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Supplemental Experimental Procedures 

I. Strains, media, and device 

Bacterial strains 

Unless noted otherwise, MG1655 cells carrying the circuit or the control plasmids were used for 

the printing experiments. 

Circuit and plasmids 

 The full circuit consists of two plasmids: pET15bLCFPT7 and pTuLys2CMR2, as described 

previously(Payne et al., 2013) 

 ptetmCherry served as our control for constitutive expression of mCherry.  The pattern_LuxIKO 

circuit is the pattern-formation circuit with luxI knocked out (Payne et al., 2013). The pattern_curli 

and pattern_desulf circuits each carries an additional effector gene. The CsgA gene (Chen et al., 2014) 

was inserted downstream of the T7 lysozyme gene to form the pattern_curli circuit. The cysteine 

desulfhydrase gene (Wang et al., 2001) was inserted downstream of T7 lysozyme gene to form the 

pattern_desulf circuit.  

Growth media 

 The LB medium: 25gLB Broth Powder, pH7 (MO BIO Laboratories, Inc) was added into 1L 

deionized H2O. After autoclaving for 45mins, the LB medium was stored at room temperature. LB 

was used to prepare pre-culture for inkjet printing experiments. The medium was supplemented with 

appropriate antibiotics (75 𝜇g/mL carbenicillin and 50 𝜇g/mL chloramphenicol, or both) when 

applicable. 

 The 2×YT medium(Sambrook and Russell, 2001): 16g tryptone (Difco Laboratories), 5g NaCl 

(Sigma), 10g yeast extract (Difco Laboratories), and 20.92g MOPS (Sigma) were added into 1L 

deionized H2O. The 2xYT medium was adjusted with 1.0M KOH (Sigma) solution to PH = 6.5 by 

VWR Symphony SB70P PH Meter.  

Overnight liquid culture 

MG1655 cells carrying the full circuit (pET15bLCFPT7 and pTuLys2CMR2) were streaked on 

an agar plate supplemented with carbenicillin and chloramphenicol, and incubated at 37℃ for 16 h. Then, 

a single colony was picked and inoculated in 3mL LB medium supplemented with 75 𝜇g/mL carbenicillin 

and 50 𝜇g/mL chloramphenicol for 16 h.  

Culture well (Figure S1B) 

The culture well used in this system is Culture WellTM multiwell chambered coverslip (Grace 

Bio-Labs; Bend, OR, USA; Item #103310). Each chip has two 1mm deep wells. The radius of each well 

is 7500 µm. Before culturing the cells, the rest of the silicon gasket flap was excised using a razor blade.  
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II. Methods 

Measurement of cell density in liquid culture 

Cell densities of liquid cultures were quantified using optical density (OD) measured at 600 nm 

absorbance using a Perkin-Elmer VICTOR3 plate reader.  

Fluorescence microscopy  

A Leica DM16000B fluorescence microscope with a mercury excitation lamp at 5X was used to 

image samples. Capture resolution was set as 8 bits for depth and 2 for binning. To measure CFP, the 

excitation filter was set to 436/20, and the emission filter was set to 480/40. The offset of the filter was set 

to 33/255, gain 100/255. To measure mCherry, the excitation filter was set to 575/25, and the emission 

filter was set to 632/60. The offset of the filter was set to 0/255; gain 150/255. All these parameters were 

kept the same between experiments. 

Inkjet printing (Figure S1A) 

We used the Epson Stylus Photo R280 Ultra Hi-Definition Photo Printer (C11C691201) for 

printing experiments for three reasons(Cohen et al., 2009). First, this printer contains a CD tray, which 

provides the capability of printing on a solid flat surface. After the culture well was loaded on the CD tray, 

the printing template could be designed to match the corresponding position of the culture well. Second, 

the inkjet is piezo-activated, which will not affect the cell viability. Third, the printer has a high resolution: 

5760 × 1440 pixels at the maximal dots per inch (dpi), which enables precise control of initial seeding 

positions of bacteria.  

To facilitate manipulation and sterilization, the outer shell of the printer was disassembled and 

removed. We then used PrintPayLess six packs Empty Refillable Ink Cartridges instead of the original 

ink cartridges.  

Print heads were cleaned thoroughly before and after each experiment. First, the printer head box 

was repositioned to the middle of the printer trail and absorbent paper towels were placed under the 

printer head to collect the liquid flushing through the printer heads. Second, the printer heads were 

flushed with 75% ethanol once, followed with washing with deionized water three times gently using a 

syringe. The absorbent paper towels were removed and the printer head box was then placed back in its 

original spot. 

To prepare 0.3% agar for printing, we mixed 0.15g of agar (214530 DifcoTM Agar, Granulated) in 

50ml of 2×YT medium, and microwaved the mixture until it was homogenous with no aggregates. We 

then cooled the agar below 50℃ at room temperature, and supplemented it with 75 𝜇g/mL carbenicillin, 

50 𝜇g/mL chloramphenicol, and 1000 µM 𝛽-D-1-thiogalactopyranoside (IPTG). We next pipetted 170 𝜇L 

of the agar into each culture well, and let it solidify at room temperature. 

An overnight culture of MG1655 cells carrying the full circuit was diluted to 0.2 absorbance 

(measured by Victor 3 plate reader) and then diluted another 50 fold into fresh LB broth. The diluted 

culture was transferred into a tone empty ink cartridge using a sterile syringe. The other five cartridges 

were filled with deionized water with a 0.2 µm filter (VWR® Syringe Filters, # 28145-477).  

Printing templates were designed in software GIMP using 1-pixle diameter spot. Each template 

was exported to an Epson CD printer program to direct printing of bacteria onto the agar surface. After 

printing, a 24 mm×50 mm glass coverslip was placed on the top of the culture well. There are two reasons 

for using the coverslip: First, the coverslip allows us to control the agar volume. In our typical 

experiments, the thickness was confined to ~20μm, which allows the cells to grow into a uniform and thin 

layer. Second, the coverslip seals with the silicon gasket, which minimizes evaporation of water from the 

soft agar.  
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All of the inkjet-printed samples were incubated at 30˚C for 16-43 h.  

Precise control of seeding configuration by inkjet printing (Figure S1C) 

We tested the inkjet-printing platform by printing MC4100 cells constitutively expressing the 

mCherry protein. A 3ml LB culture derived from a single colony from MC4100 containing the 

ptetmCherry plasmid was grown for 16 h at 37℃. The culture was diluted to OD of 0.2 and then diluted 

another 10 fold before being loaded into an ink cartridge. We placed a 25 mm × 25 mm glass cover in the 

bottom of the 100 mm petri dish, and then added 7.85 ml molten LB agar supplemented with 50 μg/ml 

chloramphenicol to generate a 1mm-depth agar layer. After the agar solidified, the embedded glass cover 

and the above agar were taken out from the petri dish by using a razor blade to cut off the excess agar.  

We then printed bacteria onto the agar layer with 1 mm spacing distance between printed spots. 

The inkjet-printing indeed achieved precise control of the colonies positions. The actual distances 

between colonies were 969.19 ± 24.28 µm when we intended to print them 1mm apart. The actual 

distances for the indented 500 µm distances were 506.96 ± 35.57 µm. 

Domain size calculation (Figure S1D) 
We made array templates with different spacing distance to control the effective domain area per 

colony, which is determined as 
𝑎𝑔𝑎𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠
. The domain radius for each colony is that of a 

circle with the same area as the effective domain area of the colony. To minimize boundary effects of 

initial cells printed close to the edge of a culture well, the array was designed to be symmetric and evenly 

distributed. 

Control experiments (Figures S1G and S2A) 

We used MG1655 cells carrying ptetmCherry plasmid and the same experimental system 

described in Figure S1G, by varying the domain radii from 1500 to 2500 µm. In the experiment shown in 

Figure S2A, after incubation at 30˚C for 24 h, no core-ring patterns were observed in the absence of 

circuit induction by IPTG. Pattern-forming dynamics were evident upon addition of 1mM IPTG. 

