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De novo prediction of promoters in B. japonicum USDA 110 

Overview 
The motif discovery was performed in three steps. At the first step, we aimed to find patterns (pairs 
of 6-mers separated by a spacer) over-represented in a given sample of sequences. Patterns were 
scored using a flexible scheme that allows for mismatches in sequence and deviations in position of 
both 6-mers. We selected 6-mers that occur together more frequently than expected given their 
individual frequencies by scanning all possible 6-mers at all positions. As the average GC-content of 
the genome is 0.64, GC rich 6-mers would occur more frequently by chance. To account for that, we 
normalized frequencies of patterns by their GC-content. 

At the second step, motifs, that is, distinct clusters of overrepresented patterns, were identified with 
PCA; for each cluster, we then constructed a PWM representation (i.e. logo) for each motif. Finally, at 
the third step, we identify the highest scoring patterns for each motif in each TSS upstream region, 
and use these scores to select the relevant motifs. 

Step 1: Finding abundant patterns 

Scoring scheme 
First, for each position in the 60-nt upstream region (total 55 positions for a 6-mer), we identified 30 
most frequently occurring 6-mers using the following scoring scheme. The score of a given 6-mer at a 
given position is defined as αμ+|φ|, where  and  are the number of mismatches in the current 

sequence, and the offset in base pairs, respectively, and α is a parameter between 0 and 1 regulating 
the relative contribution of perfect sites and sites with mismatches; the choice choice of α is 
explained below. When scoring a single 6-mer, we considered only matches with , i.e. 

such that the sum of the number of mismatches and the absolute value of the offset does not exceed 
3. Since a 6-mer may have several ways to match at a given position in a given sequence, the 
maximum score of each 6-mer in each sequence was considered (see paragraph below). 

An example of multiple successful matches would be an n-mer ATATAT in a sequence 
TATATATAGATA. When calculating the score of this 6-mer in this sequence at position 3, the 
sequence with no offset (TATATA) will have 6 mismatches. However, the best matches will be those 
with an offset -1 and 1: they would have 0 and 1 mismatches respectively, and would be assigned 
scores of α and α2, respectively; the score of α will be recorded as the best score. Similarly, when 
calculating the score of the same 6-mer at position 4, we can find a match with offset 0 and 1 
mismatch (score of α), or with offset -2 and 0 mismatches (score of α2), or with offset +2 and 1 
mismatch (score of α3); the score of α would be selected as the highest one.  

When scoring patterns (pairs of 6-mers), it is important to account for the fact that bacterial 
promoters have a preferred distance between the two boxes. Hence, the score is defined as 

, where  and  are the numbers of mismatches for the first (left) and second 
(right) 6-mer, respectively, ε is the extension of the pattern (change in the spacer length), and  and 

 are the offsets of the left and right 6-mers, respectively (see the Fig. I below). The extension is 
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introduced in order to distinguish a shift of a pattern with intact distance between 6-mers, and a shift 
with a change in the spacer length (extension or contraction of the pattern). 

 

Figure I. Promoter scoring scheme. The pattern was aimed to find a best match in an upstream 
region. To accommodate the flexibility of the promoter structure, we allowed for deviations of three 
types, each of them equally penalized: (1) mismatches (  and ); (2) offset (  and ); (3) extension 

( ). 

 
A pattern is assigned a non-zero score if the number of mismatches of each 6-mer does not exceed 3 
(to avoid cases with severe imbalance in the number of matches in the 6-mers); the offset and 
extension of the pattern are capped at 3; and the sum  does not exceed 5. 

We note that the number of mismatches was capped at 3 because, at GC-content of 0.64, the 
probability of two random 6-mers matching with 4 mismatches is equal to 30%. 

Selection of α 
The total score of a 6-mer (the sum of scores in all upstream regions) aims to reflect the number of 
its (imperfect) occurrences. While a perfect match in any case counts as a single occurrence (α0=1), 
any match with a mismatch/offset/extension counts with a fractional score; the coefficient α, 0<α<1 
controls how much do imperfect matches contribute to the total score. This coefficient is adjustable; 
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if it is close to 1, there are only weak penalties for offsets and mismatches, whereas if α is close to 
zero, non-perfect matches are assigned very low scores (<<1), and the total score basically counts the 
number of perfect matches that are rare and hence do not provide an adequate statistics. 

