therefore may

17-19

not be investigatable in the context of disease) More specifically, recent data further show that

genes with intermediate connectivity (betweenness) have the highest probability of harboring germ-line



disease mutations (compared to essential genes) and correlate with pleiotropy,? and crosstalk between

functional modules.”
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