Colony radius measurement (Figure S1H) 

In our experiments, the glass coverslip on top of the culture well confines the height of the cell 

colony. Confocal microscopy images indicate the gap between the agar surface and the top glass cover 

was ~20μm, consistent with an estimated value of 15μm. Towards the center of the colony, the height is 

confined by the air gap; the colony height decreases toward to edge because of the motility of the cells. 

Movie S2 was split into frames with a gray color map. After locating the center of the colony, 

distances with greatest gray scale gradient away from the center were recorded. The average value of 

these distances represents the colony radius (green line in Figure S1H left panel). The ring width is 

defined as the distance between the inner and outer edge of the ring (described in Figure S1E).  

In simulation, the colony radius (green line in Figure S1H right panel) is defined as the distance 

from the colony center to the position where the cell density is half of the maximum cell density. The 

definition of the inner and outer edge of the ring follows the same rules as in Figure S1E. 
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III. Model development 
We previously modeled colony growth and gene circuit dynamics using an agent-based 

approach(Payne et al., 2013). The PDE model used in the current study corresponds to the hydrodynamic 

limit of the stochastic agent-based model from (Payne et al., 2013). The PDE formulation has two 

advantages. First, it is computationally less expensive to solve the PDE model numerically than the 

stochastic agent-based model. This increased computational efficiency makes intensive parameter 

estimation studies feasible. Second, the PDE formation better facilitates development of mechanistic 

insights into the patterning dynamics. Because the air pocket between glass plate and dense agar is only 

20μm high (Figure S1H), we model the system in two spatial dimensions and neglect vertical variations 

in gene expression profiles.  

The circuit dynamics can be described by the following PDEs: 

{
 
 
 
 
 
 

 
 
 
 
 
 

 

𝜕𝐶

𝜕𝑡
= 𝜅𝐶Δ𝐶 + 𝛼𝐶

1

1 + 𝛼𝑇 + 𝛽𝐿
∙

𝑁

𝐾𝑁 +𝑁
𝐶 (1 −

𝐶

𝐶̅
), 

𝑑𝑁

𝑑𝑡
=  −

𝛼𝑁
|𝛺|

∫ 𝐶 (1 −
𝐶

𝐶̅
)

𝑁

𝐾𝑁 +𝑁
 𝑑𝜎

𝛺

, 

𝑑𝐴

𝑑𝑡
=  
𝛼𝐴
|𝛺|

∫ 𝐶 
𝑇

𝐾𝑇 + 𝑇

𝐾𝑃
𝐾𝑃 + 𝑃

𝜑(𝑥, 𝐶)𝑑𝜎 − 𝑑𝐴𝐴 
𝛺

, 

𝜕𝑇

𝜕𝑡
= 𝜅𝐶

∇T ∙ ∇C

𝐶
− 𝛼𝐶𝑇

𝑁

𝐾𝑁 +𝑁
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𝐶

𝐶̅
) − 𝑑𝑇𝑇 + 𝛼𝑇𝜃(𝐶)

𝑇

𝐾𝑇 + 𝑇

𝐾𝑃
𝐾𝑃 + 𝑃

𝜑(𝑥, 𝐶) − 𝑘1𝑇𝐿

+ 𝑘2𝑃, 

𝜕𝐿

𝜕𝑡
= 𝜅𝐶

∇L ∙ ∇C

𝐶
− 𝛼𝐶𝐿

𝑁

𝐾𝑁 +𝑁
(1 −

𝐶

𝐶̅
) + 𝛼𝐿𝜃(𝐶)

𝑇

𝐾𝑇 + 𝑇

𝐴𝑚

𝐾𝐴
𝑚 + 𝐴𝑚

𝜑(𝑥, 𝐶) − 𝑑𝐿𝐿 − 𝑘1𝑇𝐿

+ 𝑘2𝑃, 

𝜕𝑃

𝜕𝑡
= 𝜅𝐶

∇P ∙ ∇C

𝐶
− 𝛼𝐶𝑃

𝑁

𝐾𝑁 +𝑁
(1 −

𝐶

𝐶̅
) + 𝑘1𝑇𝐿 − 𝑘2𝑃, 

(1) 

where  

 𝐶(𝑡, 𝑥) is the cell density 

 𝑁(𝑡) is the nutrient concentration 

 𝐴(𝑡) is the AHL concentration 

 𝑇(𝑡, 𝑥), 𝐿(𝑡, 𝑥), 𝑃(𝑡, 𝑥) are cellular T7RNAP, lysozyme and the T7-lysozyme complex density 

respectively 

In deriving these equations, we make the following assumptions: 

1. Cells are assumed to perform an unbiased random walk; their movement is modeled as 

diffusion(Kenkre, 2004; Maini, 2004; Murray et al., 1998). We considered "diffusion" as an 

approximation of the observed colony expansion, so that cell movement can be described by a 

single lumped parameter. Intracellular components are modeled with passive-tracer equations 

(see derivation below). 

2. Cell growth is modeled with a logistic term, along with a Monod function. The Monod function is 

to account for contribution of nutrient to overall colony growth. The nutrient here refers to one or 

more limiting factors that constrain growth. The logistic term accounts for the limit of cell growth 

in a particular location. This carrying capacity is unlikely limited by nutrient availability. Instead, 

it is limited by the spatial confinement imposed by our device, which is the colony height is 

confined to be ~20 𝜇𝑚 between the coverslip and the agar surface. 

3. Fast diffusion of AHL and nutrient. 
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4. Gene expression capacity: 

 𝜑(𝑥, 𝐶) = {

𝐾𝜑
𝑛

𝐾𝜑
𝑛 + (𝑅𝜑 − 𝑥)

𝑛 , 𝑥 ≤ 𝑅𝜑

1, 𝑥 > 𝑅𝜑

 (2) 

where 𝑅𝜑 is defined as the distance between colony center and the location where cell density is 95% of 

the carrying capacity (coefficients are all described in Table S1). 

Derivation of passive tracer equations 

T7RNAP, lysozyme and the T7-lysozyme complex cannot diffuse across the membrane of their 

host cell, and consequently follow the movement of the host cell. 

To derive the passive tracer PDE, consider a generic cell-bound substance without sources and 

sinks, and assume that the cells (𝐶) evolve according to a generic reaction-diffusion equation 
𝜕𝐶

𝜕𝑡
= 𝜅Δ𝐶 + 𝑓(𝐶), 

(

(3) 

where 𝜅 is the diffusion constant and 𝑓 is a smooth function. We denote by 𝑌(𝑡, 𝑥) (with units [𝑚𝑜𝑙/
𝑐𝑒𝑙𝑙]) the per cell concentration at location x of the passive tracer, and by 𝑦(𝑡, 𝑥) (with units [𝑚𝑜𝑙/
𝑚𝑚2]) its surface concentration. Here we invoke again the above assumption on uniform vertical 

distribution of cell content. In other words, we assume that the per-cell concentration of the substance is 

uniform in vertical direction and only depends on the location of the cell, but not its height in the stack of 

cells. Integrating over a control volume 𝑉, using the conservation of mass, and applying the divergence 

theorem, we find the following conservation law in global form  

𝜕

𝜕𝑡
∫ 𝑌(𝑥, 𝑡)𝐶(𝑥, 𝑡)𝑑𝑥 = ∫ 𝑌(𝑥, 𝑡) 𝜅(𝑥)∇𝐶(𝑥, 𝑡) ∙ 𝑑𝜎 =

𝜕𝑉𝑉

∫ ∇ ∙ (𝜅(𝑥)𝑌(𝑡, 𝑥)∇𝐶(𝑡, 𝑥))𝑑𝑥
𝑉

. 
(

(4) 

In the first equality, we used the fact that diffusion is driven along the gradient: the flow is 

proportional to 𝜅(𝑥)∇𝐶. Together with equation (3), the above conservation equation (4) becomes in local 

form 
𝜕𝑌

𝜕𝑡
= 𝜅

∇𝑌 ∙ ∇𝐶

𝐶
− 𝑓(𝐶)𝑌.  