Increasing α would increase the total score of a given 6-mer or a pattern. To select the optimal value 
of α, we increase it until the scores of patterns reach around 20 for the smallest dataset used. This 
means that a perfect match has a weight of less than 5% of the total score, and thus we can believe 
our scores with uncertainty of the order of 5%. To verify that this error is sufficiently small, we have 
calculated the difference between the top score and 500th score in our list. The difference was much 
more than the relative weight of the perfect match (5%). This ensures that our selection of best-
matching patterns is not dominated solely by perfect matches, and incorporates sufficient 
information from imperfect matches with mismatches and offsets. 

Scoring of patterns and normalizing for the GC-content of a pattern 
The number of possible patterns is more than a billion. The number of possible mismatches and 
offsets is also large (of the order of 1000 different combinations of mismatches and extensions). 
Hence, scoring each pattern in each upstream region is computationally unfeasible. Therefore, we 
consider only 30 best 6-mers at each position, which gives 900 patterns (30x30 pairwise 
combinations) formed by these 6-mers at each pair of positions. At that, the total number of patterns 
we analyzed is 1,102,500=900∙1225, where 1225 is the number of pairs of 6-mer positions, 
overlapping by no more than 1 bp, in a 60-bp upstream sequence. 

The next step is selecting pairs of 6-mers that co-occur more frequently than by chance. We have 
started with a scatter plot whose X-axis corresponds to the product of scores of two 6-mers, and the 
Y-axis corresponds to the score of the pattern formed by these 6-mers. We have observed a strong 
correlation between the two: if both 6-mers are frequent, then they are more likely to occur as a 
pair. In addition, we observe that the score of a 6-mer or a pattern strongly depends on its GC-
content, see the top panel in Fig. II below, where GC-rich (red) patterns have higher scores than GC-
poor (blue) ones. 

To account for that, we developed a normalization technique. We note that while very GC-rich 6-
mers are abundant, they do not represent any known motifs. Therefore, 6-mers with 0 or 1 A/T were 
excluded. The remaining 6-mers were split in 4=6–2 groups by the number of G/C. The average 
abundance of 6-mers from each group was calculated. A vector of average abundances was then 
mean-normalized, and the abundance of each 6-mer was divided by the normalized average 
abundance in a group to which this 6-mer. These 6-mer normalized abundances were used to select 
highest scoring 6-mers at each position. Mean-normalization of the correction vector does not affect 
selection of the best 6-mers; however, it ensures that the scores after correction retain their 
meaning of an approximate number of perfect matches, and thus can be interpreted when 
troubleshooting. The score of a pattern is similarly divided by the product of correction factors for 
each of the two 6-mers forming this pattern. 

The bottom plot in Fig. II (see below) shows scores of patterns vs. products of 6-mer scores after 
correction for GC. Each pattern is colored by its cumulative GC content, similarly to the plot on the 
left. However, here the colors are no longer separated, indicating that our normalization have 
successfully removed biases associated with GC-content. 
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Figure II. Correction for the GC-content bias. (A) The scatter plot shows how the product of the raw 
scores for the two 6-mers forming a pattern (x-axis) is related to the raw score of the pattern, i.e. two 
6-mers occurring together (y axis). Scores shown are for a full set of TSSs. Both axes are log-scale. 
Because the number of analyzed pattern is very high (1,102,500), for this plot we randomly selected 
20,000 patterns. Color of each point shows the sum of GC-contents of the two 6-mers making the 
pattern; blue means low GC-content, red, high GC-content. Note that both pattern score and the 
product of two sub-scores strongly depend on the GC-content, which can be seen as separation of 
colors along the cloud of points. (B) A similar scatter plot, but with scores on both axes corrected for 
the GC-content bias. Note that there is no separation of colors anymore, proving that the correction 
effectively removed biases associated with GC-content. 
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Selecting over-represented patterns 
If the relationship between the score of a pattern and the product of individual 6-mer scores were 
purely linear, it would be reasonable to consider the ratio 

 

and select patterns with the highest value of this ratio. Yet, if done so (see the top panel in Fig. III 
below), the non-linearity often occurring in the scatter plot (colored bulge on the scatterplot) would 
capture top 3000 patterns. This non-linearity was most abundant in the “equally” class. These 
patterns occur by chance more than expected, yet they have a very low overall frequency. They likely 
emerge due to a slightly non-linear relationship between the pattern score and the product of 6-mer 
scores, or are due to the sampling noise. To compensate for this, we use a slightly modified score, 
which gives more weight to patterns that occur frequently: 

 

This scoring is logical when considered in the log-log space. Note that a linear relation y=a∙x+b is 
generally not a straight line in the log space; instead, straight lines have the form 

  (equivalent to ). The line  has a slope of 45° in the 

log-log plot. The scoring schema we use corresponds to shifting the cut-off direction by 15°, from 45° 

to 30°, as  

 

Step 2: Clustering of the upstream regions using PCA 
After selecting top 500 patterns, we aimed to see whether patterns belonging to different clusters 
describe different types of promoters. Comparing patterns directly may be complicated because 6-
mers may be shifted relative to each other, or redundant (e.g. if a 6-mer describes a 4-mer motif, 
there will be 16 possible 6-mers contributing to the same signal). Instead, we compare patterns using 
their scores in the list of upstream regions. 

First, we drop all positional information from patterns, and retain only unique pairs of 6-mers. The 
rationale for this is that the downstream algorithm will be distinguishing between different motifs. 
However, different locations of binding sites within a selected 7-bp window could mislead the 
algorithm into focusing on different locations, rather than different binding preferences. Specifically, 
two patterns composed of exactly the same 6-mers, but offset by one or two nucleotides, will give 
substantially different scores to the sequences with exactly the same binding sequence at slightly 
different locations. The number of unique pairs of 6-mers without positional information was not 
much less than the 500 initially selected patterns, usually about 300. 

Additionally, we focused only on patterns that map to a certain location of upstream regions. 
Specifically, for all upstream classes but “Nod only” we found that all of the top 500 patterns were 
located near the canonical sigma-70 position, while for the “Nod only” class, 499 out of the top 500 
patterns were located near the sigma-54 position. Consequently, for “Nod only” class we focused on  
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Figure III. Criteria for selection of over-represented patterns. A scatter plot similar to Fig. II (see 
above), but now colored to indicate top patterns selected with different selection criteria. Both plots 
are for the “Equal” class of upstream regions, because the bulge has been very prominent in this 
class. In other classes the bulge was often present, and partly selected using the naïve selection 
criteria. (A) The naïve way of selecting over-represented patterns, which score more than the 
product of the two sub-scores for the two 6-mers making the patterns. In this case, top-scoring 
patterns are diluted by a sub-population of low-scoring patterns in the bulge. (B) An improved 
selection where slightly more weight was given to patterns occurring more often. Now patterns from 
the bulge are not included in the selected set. 



8 
 

patterns within 3 bp from the sigma-54 position, (–28±3, –17±3), and for others, within 3 bp from the 
sigma-70 position, (–36±3, –13±3). These positions were inferred from the distribution of locations of 
the left and right 6-mers, and highlight the peak of this distribution. We note that the positions 
presented here indicate the start of a 6-mer, and not the start of the known promoter sequence. 
Hense, especially for a shorter right box, the numbers above are slightly less than the canonical 
positions of the promoter sequences.  

Score of a pattern in upstream regions 
We score each pattern in the ±3bp windows defined above. At that, we do not penalize offsets 
(unlike above) and allow for up to three mismatches for each box, with the maximum allowed 
number of mismatches set to 5. 

The score of a pattern in a given upstream region is thus defined as 

; 

a higher score now indicates a better match. Patterns that do not match the criteria (have more than 
5 mismatches, or more than 3 mismatches per 6-mer), are assigned a zero score. Perfect match has a 
score of 5. The resulting matrix has dimensions 

. 

Identification of top-scoring upstream regions 
As matrix of scores build at the previous step is discrete, selecting the top upstream regions by the 

best score may be ambiguous. To avoid this problem, we use the k-power average,  

that has the limit of max(x1, …, xN) as k goes to infinity. For a finite but large k, the k-power average is 
dominated by the maximum score, but provides a bonus for having scores close to the maximum. We 
use the 10-power average because it produces a relatively smooth histogram of scores. For the 20-
power average, the distribution of average scores has peaked around 3,4,5, indicating that it is 
already very close to simply taking the maximum. 

Principal component analysis to find different classes of upstream regions 
Visual inspection of the matrix of scores indicates that about a third of upstream regions have a 
distinct site of a given sigma-factor. For the downstream analysis we use the top 33% upstream 
regions, but not less than 200. 