Non-dimensionalization of the model 

First, we rescale the time and space variables as 

�̂� = 𝛼𝐶𝑡,     𝑥 =
𝑥

ℒ
 

where ℒ is a length scale to be chosen later.  

We next rescale the state variables,  

�̂� =
𝐶

𝐶̅
,   �̂� =

𝑁

𝑁0
,   �̂� =

𝐴

𝐾𝐴
,    �̂� =

𝑑𝐿
𝛼𝐿
𝐿,    �̂� =

𝑑𝑇
𝛼𝑇
𝑇,     �̂� =

𝑃

𝐾𝑃
 

With these dimensionless variables, and by defining �̂�(𝑥, �̂�) = 𝜑(𝑥, 𝐶), we can rewrite the model 

equations in a dimensionless form. Introducing the parameter groups 𝐺𝑖, (𝑖 = 1,… ,12) (see Table S2), the 

nondimensional equations become (omitting the hats for notational simplicity): 
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{
 
 
 
 
 
 

 
 
 
 
 
 

 

𝜕𝐶

𝜕𝑡
= 𝐺1Δ𝐶 +

1

1 + 𝛼𝑇 + 𝛽𝐿
𝐶(1 − 𝐶)

𝑁

𝐺2 +𝑁
, 

𝑑𝑁

𝑑𝑡
=  −𝐺3  ∫ 𝐶(1 − 𝐶)

𝑁

𝐺2 +𝑁
𝑑𝜎

𝛺

, 

𝑑𝐴

𝑑𝑡
=  𝐺4∫ 𝐶 

𝑇

1 + 𝑇

1

1 + 𝑃
 𝜑(𝑥, 𝐶)𝑑𝜎 − 𝐺5𝐴 

𝛺

, 

𝜕𝐿

𝜕𝑡
= 𝐺1

∇L ∙ ∇C

𝐶
− 𝐿

𝑁

𝐺2 +𝑁
(1 − 𝐶) − 𝐺6𝐿 + 𝐺7𝜃(𝐶)

𝑇

1 + 𝑇

𝐴𝑚

1 + 𝐴𝑚
𝜑(𝑥, 𝐶), 

𝜕𝑇

𝜕𝑡
= 𝐺1

∇T ∙ ∇C

𝐶
− 𝑇

𝑁

𝐺2 +𝑁
(1 − 𝐶) − 𝐺8𝑇 + 𝐺9𝜃(𝐶)

𝑇

1 + 𝑇

1

1 + 𝑃
𝜑(𝑥, 𝐶), 

𝜕𝑃

𝜕𝑡
= 𝐺1

∇P ∙ ∇C

𝐶
− 𝑃

𝑁

𝐺2 +𝑁
(1 − 𝐶), 

(5) 

Due to the reversible first order kinetics of T7RNAP bind with T7 lysozyme to form T7-

lysozyme complex is fast(Kumar and Patel, 1997), we add the additional constraint that 𝐿, 𝑇 and 𝑃 are at 

equilibrium: 

𝑃 =
𝐺10

𝐺11𝐺12
𝑇𝐿 

mCherry and CFP equations 

Experimentally, the circuit dynamics are reported by mCherry and CFP , which are co-expressed 

with lysozyme and T7RNAP, respectively. To allow for a direct comparison between model and 

experiment, we also model the dynamics of mCherry (𝜓𝑅) and CFP (𝜓𝐶): 
𝜕𝜓𝑅
𝜕𝑡

= 𝐺1
𝛻𝜓𝑅 ∙ 𝛻𝐶

𝐶
− 𝜓𝑅

𝑁

𝐺2 +𝑁
(1 − 𝐶) + 𝐺7𝜃(𝐶)

𝑇

1 + 𝑇

𝐴𝑚

1 + 𝐴𝑚
𝜑(𝑥, 𝐶), (6) 

𝜕𝜓𝐶
𝜕𝑡

= 𝐺1
𝛻𝜓𝐶 ∙ 𝛻𝐶

𝐶
− 𝜓𝐶

𝑁

𝐺2 +𝑁
(1 − 𝐶) + 𝐺7𝜃(𝐶)

𝑇

1 + 𝑇

𝐴𝑚

1 + 𝐴𝑚
𝜑(𝑥, 𝐶), (7) 

Domain shape, initial conditions, and boundary conditions 

The physical domain (see Figure S1D) is much larger than the emerging patterns, and its total 

size enters the model equations only through 𝐺3 and 𝐺4, which both scale as 1/|𝛺| (see equation (1) and 

Table S2). Since the computational domain only provides the computational range for running the 

simulation, consequently, we choose a computational domain large enough to avoid pattern interference 

with the boundary and to enforce no-flux boundary conditions. 

The initial conditions are chosen to reflect the experimental configuration. Since seeding cells are 

printed as small droplets on top of the agar, we choose a highly localized, radially symmetric initial field 

of cells 𝐶(𝑥, 𝑡)|𝑡=0, placed at the center of the domain. The initial nutrient concentration is given by 𝑁0, 

and the 𝐴, 𝐿 and 𝑃 concentrations are initially 0. We introduce a small amount of 𝑇 into the initial cell 

colony at time 0. Finally, homogenous von Neuman, or no flux conditions are used for all PDEs in 

system(Murray et al., 1998). 

Numerical solver for the PDE model 

To solve the model numerically in MATLAB, we exploit the radial symmetry of the system and 

reduce it to a PDE in polar coordinates, only depending on one spatial variable, namely the radius 𝑟 ∈
[0, 𝑅]. We then use a fractional multistep method(Ryser et al., 2012; Tyson et al., 2000). The goal of the 

method is to split each equation into the respective advection, diffusion and reaction contributions, and to 

update each part separately over the basic time step ∆𝑡. In addition, we introduce a fourth step, which 
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equilibrates 𝐿, 𝑇 and 𝑃 after each 3-step update. Next, we briefly describe the numerical methods used in 

each step. 

Step 1: Advection. To update the advection contributions, we combine the MATLAB built-in Runge-

Kutta solver ode45 with a second order centered finite difference scheme for discretization of the 

gradients. 

Step 2: Diffusion. Since the diffusion dynamics are stiff, we combine the MATLAB built-in ODE solver 

ode15s with a second order centered finite difference scheme for discretization of the Laplacian. 

Step 3: Reactions. We again use the MATLAB built-in Runge-Kutta solver ode45 to solve the 

intracellular reaction kinetics. 

Step 4: L-T-P equilibration. After completion of steps 1-3, the L-T-P system is updated by projecting it 

onto the manifold defined by 𝑃 =
𝐺10

𝐺11𝐺12
𝑇𝐿. With this constraint, the concentrations after steps 1-3 

(𝐿0, 𝑇0, 𝑃0) are updated during step 4 to (𝐿1, 𝑇1, 𝑃1) as follows: 

𝐿1 =
1

2
(𝐿0 − 𝐺10𝑇0 − 𝐺11 +√(𝐿0 − 𝐺10𝑇0 − 𝐺11)

2 + 4𝐺11(𝐿0 + 𝐺12𝑃0)), 

𝑃1 = 𝑃0 +
1

𝐺12
(𝐿0 − 𝐿1), 

𝑇1 = 𝑇0 +
1

𝐺10
(𝐿0 − 𝐿1). 

Parameters screening and execution of PDE model 

The dimensionless model has 22 parameters (Table S2).  Each dimensionless parameter is a 

combination of several parameters with units. Rather than estimating dimensionless parameters directly, 

we searched values of dimensional parameters in a realistic range, and then determine the corresponding 

dimensionless parameters. Ten parameters were estimated or measured in other studies; three parameters 

were estimated through new experiments (Table S1).  