We apply Principal Component Analysis (PCA) in the space of upstream regions to find directions 
along which the matrix of scores changes most distinctly. We assume that the most distinct upstream 
regions along each principal component have a different motif. For each principal component we 
select top and bottom 200 (or a half if the number of upstream regions is less than 350) upstream 
regions (those having a highly positive and a highly negative coordinate along this axis) and use them 
to build a positional weight matrix (PWM). To ensure the convergence of the PWM-building 
algorithm (see below), a seed pair of 6-mers is needed; to identify those, the matrix is projected onto 
a given principal component, that is, the dot product of the matrix with the principal component is 
taken. It yields a vector whose length equals the number of patterns. The minimum and maximum of 
this vector are the seeds for the two groups of upstream regions, respectively. 
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Iterative algorithm to build a PWM 

For each group of 200 sequences selected using PCA, we then build a PWM consisting of two 8-mer 
boxes. The length 8 is used instead of 6 to capture longer motifs, e.g. TGNTATAA for leaderless 
transcripts. In addition to probabilities of each nucleotide at each position of the two boxes, the 
PWMs also contain probabilities of extensions and locations of the right motif. This allows us to 
capture preferences in the location of the promoter relative to TSS. 

We start with a seed PWM, generated as follows. All locations and extensions are assigned equal 
probabilities. The first and last nucleotides are assigned probabilities of 0.25. The middle 6 
nucleotides of each 8-mer are seeded with the respective 6-mer from the best-matching pattern. 
Nucleotides which match the 6-mer are assigned probability of 0.7, and the remaining nucleotides 
are assigned probability of 0.1. (Note that changing the value of 0.7 will not change the results, 
because it will not change the ranking of upstream regions or positions of the best match during the 
first pass. Yet it is important that we start with a seed motif, rather than with a random PWM, and it 
is important to have non-zero values in the PWM; zero values would make it impossible to 
distinguish between 1 and 2 mismatches.). 

The seed PWM is then scored in all selected (usually 200) upstream regions at all possible locations 
and extensions. The maximum score for each upstream region and the respective site are recorded. 
If (rarely) two sites are assigned the same score, a random one is selected. All 200 upstream regions 
are then ranked by their score and weighted proportionally by their position so that the top ranking 
upstream region is assigned weight 1, and the bottom ranking one, 0. Frequencies of each nucleotide 
at each position are calculated using the recorded sites and taking into account these weights. This 
calculation also uses a pseudo-count of 1 and normalization by the genome-wide GC-content of 0.64. 
Similarly, frequencies of positions and extensions are calculated with the same weighting scheme 
with a pseudo-count of 1. A PWM is then updated using the calculated frequencies, and this 
procedure is repeated 40 times, sufficient for convergence. 

The resulting PWM was scored in all (~15000) upstream regions. A significant fraction of regions used 
for calculating a PWM was recovered in the top 200 hits; for the “Nod only” of “full” groups this 
fraction was around 0.3-0.6.   

Calculating statistical significance 
To calculate statistical significance of the resulting score, we scored the PWM in control sequences. 
To create a control sequence, we shuffled nucleotides at each position of the upstream region in a 
full list of regions; specifically, we selected the first nucleotide randomly from first nucleotides of all 
upstream regions; second nucleotide from all second nucleotides, etc. We created 40000 control 
sequences. For each real sequence, we then defined the p-value as the probability of obtaining the 
score of the real sequence in the control sample; specifically, we set 

. 
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Step 3: Locating promoter sequences upstream of TSSs 

We then aimed at the next goal, finding promoter sequences in the considered upstream regions.  
PCA is best suited to cluster promoter sequences of a certain types of motifs. However, to locate 
promoter in a sequence, we used a more direct approach, which integrates information from all top 
overrepresented patterns obtained at step 1, and thus encompasses all motif types. 

In brief, for each pattern, we found upstream regions in which the pattern scored well. However, 
when the pattern scores in a given location, not all 6 positions of each box of the pattern are equally 
important. For example, a pattern TTGACA, which scored for the left box of the sigma-70 factor, 
would more often have mismatches in the ACA part, and would almost always match TTG perfectly 
(given that it matches well). To find out which part of the 6-mer is actually important for binding, we 
evaluated Information Content (IC) of each nucleotide of each pattern. We then recorded which 
promoters have contributed to the high-IC positions of this pattern. We repeat this for all 300 best 
patterns; after that, for each position of each upstream region, many patterns could have 
contributed with different IC. We took top 10 patterns contributing to each position in each 
upstream region (if there were at least 10), and evaluated the average IC at that position. If it was 
above a threshold, we assumed that this position in this upstream region belongs to a promoter. 

Below, we outline an exact algorithm used to highlight the promoter sequences.  

1. Best 300 patterns (pairs of 6-mers with positional info) were selected for each class of upstream 
regions (Nod only, Equal, etc). Those were then scored in all upstream regions (i.e. in the "full" 
dataset). For each pattern in each upstream region, the best match was selected; if several best 
matches occurred (which happened rarely), a random one was selected. In addition, location of the 
left and right boxes for a selected match were recorded. 

The next two steps worked with a matrix (15000 x 300) of best scores of 300 patterns in all upstream 
regions, and the corresponding matrices of positions of the best matches of the left and the right 
box. 

steps 2-5 were performed for each pattern 

2. For each pattern, we selected upstream regions, which were assigned a score at least 4. The score 
was defined the same way as during pattern selection (# mismatches + offset + extension). We then 
aimed to determine which bases of the two 6-mers in the pattern are contributing to the structure of 
the promoter. We did this by constructing a PWM (see next step). A PWM constructed from matches 
of patterns in upstream regions would contain information about which positions in a 6-mer usually 
match perfectly, and which are frequently substituted. 

3. For each pattern, we build a PWM using selected upstream regions (score at least 4) from a given 
dataset (e.g. “Nod only”, if best patterns from “Nod only” were used). PWM was build using a single-
pass procedure, not to be confused with the iterative algorithm described above. In particular, in 
selected upstream regions, we counted frequencies of nucleotides in 8-mers centered at left and 
right boxes (6-mer boxes were extended on both sides by one nucleotide). For control, we counted 
frequencies of nucleotides in all (full) sequences at shuffled positions. Shuffling was done as follows: 
for each upstream region in the control set, we selected a random position of the left and right boxes 
from those used to construct the actual PWM. Left and right positions were selected independently. 
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The goal of this was to capture nucleotide and dinucleotide composition of the regions where a given 
pattern scores, but not to capture any correlations between the left and right box in the control 
sequences. We then divided the real frequencies by the control frequencies. The resulting relative 
frequencies were then normalized so that they summed to one at each position. 

4. For each PWM (i.e. each pattern), we then calculated Information Content (IC) at each position of 
each box. IC was determined as . Since  are normalized to sum to one, this 

would be a number between 0 and . 

5. Now we focus again on all sequences. For those sequences which were selected by a given pattern 
(with score less than 4), per-nucleotide IC was recorded for nucleotides covered by left and right 
boxes. 

6. Now for each sequence we have some number of ICs recorded at each position (each IC record at 
each position may come from some set of patterns, but of course not all patterns scored in all 
sequences at all positions). For those nucleotides that had at least 10 patterns contributing to them, 
we then calculated the average of top 10 ICs values. We decided to use the average over top 10 
patterns to focus on promoters that scored high in at least some patterns. Taking an average over all 
patterns would select most “mediocre” promoters that scored well in all patterns they scored at. 
Averaging over best 10 was selected to avoid drawing conclusions from a single 6-mer, as scoring of a 
single 6-mer may be a coincidence. 

7. We now set three different cutoffs on ICs: 0.3, 0.45, 0.6. For each pattern, positions where the 
average of top 10 ICs was more than the cutoff, were labeled with capital letters. 

8. In the resulting tables, upstream regions were ordered by the score, which was calculated as 

follows: , and the mean is taken over best 300 patterns. This is 

the 10-power average of the score, and is equivalent to taking the smart minimum score. If two 
upstream regions have an equally good minimum score, then the one that has more patterns with 
second best score would be favored. The same type of averaging was used previously. We note that 
this ordering is independent from the information algorithm used to identify promoters, and thus 
upstream regions with identified promoters may have lower scores that upstream regions with no 
promoters in the table. However, the ordering separated upstream regions with identified 
promoters, and upstream regions without, reasonably well. 

 

Calculating statistical significance 

Here, we created shuffled upstream sequences as defined above. We then used the scoring 
procedure from section 8 above to calculate the statistical significance. We performed this scoring 
procedure in given sequences and in control sequences, and defined the p-value as the probability to 

obtain the given score in control sequences, i.e.   We used 

the cutoff of p=0.1 for the full set of sequences, and p=0.05 for different subclasses. 
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Re-annotation of the Bradyrhizobium japonicum USDA 110 genome 

Existing methods for bacterial gene prediction perform relatively well, but errors are not uncommon 

(Ederveen et al., 2013). Annotation of bacterial genomes is at least partially automatic and often 

introduces long open reading frames, especially in bacteria with high GC-content (Hyatt et al., 2010). 

As B. japonicum USDA 110 is GC-rich (64 % GC-content) and longer ORFs are a likely source of 

numerous false iTSSs, which are in reality gTSSs, we decided to re-annotate the genome.  

An updated and extended annotation of the B. japonicum USDA 110 genome was generated in July 

2013 by submitting its genomic sequence to the Ergatis pipeline of Integrated Services of Genomics 

Analysis (ISGA) (Hemmerich et al., 2010), and to RAST, another automated genome annotation 

engine (Aziz et al., 2008). While the resulting annotations were largely consistent (see Table I below), 

when compared to RAST, ISGA yielded more genes and shorter reading frames (see Fig. IV below). 