We examined the contributions from the other nine parameters using a simple search algorithm. 

We first searched 18,231 parameter sets (Figure S2C, light blue lines) to identify those able to generate 

the core-ring pattern. During this step, we applied three criteria: 1) ability to generate mCherry core-ring 

pattern similar to the experimental observations; 2) transient CFP dynamics; 3) maintenance of mCherry 

ring within at least three-fold change in the domain size. Our search yielded 409 parameter sets (Figure 

S2C, dark blue lines). However, many of these sets did not generate scale invariance (e.g., see Figure S2D, 

step 1, blue curve).  

We next searched the vicinity of each of these sets to determine an optimal set able to generate 

scale invariance. In each round of search, we introduced a small normally distributed perturbation to each 

parameter value (Figure S2D, step 2). With the perturbed parameter set, we simulated the patterning 

dynamics for different domain radii and calculated a score for the parameter set according to its 

performance in generating scale invariance. This score accounts for two aspects:  

(1) The linear correlation between the ring width and the domain radius, as well as that between the 

colony radius and the domain radius. Each correlation is quantified on the basis of the coefficient 

of determination (R-squared) to value the linear fit. Higher R-squared value results in a higher 

score; 

(2) The standard deviation (SD) of the ratio of the ring width to the colony radius. Smaller SD value 

results in a higher score.  
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We repeated this perturbation 10 times and identified the parameter set with the highest score. We 

then used this new set as a starting point for the next round of perturbation analysis.  The red curve in 

Figure S2D step 3 is the parameter set that has the highest score after a total of 100 perturbations (10 

rounds, each with 10 perturbations to the same parameter set). This parameter set generates a high degree 

of scale invariance (bottom panel in step 3). 

Comparison with previous patterning dynamics 

Experimentally, the key differences in the circuit parameters include:  

(1) Greater cell motility of MG1655 cells (than MC4100Z1 cells), such that it can still form a 

sufficiently large colony even when growing on agar with higher density (0.3% in the current 

study vs. 0.07% in the previous study). This difference is only critical for making our inkjet-

printing protocol feasible – it is more challenging to print on very soft agar.  In other words, 

the greater motility of MG1655 compensates for the higher agar density in the current study. 

(2) A shallower gradient of the gene expression capacity. This notion is consistent with our 

observation of the gene expression pattern of constitutive mCherry from MG1655 cells 

(Figure S1G).  

(3) Less metabolic burden of circuit activation on the host cell. To illustrate this point, we 

measured growth in MC4100Z1 (the cell strain used in the previous study) and MG1655 

(current study) cells carrying the pattern-formation circuit and its different variants. These 

variants include the positive-feedback module, the pattern-formation circuit with the luxI 

gene knocked out, and the pattern-formation circuit with an effector gene co-expressed with 

the T7 lysozyme. As Figure S2F shows, compared with MG1655 cells, MC4100Z1 cells 

experienced a higher metabolic burden when different circuits were induced. Furthermore, the 

pattern-formation circuits carrying an effector gene (pattern_desulf) caused a higher 

metabolic burden than did the pattern-formation circuit by itself. 

Computationally, the model is able to generate two types of patterns, depending on parameter 

values. In the presence of a strong metabolic burden by circuit activation (𝛼=4) and fast decaying gene 

expression capacity (𝑛=4 and 𝐾𝜑 = 2), the patterns do not exhibit scale invariance (indicated as a green 

dashed line in Figure S2C). These correspond to our previous experimental data (Payne et al., 2013). In 

this case, mCherry formed a ring during the development, and the ring width did not change with domain 

radius (Figure S2G, green box). The steep gene expression capacity profile in this configuration results in 

very high expression of mCherry and T7 lysozyme on the edge relative to the interior. Also, a very 

narrow ring will occur towards the edge of the colony and since this results in a very high metabolic 

burden, a pause in colony growth occurs, causing less dilution of circuit components and therefore 

reinforcement of a very bright, narrow ring.  

The other set of parameters have a moderate metabolic burden (α=0.4) and a slowly decaying 

gene expression capacity profile (𝑛=1) (indicated as a red dashed line in Figure S2C). mCherry here 

formed a long lasting pattern consisting of a core and a ring, and CFP formed a transient ring before the 

mCherry ring initiated. Also, both the width of the mCherry ring and the colony radius scaled linearly 

with respect to the domain radius (Figure S2G, red box). This is consistent with the experimental results 

generated in the current study. In the current experimental setup, the cells grew on top of the agar, which 

provided better access to nutrients for all cells in the colony. Compared with the previous experiment, the 

gene expression profile in this case exhibited a flatter profile and the metabolic burden caused by circuit 

activation is weaker.  

Emergence of scale invariance 

The scale invariance requires a balance between colony growth and timing of pattern formation. 

In particular, the simulations indicate three conditions that are critical for the generation of scale 
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invariance. First, the metabolic burden by the circuit is small. Second, the T7RNAP feedback is strong. 

Third, the gene expression capacity declines slowly toward the colony center. Here we illustrate the 

mathematical basis on how these conditions can lead to scale invariance. 

Variables:  

 𝐷: domain radius; 𝛿𝑛: initial nutrient concentration; ℎ: the height of the culture well 

 𝑡1: ring initiation time; 𝑡2: when the nutrient concentration reaches 0.001𝑁0(complete exhaustion); 

∆𝑇 = 𝑡2 − 𝑡1 

 𝑅𝐶 : colony radius when the system reaches steady state; 𝜎 is the proportion coefficient; 𝑅𝐶 =  𝜎 ∙
𝐷 

 𝑅𝜑(t): the distance from colony center to the position where cell density is 95% of the carrying 

capacity  

 𝐹𝑊: distance between 𝑅𝜑 and 𝑅𝐶, also defined as half-width of the wavefront 

 𝑥𝑖𝑛𝑛𝑒𝑟: distance between the colony center and the inner edge of the ring 

 𝑥𝑜𝑢𝑡𝑒𝑟: distance between the colony center and the outer edge of the ring 

 𝑊𝑅: width of the mCherry ring; 𝑊𝑅 = 𝑥𝑜𝑢𝑡𝑒𝑟 − 𝑥𝑖𝑛𝑛𝑒𝑟. 

Proportionality between Rc and D  
With a small metabolic burden, the growth dynamics can be decoupled from the circuit dynamics. 

As a result, the equation governing cell dynamics (1) admits traveling wave solutions: 

�̇� ≈ 𝑣
𝑁

𝐺2 +𝑁
 

where 𝑣 is the maximum traveling wave speed. 

(8) 

Next, we notice that nutrient consumption is restricted to the moving colony edge of width 2𝐹𝑊. 

Thus the nutrient consumption is approximated by: 

�̇� = −𝐺32𝜋 ∙ 2𝐹𝑊𝑟(𝑡)
𝑁

𝐺2 +𝑁
 (9) 

 Combining equations (8) and (9) yields: 

�̇� = 𝑣
�̇�

−𝐺3
1 ∙ 𝑟(𝑡)

 

      𝑟2̇ = −
2𝑣

𝐺3
1 �̇�, (10) 

where 𝐺3
1 =  4𝜋𝐹𝑊𝐺3. 

Integrating both sides of equation (10) yields: 

𝑟(𝑡) = √
2𝑣

𝐺3
1 (𝑁(0) − 𝑁(𝑡)) 

Eventually, all nutrient will be consumed, and hence: 

 𝑅𝑐 = lim
𝑡→∞

𝑟(𝑡) =√
2𝑣

𝐺3
1𝑁(0) = √

2𝑣

𝐺3
1 𝜋𝐷

2ℎ𝛿𝑛 = √
2𝑣

𝐺3
1 𝜋ℎ𝛿𝑛 ∙ 𝐷.  

Or:  

𝑅𝑐 = 𝜎𝐷, 

where 𝜎 = √
2𝑣

𝐺3
1 𝜋ℎ𝛿𝑛 , a constant. 