Furthermore, less genes of the original RefSeq annotation (Kaneko et al., 2002) were questioned by 

ISGA than by RAST (see Tables I and II below). ISGA is also highly assessed in comparative studies of 

annotation engines (Ederveen et al., 2013). For these reasons we used the ISGA annotation as the 

base for TSS-to-gene mapping. We provide annotation files in gbk and gff file format (Additional files 

5 and 6). 

We preserved the original gene identifiers (locus tags) of the RefSeq annotation by Kaneko et al. 

(2002). When ISGA predicted a shorter or longer form of the same protein, “_sh” and “_ln” were 

added as a suffix of the locus tag (e.g. blr1613_sh). For genes predicted only by ISGA, we used locus 

tag notation as in Kaneko et al. (2002), numbered them independently (e.g. bll0001_ISGA). In the 

ISGA annotation 523 of the original RefSeq genes were assigned as questionable, 3050 changed only 

their start-codon position, typically resulting in a shorter ORF (see Fig. V below), 4798 genes 

preserved their predicted boundaries and 1351 new genes were predicted (see Table I below).  

We enhanced the gene annotation with proteomic evidence. We added note: “protein supported by 

proteomic data” to gene feature in the gbk and gff files (Additional files 5 and 6). When peptides 

distinguishing shorter and longer form of the protein were identified, we kept the version with 

proteomic evidence (see Table 1 in the main text). For seven proteins, both peptides for longer and 

shorter form (RefSeq and ISGA annotation) were present, so both protein forms were retained in the 

annotation. Additionally, 39 proteins present in RefSeq annotation only, were restored (see section 

“Protein translation evidence for TSSs data” and Table 1 in the main text). Thus, in addition to 9,199 

genes annotated by ISGA (see Table II below), 46 more genes were included in the provided 

annotation gff and gbk files (Additional files 5 and 6), resulting in 9,245 annotated genes. 

Importantly, our new annotation increases the fraction of transcription start sites, which can be 

attributed to protein-coding genes (see Fig. V below). 

Our annotation also includes Rho-independent terminators predicted using the tools ARNold, 

WebGesterGB and TransTermHP (Naville et al., 2011; Mitra et al., 2011; Kingsford et al., 2007). 
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Having terminators in annotation aids to assess likely sizes of transcripts and select appropriate 

primers for the validation procedure.  

We adapted operons as predicted in the ProOpDB database (Taboada et al., 2012) to the new gene 

annotation. The adapted operons were used for expression statistics (see “TSS categorization” in the 

main text and Additional file 1: Table S2). Operons were adapted as follows: genes with changed start 

were assigned to the same operon; genes with new annotation yielded a new independent operon. 

Each operon was assigned an operon ID “Bja_Operon_XX”, where XX is the index number of the 

operon, and was added to the annotation file as well. 

Newly identified elements, TSSs and promoters, were also included into the annotation file. Each TSS 

was assigned a locus tag: Bja_TSS_XXXX, where XXXX is the number, in order of appearance in the 

genome. Each promoter has a note about the promoter type (e.g. RpoD, RpoN) and the respective 

TSS. 

The annotation was combined using Biopython 1.65 (Cock et al., 2009), and converted from the gbk 

to the gff format by Geneious version 8.1 (http://www.geneious.com, Kearse et al., 2012). 

 

 

 
 ISGA vs. 

RefSeq 
RAST vs 
RefSeq 

RAST vs. 
ISGA 

matching CDSs 4,751 4,669 7,690 
matching genes 4,798   
re-annotated start 3,050 2,941 898 
New genes or CDS  1,351 1,105 556 
questioned 523 707 127 

Table I Comparison of different annotations. Genes include CDS, rRNA and tRNA genes. RAST 
predicts only CDS (ORFs) only. 

 

 

 
 RefSeq ISGA RAST 

genes 8,373 9,199  
CDS 8,317 9,146 8,715 

Table II Number of genes and CDS predicted in each annotation. RAST predicts CDS (ORFs) only. 
Genes include CDS, rRNA and tRNA genes. 
 

 

http://www.geneious.com/
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Figure IV. Venn diagram of TSSs, mapping immediately upstream of a gene (gTSS) and inside ORF 
(iTSS). New - mapping with respect to ISGA annotation, old - with respect to RefSeq annotation. 