Proportionality between t1 and D  
To simplify the estimation, we rewrite equation (5) as follows: 
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{
 
 
 
 
 
 

 
 
 
 
 
 

 

𝑑𝑎

𝑑𝑡
=  𝛼𝐴

𝑇

𝐾𝑇 + 𝑇

𝐾𝑃
𝐾𝑃 + 𝑃

, 

𝜕𝑇

𝜕𝑡
= 𝛼𝑇

𝑇

𝐾𝑇 + 𝑇

𝐾𝑃
𝐾𝑃 + 𝑃

−
𝜕𝑃

𝜕𝑡
, 

𝜕𝐿

𝜕𝑡
= 𝛼𝐿

𝑇

𝐾𝑇 + 𝑇

𝐴𝑚

𝐾𝐴
𝑚 + 𝐴𝑚

−
𝜕𝑃

𝜕𝑡
, 

𝜕𝑃

𝜕𝑡
= 𝑘1𝑇𝐿 − 𝑘2𝑃, 

𝐴 =
1

|Ω|
∑𝑎 

Here we make several assumptions: 

(1) 𝑎 is AHL production per cell.  This is a function of time and location.  

(2) Gene expression only takes place over a certain width along the edge of the colony. This 

assumption is made with reference the gene expression capacity formula, in which half width 

is applied as a constant.   
(3) Because the metabolic burden is low, we separate colony growth from the gene expression 

equations.  

It can be shown that, when 𝐴 ≫ 1, 𝑃(𝑥, 𝑡) ≈ 𝑎(𝑥, 𝑡). The relation between 𝑡1 and 𝐷 is determined 

by how quickly AHL accumulates and the amount of this accumulation. 

 

AHL accumulation rate 

The rate of AHL accumulation over time is given by:  

𝑑𝐴

𝑑𝑡
=  𝐺4∫ 𝐶 

𝑇

1 + 𝑇

1

1 + 𝑃
 𝜑(𝑥, 𝐶)𝑑𝜎 − 𝐺5𝐴 

𝛺

, 

At the beginning of cell growth, 𝐶 
𝑇

1+𝑇

1

1+𝑃
 is the same for different domain sizes. Near time 0, 𝐴 

is negligible; thus, the degradation term can be eliminated. Therefore, 

𝑑𝐴

𝑑𝑡
∝  𝐺4 ∝

1

|𝛺|
∝
1

𝐷2
 

AHL accumulation amount 

The total amount of AHL accumulation is also determined by the same rate equation but can be 

approximated by considering the time window when AHL approaches its maximum (or when time 

approaches 𝑡1) 

𝑑𝐴

𝑑𝑡
=  𝐺4∫ 𝐶 

𝑇

1 + 𝑇

1

1 + 𝑃
 𝜑(𝑥, 𝐶)𝑑𝜎 − 𝐺5𝐴 

𝛺

= 𝐺4
𝑇

1 + 𝑇

1

1 + 𝑃
∗ 2𝜋𝑅𝐶 ∗ 𝐾𝜑 − 𝐺5𝐴 

As AHL approaches its maximum, we have 𝐴 ≫ 1,  𝑇(𝑥, 𝑡) ≪ 1. Also, 𝑇(𝑥, 𝑡) does not change 

significantly over time due to the lysozyme-mediated negative feedback; thus, 
𝑇

1+𝑇
≈ 𝑠𝑚𝑎𝑙𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Under this condition, we also have 𝑃 ≈ 𝑎. Hence: 
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𝑑𝐴

𝑑𝑡
∝  

𝑅

𝐷2
1

1 + 𝑃
− 𝐺5𝐴 =

𝑅

𝐷2
1

1 + 𝑎
− 𝐺5𝐴 =

𝑅

𝐷2
1

1 +
𝐴 ∗ 𝐷2

𝑅𝐶

− 𝐺5𝐴 

When AHL reaches its maximum (𝐴𝑚𝑎𝑥), we have  
𝑑𝐴

𝑑𝑡
|𝐴=𝐴𝑚𝑎𝑥 = 0, or:  

𝑅𝐶
𝐷2

1

1 +
𝐴𝑚𝑎𝑥 ∗ 𝐷

2

𝑅

− 𝐺5𝐴𝑚𝑎𝑥 = 0 → 𝐴𝑚𝑎𝑥
2𝐷2 + 𝑅𝐶𝐴𝑚𝑎𝑥 =

𝑅𝐶
2

𝐷2 ∙ 𝐺5
 

Because 𝑅𝐶 ∝ 𝐷, 𝐴𝑚𝑎𝑥
2𝐷2 + 𝑅𝐶𝐴𝑚𝑎𝑥 ∝ 1 → 𝐴𝑚𝑎𝑥|𝑡=𝑡1 ∝

1

𝐷
. Therefore, 

𝑡1 =
𝐴𝑚𝑎𝑥|𝑡=𝑡1

𝐴𝐻𝐿 𝑎𝑐𝑢𝑐𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒
∝

1
𝐷
1
𝐷2

∝ 𝐷 

Proportionality of the mCherry ring width to D 

After 𝑡1, colony radius expansion is negligible. According to (6), advection of mCherry and 

T7RNAP within 𝑅𝑐 is negligible as ∇𝐶 ≈ 0. The profile of mCherry 𝜓𝑅(𝑥, 𝑡) at radius 𝑥 and time 𝑡 can 

be expressed as  

𝜓𝑅(𝑥, 𝑡) = 𝜓𝑅(𝑥, 𝑡1) + 𝐺7∫ 𝜑(𝑥, 𝑡) ∙
𝑇(𝑥, 𝑡)

1 + 𝑇(𝑥, 𝑡)
∙
𝐴(𝑡)𝑚

𝐴(𝑡)𝑚 + 1
𝑑𝑡

𝑡

𝑡1

 

Therefore, when 𝑡 = 𝑡2, mCherry profile is 

𝜓𝑅(𝑥, 𝑡2) = 𝜓𝑅(𝑥, 𝑡1) + 𝐺7∫ 𝜑(𝑥, 𝑡) ∙
𝑇(𝑥, 𝑡)

1 + 𝑇(𝑥, 𝑡)
∙
𝐴(𝑡)𝑚

𝐴(𝑡)𝑚 + 1
𝑑𝑡

𝑡2

𝑡1

 (11) 

Conditions required for scale invariance (as revealed by numerical simulations): 

 A strong T7 positive feedback, coupled with negative feedback from lysozyme, leads to a flat 

T7RNAP profile across space after 𝑡1. Also because of the negative feedback, 𝑇(𝑥, 𝑡) ≪ 1 and does 

not change significantly over time (Figure S3D). That is, 

𝑇(𝑥, 𝑡)

1 + 𝑇(𝑥, 𝑡)
|𝑡1≤𝑡≤𝑡2 ≈ 𝑇(𝑥, 𝑡) ≈ 𝜏 (12) 

 Between 𝑡1 and 𝑡2, AHL remains ≫ 1 (Figure S3E). Since the AHL concentration is not space 

dependent,  

 
𝐴(𝑡)𝑚

𝐴(𝑡)𝑚 + 1
|𝑡1≤𝑡≤𝑡2,𝑚=2 ≈ 1 (13) 

 Given equations (12) and (13), the accumulation of mCherry is mainly determined by the gene 

expression capacity (equation (2)), a space and time dependent function. Simulations indicate that 

scale invariance is favored when 𝑛 ≈ 1; that is, the gene expression capacity profile is shallow. 

After the ring initiates at 𝑡1, colony expansion is negligible compared to the final cell radius, 𝑅𝐶. 

Therefore,  𝑟(𝑡)|𝑡1≤𝑡≤𝑡2 ≈ 𝑅𝐶 ≈ 𝜎 ∙ 𝐷.  

Since 𝑅𝜑(𝑡) is defined as the position where cell density is 95% of the carrying capacity, 𝑅𝜑(𝑡) 

is a function of 𝑅𝐶. Based on the search results: 𝐾𝜑 = 𝐹𝑊(𝑡1) ⇒ 𝐾𝜑 + 𝑅𝜑(𝑡)|𝑡1≤𝑡≤𝑡2 = 𝑅𝐶 = 𝜎 ∙ 𝐷 

(Figure S3F). Hence: 
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𝜑(𝑥, 𝑡)|𝑡1≤𝑡≤𝑡2 =
𝐾𝜑

𝐾𝜑 + 𝑅𝜑(𝑡) − 𝑥
=  

𝐾𝜑

𝜎 ∙ 𝐷 − 𝑥
 

Therefore, 

𝜓𝑅(𝑥, 𝑡2) = 𝜓𝑅(𝑥, 𝑡1) + 𝐺7𝜏∫
𝐾𝜑

𝜎 ∙ 𝐷 − 𝑥
𝑑𝑡

𝑡2

𝑡1

 

= 𝜓𝑅(𝑥, 𝑡1) +
𝐺7𝜏∆𝑇𝐾𝜑

𝜎 ∙ 𝐷 − 𝑥
  

However, the match between 𝐾𝜑 and the half-width of the colony wavefront is not an absolute 

constraint. The system can still generate approximate scale invariance even when these two variables are 

slightly different. 

Calculating the mCherry ring width (Figure 3C, S3G):  

The ring width refers to the distance between the valley of mCherry profile to its horizontal 

intersection at 𝑡2. To compute the ring width, we examine the mCherry profile in two steps: mCherry 

profile at 𝑡1 and the accumulation of mCherry from 𝑡1 to 𝑡2 (the maturation phase). 

Based on simulations, the mCherry profile at ring initiation time, 𝜓𝑅(𝑥, 𝑡1), scales with the 

domain radius 𝐷. This scaling results from the initial phase of the circuit dynamics coupled with colony 

growth and expansion. A strong T7RNAP positive feedback loop induces fast lysozyme synthesis. 

Meanwhile, a small metabolic burden decouples cell growth from the circuit dynamics. The fast dilution 

from the cell growth gives the cell in the relative same location of the colony same amount of time to 

synthesizes mCherry. Given this scaling, we use a normalized distance, 𝑥 =  
𝑥

𝐷
 to continue the calculation.  

𝜓𝑅(�̂�, 𝑡2) = 𝜓𝑅(�̂�, 𝑡1) +
𝐺7𝜏∆𝑇𝐾𝜑

𝜎 ∙ 𝐷 − 𝑥 ∙ 𝐷
 (14) 

Due to the scaling of mCherry profile at t1, 𝜓𝑅(�̂�, 𝑡1) is approximately the same for varying 

domain sizes on normalized axis (Figure S3G, left). 

The time for nutrient exhaustion, 𝑡2, is proportional to the initial nutrient concentration, which is 

proportional to 𝐷. The time for ring initiation, 𝑡1, is the time when AHL reaches a maximum. This time is 

also proportional to 𝐷 according to our simulation. Thus, ∆𝑇 = 𝑡2 − 𝑡1 = 𝛿 ∙ 𝐷 (𝛿 is a positive constant). 

𝐺7𝜏∆𝑇𝐾𝜑

𝜎 ∙ 𝐷 − 𝑥 ∙ 𝐷
=
𝐺7𝜏𝛿𝐾𝜑

𝜎 − 𝑥
 

Therefore, the accumulation of mCherry during the maturation process 
𝐺7𝜏𝛿𝐾𝜑

𝜎−�̂�
 is independent of 

𝐷 (Figure S3G, middle), when using the normalized x-axis. 

Taken together, the mCherry profile on a normalized axis at 𝑡2 is: 

𝜓𝑅(𝑥, 𝑡2) = 𝜓𝑅(�̂�, 𝑡1) +
𝐺7𝜏𝛿𝐾𝜑

𝜎 − 𝑥
 

Again, both 𝜓𝑅(�̂�, 𝑡1) and 
𝐺7𝜏𝛿𝐾𝜑

𝜎−�̂�
 are independent of 𝐷. If there is an inner edge 𝑥𝑖𝑛𝑛𝑒𝑟, it will be the 

same value for varying domain radius (Figure S3G, right). That is, 𝑥𝑖𝑛𝑛𝑒𝑟 = 𝐷 ∙ 𝑥𝑖𝑛𝑛𝑒𝑟 ∝ 𝐷; the position 

of the inner edge always scales with D. 𝑥𝑜𝑢𝑡𝑒𝑟 is approximately equal to  𝑅𝐶 ≈ 𝜎 ∙ 𝐷 ∝ 𝐷. Therefore, ring 

width 𝑊𝑟 =  𝑥𝑜𝑢𝑡𝑒𝑟 − 𝑥𝑖𝑛𝑛𝑒𝑟 ∝ 𝐷. 
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Effects of adding exogenous AHL (Figure S4A-E) 

 Both simulation using the full model and experiments demonstrate that addition of exogenous 

AHL has two major effects (Figure 4B): 

(1) Formation of smaller rings. 

(2) Disruption of the proportionality between the ring width and domain radius, while 

maintaining their linear correlation for a smaller range of domain radii. 

These effects can also be intuitively interpreted based on the same mathematical framework 

outlined above. Compared with the base case, equations (12) and (13) still hold in the presence of 

exogenous AHL. However, the extra AHL induces more lysozyme expression, which induces higher 

metabolic burden on cell growth (Figure S4C). Compared to cell growth, diffusion will be the dominant 

factor to determine local cell density, which leaves the half-width of wavefront wider than in the base 

case.  

𝐾𝜑 + 𝜀 = 𝐹𝑊(𝑡1), (𝜀 > 0) 

⇒ 𝐾𝜑 + 𝑅𝜑(𝑡)|𝑡1≤𝑡≤𝑡2 = 𝑅𝐶 − 𝜀 = 𝜎 ∙ 𝐷 − 𝜀 

Equation (11) becomes: 

𝜓𝑅(�̂�, 𝑡2) = 𝜓𝑅(�̂�, 𝑡1) +
𝐺7𝜏∆𝑇𝐾𝜑

𝜎 ∙ 𝐷 − 𝜀 − 𝑥 ∙ 𝐷
 (15) 

Based on simulation, the maturation time is still proportional to 𝐷: ∆𝑇 = 𝑡2 − 𝑡1 = 𝛿𝑎ℎ𝑙 ∙
𝐷. However,  𝛿𝑎ℎ𝑙 >  𝛿 as the ring initiates earlier (t1 is smaller than the base case). 

𝜓𝑅(𝑥, 𝑡2) = 𝜓𝑅(�̂�, 𝑡1) +
𝐺7𝜏𝛿𝑎ℎ𝑙𝐾𝜑

𝜎 −
𝜀
𝐷
− 𝑥

 

To understand why the relationship of ring width to domain radius has a positive 

intercept on y-axis, the position of the ring’s inner edge needs to be calculated. In Figure S4D 

(left), from unit 2 to unit 7 on x-axis, the mCherry profile is approximately linear: 𝑦 = −𝑘𝑥 +
𝑎0, (𝑘, 𝑎0 are positive constants). 