 

 

 
Figure V Numbers of genes with changed ORF length. ISGA or RAST re-annotation of B. japonicum 
USDA 110 genome is compared to the RefSeq annotation by Kaneko et al., 2002 (old).  
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Estimation of 5’- and 3’-UTR lengths 

To estimate 5’- and 3’-UTR parameters, only transcriptional start sites (TSSs) mapped to intergenic 

regions (IGRs, regions between annotated genes) were considered. This assumes that TSSes that 

both map inside a gene and at the same time are the start site of a mRNA, sRNA or an anti-sense RNA 

are rare. 

First, we analyzed the distribution of predicted 5’-UTR (leader) lengths, i.e. the distance from a TSS to 

the start of the downstream gene or ORF (see Fig. VI below). When multiple TSSs were present, we 

used the distal TSS mapped upstream of the annotated gene in the sense orientation. We found that 

5’-UTRs in both divergons and synvergons (for the definition of divergon and synvergon see Fig. VIII 

below; Tsoy et al., 2012) are typically 20-40 nt long and rarely exceed 200 nt (see Fig. VI below 

showing the data used for determination of the length of 5’-UTR for categorization purposes). 

Therefore, we categorized TSSs located within 200 nt to the start codon as a gene TSS (gTSS) or as a 

TSS antisense to the 5’-leader (aTSS_5) for the sense and anti-sense orientations, respectively (see 

Fig. 1B in the main text).  

The definition of a cutoff for 3’-UTRs is necessary for the categorization of TSSs that are antisense to 

3’-UTRs (aTSS_3). However, the genome-wide analysis of 3’-UTRs is difficult, because the location of 

the transcription terminator site is usually unknown. As a proxy, we assumed that, as the antisense 

RNA should overlap with the respective mRNA, aTSS_3 should be often located at a short distance 

from the mRNA end and, by implication, from the stop codon. On the contrary, independent RNAs 

encoded on the antisense strand should reside at some distance from the mRNA and the stop-codon 

of its ORF. Indeed, the distribution of the distances from a stop codon to the nearest downstream 

TSS in the anti-sense direction showed a prominent peak at 20-30 nt (see Fig. VIIA below). 

Importantly, for synvergons (see Fig. VIII below), which belong to a polycistronic mRNA, aTSS_5 and 

aTSS_3 definition is simply invalid, because asRNA may regulate several genes of the same operon; 

this is why short 3’-UTR prevalence effect disappears, when 3’-UTR is calculated in the relative scale 

(compare Fig. VIIA and VIIB below for synvergons). Therefore the 3’-UTR threshold was set to 100 nt 

based on the distance distribution in convergons only. To solve the problem of aTSS_5 and aTSS_3 in 

synvergons (in 70 % cases those IGRs fall into predicted operons), we introduced a new category 

called aTSS_op for aTSS, mapping between genes of one operon; “op” stands for “operon”. This 

category is used in the table listing all mapped TSSs (see Supplementary File S1, Table “Mapped 

TSSs). In TSS category statistics they are counted as aTSS (see Fig. 1C in the main text). 

We note that many TSSs can be assigned to several categories (the above-mentioned aTSS_5 and 

aTSS_3, as well as iTSS and gTSS, two gTSS of different genes if the genes are closely located). 

Accordingly, 15,923 TSSs were mapped, but 20,071 TSSs are listed in see Additional file 3: Table S3. 

The coordinates of TSSs assigned to several different types are identical. 
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Figure VI. Genome-wide analysis of the distances from the distal TSS, mapped upstream of the 
annotated gene in the sense orientation, to the annotated start of the corresponding ORF in 
divergons and synvergons. These results were used for determination of the 5’-UTR length for 
categorization of TSSs. A) Distance between the distal TSS and a gene (x) was plotted against the IGR 
length (y). B) Graphical summary of the results shown in A). 

count 
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Figure VII. Distribution of distances from the end of a gene to potential aTSS_3. Here aTSS_3 is 
anti-sense oriented TSS, closest to the gene end; x is equivalent to aTSS_to_gene, measured in 
nt. These results were used for determination of the 3’-UTR length for categorization of TSSs. A) 
Absolute distances are skewed towards gene ends for convergons, and quite uniformly 
distributed for synvergons. B) Relative distances show, that, although for both types of IGRs 
distribution is skewed towards 0-150 nt range, for synvergons it is mostly due to short synvergon 
lengths. This suggests that the 3’-UTR threshold should be set based on distance distribution in 
convergons, and equal to 100 nt.  