The inner edge position, 𝑥𝑖𝑛𝑛𝑒𝑟
+𝑎ℎ𝑙 , satisfies 

𝜕𝜓𝑅(𝑥,𝑡2)

𝜕𝑥
|
𝑥=𝑥𝑖𝑛𝑛𝑒𝑟

+𝑎ℎ�̂� = 0. Therefore we have: 

𝜕𝜓𝑅(�̂�, 𝑡1)

𝜕𝑥
+

𝐺7𝜏𝛿𝑎ℎ𝑙𝐾𝜑

(𝜎 −
𝜀
𝐷 − 𝑥)

2 = 0 

𝑥𝑖𝑛𝑛𝑒𝑟
+𝑎ℎ�̂� = 𝜎 −

𝜀

𝐷
− √

𝐺7𝜏𝛿𝑎ℎ𝑙𝐾𝜑

𝑘
 

Eventually,  

𝑊𝑅 = (𝑥𝑜𝑢𝑡𝑒𝑟
+𝑎ℎ�̂� − 𝑥𝑖𝑛𝑛𝑒𝑟

+𝑎ℎ�̂� )𝐷 

= 𝜎𝐷 − (𝜎 −
𝜀

𝐷
− √

𝐺7𝜏𝛿𝑎ℎ𝑙𝐾𝜑

𝑘
)𝐷 

= 𝜀 + √
𝐺7𝜏𝛿𝑎ℎ𝑙𝐾𝜑

𝑘
𝐷 

That is, the ring width is a linear function of the domain radius but with a positive 
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intercept. 

Effect of higher metabolic burden (Figure S4F) 

 According to our simulation using the full model and experiment, having significant 

additional metabolic burden (e.g. by expressing another gene) would lead to the loss of scale 

invariance (Figure 4C).  

Conditions: 

 Compared with the base case, the AHL concentration accumulates slowly to pass the half 

activation threshold (=1). After 𝑡1, AHL decreases but remains ≫ 1. As with the base case, 

the AHL concentration is not space-dependent due to its fast diffusion. 

 With a higher metabolic burden, the colony growth slows down substantially. The T7RNAP 

profile is no longer flat across space after ring initiation at 𝑡1. Instead, it will have a higher 

distribution around colony center. 

 Different from the base case, a higher metabolic burden has a significant effect on cell 

growth.  Cell diffusion is the dominant factor to determine local cell density, which leaves 

the half-width of the wavefront wider than in the base case. Under this condition, the 

relationship of 𝐾𝜑 and 𝑅𝜑(𝑡) is similar to the case of adding exogenous AHL. Hence, 

𝜓𝑅(𝑥, 𝑡2) = 𝜓𝑅(𝑥, 𝑡1) + 𝐺7𝜏∫
𝑇7(𝑥, 𝑡)

1 + 𝑇7(𝑥, 𝑡)
∙

𝐾𝜑

𝜎 ∙ 𝐷 − 𝜀2 − 𝑥
𝑑𝑡

𝑡2

𝑡1

 

Here, the inner edge cannot be expressed as a simple mathematical function.  Due to a smaller 

synthesis rate of AHL, ∆𝑇 is shorter. The smaller ∆𝑻, together with the perturbed T7RNAP 

distribution, will lead to a ring width with a smaller width. Because of the additional metabolic 

burden, colony radius does not rely solely on nutrient availability (Figure 4C).   

Effects of reducing the positive feedback strength (Figure S5) 

 According to our simulation using the full model and experiment, a significant reduction in the 

strength of the T7RNAP positive feedback would lead to loss of scale invariance (Figure 4D). However, 

a linear dependence between the two is maintained within a smaller range of domain radius, in 

comparison with the base case.  

Conditions: 

 Compared with the base case, the AHL concentration accumulates slowly to pass the half activation 

threshold (=1). After 𝑡1, AHL decreases but remains ≫ 1. As with the base case, AHL concentration 

is not space dependent. 

 With a weak positive feedback, the T7RNAP profile is no longer flat across space after ring initiation, 

𝑡1 (Figure S5A). Instead, it is dictated by the gene expression capacity and the T7RNAP level is 

greater near the colony edge. 

 Similar to the base case, circuit activation does not cause a significant metabolic burden; thus 𝐾𝜑 +

𝑅𝜑(𝑡)|𝑡1≤𝑡≤𝑡2 = 𝑅𝐶 = 𝜎 ∙ 𝐷. (Figure S5C). Hence 

𝜓𝑅(𝑥, 𝑡2) = 𝜓𝑅(𝑥, 𝑡1) + 𝐺7𝜏∫
𝑇7(𝑥, 𝑡)

1 + 𝑇7(𝑥, 𝑡)
∙

𝐾𝜑

𝜎 ∙ 𝐷 − 𝑥
𝑑𝑡

𝑡2

𝑡1

 

Here, the mCherry profile at 𝑡1 no longer scales with the domain radius as mCherry accumulation 

is affected by the T7RNAP spatial distribution. The inner edge cannot be expressed in a simple 
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mathematical function.  However, qualitative analysis of the process can give us the insights of most 

features. 

Due to a smaller synthesis rate of AHL with a weak T7RNAP positive feedback loop, ∆𝑇 is 

shorter. The shorter ∆𝑇 leads to a shorter maturation time for the ring, thus a smaller ring width. In the 

base case, ∆𝑇 increases proportionally with the domain size. However, when positive feedback is too 

weak, ∆𝑇 decreases with the domain size (Figure S5B). When the domain size is too large, there is not 

enough time to initiate the ring. The linear regime of ring width vs. domain radius shrinks and shifts 

to small domain sizes.  

Comparison with representative mechanisms for pattern generation and scaling 

Researchers have sought to define mechanisms underlying pattern formation and scaling as early 

as the 1950s. These mechanisms either focus on generation of patterns by self-organization or by 

interpreting pre-defined gradients of chemicals (morphogens). 

Turing was the first to propose a reaction-diffusion (RD) model consisting of interlocking 

positive and negative feedback loops involving two diffusible morphogens, to explain self-organized 

pattern formation (Turing, 1952). The original Turing model cannot generate scale invariance. However, 

variants of the Turing model have been proposed to account for scale invariance. These include models 

that assume concentration-dependent diffusion coefficients or size-dependent reactions.   

If the diffusion coefficients of morphogens depend on the concentration of another diffusible 

molecule produced by all cells at a constant rate, the Turing model can support generation of patterns that 

scale with size (Aegerter-Wilmsen et al., 2005; Hunding and Sørensen, 1988; Pate and Othmer, 1984). 

This mechanism has been proposed to explain pattern formation and scaling during the embryonic 

development, such as scaling during the slug stage of Dictyostelium discoideum. However, it requires 

some stringent dynamic constraints that lack direct experimental evidence. These include: 1) the 

morphogen diffusivities must be proportional to the square of the length scale, and 2) matching between 

the production rate and leakage rate of the morphogen into the surroundings.  

Another extension of the Turing model is the size-dependent reaction model (Boissonade, 2009; 

Ishihara and Kaneko, 2006; Ricard, 2010; Rosen, 1978). In addition to the two morphogens assumed in 

the Turing model, this model introduces another chemical whose concentration depends on the size of the 

reaction environment. The model further assumes that chemical is generated in a localized region of the 

system and it diffuses fast. As a result, its concentration is proportional to the inverse of the square of the 

environmental size. In this theoretic model, each morphogen has two states – active or inactive. Transition 

between the two states is catalyzed by this chemical. Only morphogens in the active state can participate 

in reactions. Satisfying these conditions, scale invariance can arise from the modified Turing model. A 

limitation of this model is the lack of direct experimental evidence for the key model assumptions. 

However, the AHL in our system can be considered as fulfilling some of the roles proposed for the 

additional chemical in the size-dependent reaction model. AHL concentration also approximately scales 

with the inverse of the square of the domain size; it also plays a critical role in modulating some reactions 

in our system. 

In contrast to models mentioned above, the other class of models focuses on interpretation of pre-

defined chemical gradients by downstream processes. A classical model is the positional information 

model (or the French Flag model), proposed by L. Wolpert (Wolpert, 1969). The essence of this 

mechanism is a pre-defined morphogen gradient that is interpreted by downstream genes, where different 

genes are activated at different ranges of the morphogen concentration. In this framework, the scaling 

property of the final patterns is determined by the scaling property of morphogen gradients. Several 

models have been proposed to generate scaling morphogen.  

A perfect sink model assumes that the morphogen is generated at a source and degrades at a 

distant edge. As a result, it forms a linear gradient from source to sink. This mechanism could support 
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scale invariance (Aegerter-Wilmsen et al., 2005; Crick, 1970). This theoretic model requires strict 

conditions to ensure a perfect sink to ensure scale invariance in the morphogen gradients.  

Another model assumes integration of two opposing gradients, where two morphogens are 

produced at opposite ends of the developing field. There is an effective annihilation reaction between the 

two morphogens. Cells control the size of the pattern by the ratio of two gradients (McHale et al., 2006).  

A shuttling-based mechanism requires two pre-defined morphogens: an activator and an 

inhibitor. Efficient shuttling requires binding of the ligand to the inhibitor to facilitate its diffusion and 

subsequent release of the ligand by cleavage of the complex. The morphogen profile is reshaped by the 

physical translocation of the activator to the midline, mediated by its binding to the inhibitor. This 

mechanism is supported by data in Drosophila and Xenopus embryos (Ben-Zvi et al., 2008). This 

mechanism is further generalized to an expansion-repression (ExR) model. In the ExR model, a single 

morphogen is secreted from a local source and diffuses in the field of cells to form a distribution profile 

that has a peak at the source. The diffusion of this morphogen is facilitated by a diffusible molecule, the 

“expander”. However, the production of the expander is repressed by the concentration of morphogen. 

With appropriate parameters, the ExR model can generate a scale-invariant morphogen gradient (Barkai 

and Shilo, 2013; Ben-Zvi and Barkai, 2010; Ben-Zvi et al., 2011a; Ben-Zvi et al., 2011b).  

The mechanisms above have focused on generation or interpretation of morphogen gradients by 

feedback control only. Recent studies have suggested an important role of tissue growth and expansion in 

establishing the morphogen gradients, by contributing to the transport and accumulation of the 

morphogen molecules (Averbukh et al., 2014; Fried and Iber, 2014). The resulting morphogen gradients 

in turn can influence the tissue growth and expansion.  

Aspects of our mechanism are related to the mechanisms mentioned above:    

1. Our model is analogous to the Turing model in two aspects: (1) our model also relies on self-

organized pattern formation; (2) our circuit logic is identical to the Turing model. The critical 

difference is that the activator is transported by advection in our system but by diffusion in 

the Turing model.  

2. AHL serves a similar role of the catalyzing chemical in the size-dependent reaction model. Its 

concentration is reflects the dimension of the domain, and it regulates rates of reactions 

involving other molecules.  

3. Our circuit logic also resembles that of the expansion-repression model, where T7RNAP 

serves as the expander, T7 lysozyme serves as the repressor, and morphogen AHL serves as 

the regulator between them. However, a critical difference is that AHL in our system 

primarily serves as a timing cue in modulating the rates of other reactions (as in point 2).   

4. In our system, colony growth and expansion play a major role in establishing the initial 

profile of mCherry during the first stage of pattern formation, by contributing to the transport 

and accumulation of intracellular proteins. This aspect is reminiscent of the computational 

analysis by (Averbukh et al., 2014; Fried and Iber, 2014), which emphasizes the role of tissue 

growth and expansion in establishing morphogen gradients in a natural system. 

5. The integration of the mCherry profile at the end of the first stage and the mCherry increment 

during ring maturation (Figures 3, 5) is analogous to the two opposing gradients model. 

  



18 
 

Supplemental Tables 

Table S1. Related to Figure 2. Definition and the value of parameters used in the PDE model 

Parameter Description Value Base Unit 
Search range 

or Reference 

𝜅𝐶  
Cellular diffusion coefficient on 0.3% 

2xYT agar 
2.5×10-3 cm2·h-1 (Song et al., 

2009) 

𝛼𝑐  Cell growth rate on 2xYT agar 1 h-1 Fit with 

experiments 

𝛼𝑛 Nutrient depletion rate  155 molecule·h-1·cell-1 Fit with 

experiments 

𝐾𝑛  Half-saturation for nutrient uptake 20 nM 
Fit with 

experiments 

𝐾𝐴  
Concentration threshold of AHL to half-

maximum of the pLuxI promoter 
20 nM 

(Collins et al., 

2006) 

𝛼𝐴  AHL synthesis rate  9600 molecule·h-1·cell-1
 

(You et al., 

2004) 

𝑑𝐴  AHL degradation rate 0.3 h-1 
(You et al., 

2004) 

𝛼𝐿 Synthesis rate of T7 lysozyme 4500 molecule·h-1·cell-1 0 - 9 × 103 

𝑑𝐿 Degradation rate of T7 lysozyme 0.0144 h-1 
(Payne et al., 

2013) 

𝐾𝑇 Half activation constant of T7RNAP 1200 molecule·cell-1 0 - 5 × 103 

𝛼𝑇 Synthesis rate of T7RNAP  6000 molecule·h-1·cell-1 0 - 8 × 103 

𝑑𝑇 Degradation rate of T7RNAP 0.3 h-1 
(Payne et al., 

2013) 

𝑘1 Combination rate of T-Lys complex 400 molecule-1h-1·cell 
(Kumar and 

Patel, 1997) 

𝑘2 Dissociation rate of T-Lys complex 10800 h-1 
(Kumar and 

Patel, 1997) 

𝑘𝐷 
Equilibrium association constant of T7-

lysozyme complex 
0.037 molecule-1·cell 

(Kumar and 

Patel, 1997) 

𝐾𝑃 Half inhibition of T-Lys complex 400 molecule·cell-1 0 - 5 × 103 

𝛼 Inhibition factor of T7RNAP on Growth 1  0 - 5 

𝛽 
Inhibition factor of T7 lysozyme on 

Growth 
100  0 - 2 × 103 

𝑚 
Hill coefficient of AHL mediated gene 

expression 
2  

(Payne et al., 

2013) 

𝑛 
Hill coefficient for distance-dependent 

gene expression capacity 
1  0 - 5 

𝐾𝜑 
Half activation distance for gene 

expression 
2 cm 0 - 10 

𝐶̅ Cell carrying capacity 3×105 cells·ml-1  
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Table S2. Related to Figure 2.  Expression and value of coefficient in nondimensional model 

 * G1, G2, G3 are estimated by comparing the experiment colony expansion with Fisher-KPP’s traveling wave 

solution with wave speed (Aronson and Weinberger, 1978). After fitting G1 with colony expansion curve, ℒ =

√
𝑘𝑐

𝛼𝑐𝐺1
=0.18898 cm=1889.8 μm;  

 

  

Nondimensional 

parameter 
Expression Value 

𝐺1 
𝑘𝑐
𝛼𝑐ℒ

2
 0.07* 

𝐺2 
𝐾𝑛
𝑛0

 0.3* 

𝐺3 
𝛼𝑛𝑐̅

𝛼𝑐𝑛0

ℒ3

|𝛺|

1

10−4𝑐𝑚
 0.0046* 

𝐺4 
𝛼𝑎𝑐̅

𝛼𝑐𝐾𝑎

ℒ3

|𝛺|

1

10−4𝑐𝑚
 0.955 

𝐺5 
𝑑𝑎
𝛼𝑐

 0.3 

𝐺6 
𝑑𝐿
𝛼𝑐

 0.0144 

𝐺7 
𝛼𝐿𝑑𝐿
𝛼𝑐𝛼𝐿

 0.0144 

𝐺8 
𝑑𝑇
𝛼𝑐

 0.3 

𝐺9 
𝛼𝑇
𝛼𝑐𝐾𝑇

 5 

𝐺10 
𝐾𝑇𝑑𝐿
𝛼𝐿

 0.0038 

𝐺11 
𝑑𝐿
𝛼𝐿𝑘𝐷

 8.64×10-5 

𝐺12 
𝐾𝑃𝑑𝐿
𝛼𝐿

 0.0013 

𝐺𝑚𝐶ℎ𝑒𝑟𝑟𝑦  
1

𝛼𝑐
 1 

𝐺𝐶𝐹𝑃 
1

𝛼𝑐
 1 
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