A 
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TSS distribution in intergenic regions  
We analyzed the distribution of positively scored TSSs in intergenic regions (IGRs). Neighboring genes 
of B. japonicum USDA 110 usually have the same direction (64 % of the genes), and thus their 
corresponding IGRs are mostly synvergons. In agreement with the view that bacteria experience high 
evolutionary pressure to maintain compact genomes, we found that IGRs tend to be small 
(median/average 90/145.7 bp, see Fig. VIII below). Most IGRs in which we mapped TSSs are about 
100-200 nt long (see Fig. VIII below), sufficient to accommodate cis-regulatory elements such as 
transcription factor binding sites and promoters. 

We also analyzed the orientation of the mapped TSSs with respect to the nearest downstream gene 
and found that TSSs mostly map in the sense orientation. For example, although the number of 
convergons and divergons is essentially the same, 1501 and 1500 respectively (the difference is 
caused by the virtual linearization of the circular chromosome), the number of divergons with at 
least one TSS in it exceeds the number of convergons with TSSs (1071 and 533, respectively). 
Furthermore, 1,388 synvergons have TSSs only in the sense and 215 only in the antisense orientation, 
while 446 have TSSs in both orientations and 2,886 have no TSSs. This shows that anti-sense 
transcription in IGRs is much less abundant than ordinary mRNA transcription. 

  
Figure VIII. Length distribution of intergenic region, conditioned on TSS mapping. Intergenic regions 
are divided in convergons, divergons and synvergons.  
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iTSS distribution in genes 
iTSSs are the most abundant category of TSSs in this study and the question arises whether this is 
due to gene misannotation. As mentioned above (see Page 12, “Re-annotation of the Bradyrhizobium 
japonicum USDA 110 genome”), ISGA yielded more genes and shorter reading frames. This resulted 
in 75 more gTSSs and 41 fewer iTSSs.  

Considering the possibility that still some iTSSs could be misannotated gTSSs located at the ends of 
genes, we analyzed the distribution of iTSSs in genes of the re-annotated genome. Fig. IXA below 
shows the relative distance of an iTSS from the start codon. It revealed clustering at starts and ends 
of genes. To exclude that this result is an artifact of short ORFs, the absolute distances of iTSSs from 
starts and ends of genes were also analyzed (Fig. IXB and IXC below), confirming clustering in the first 
30 bp and the last 30 bp of genes. The clustering of iTSSs in the first 30 bp of genes suggests that 
even after re-annotation, some genes are shorter than annotated; clustering at the end of genes 
indicates that some iTSSs are probably TSSs of downstream genes.  

However, Fig. IX also shows that the vast majority of iTSSs is distributed quite evenly in genes – most 
mapped iTSSs are located at different positions in genes and represent genuine iTSS candidates.  

 

A 
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Figure IX. iTSS distribution in genes. A) Relative distance from gene start to iTSS. B) Absolute 
distance from gene start to iTSS. C) Absolute distance from iTSS to gene end. 
 

 

Experimental procedures 

Cloning procedures 

Escherichia coli JM109 was used for standard cloning methods and was grown in LB broth (Yanisch-
Perron et al., 1985; Sambrook et al., 1989). Plasmids were transferred from E. coli S17-1 to B. 
japonicum USDA 110 by biparental conjugation (Simon et al., 1982). Plasmids pJH-O1 (empty vector 
for overproduction of RNAs in B. japonicum), pJH-L1 (empty vector for transcriptional lacZYA fusions), 
pJH-F1 (vector for translational fusions to egfp (Andersen et al., 1998)) and their derivatives (see 
Additional file 11: Table S13) were constructed as previously described (Rudolf et al. 2006).  

For promoter verification PCR products or annealed oligonucleotides with suitable restriction sites at 
the ends, which correspond to regions located upstream of mapped TSSs, were ligated into the 
cloning vector pME3535XhoI containing lacZYA. The entire transcriptional lacZYA fusions were then 
cleaved out with EcoRI and XhoI and were cloned into the broad host range vector pRK290XhoI 
(Morales-Alvarez et al., 1986).  

B 

C 
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For overexpression of asRNA, first the rrn promoter of B. japonicum was cloned between the EcoRI 
and BamHI restriction sites of pME3535XhoI. Then the resulting plasmid was used to replace the 
lacZYA genes by the rrn terminator of B. japonicum using HindIII and XhoI resulting in pJH-O1. Next, 
sequence corresponding to the asRNA AsR1 (complementary to blr1853 mRNA) was cloned in both 
orientations between BamHI and HindIII restriction sites of pJH-O1. According to RT-PCR, a putative 
terminator of AsR1 is located between genomic positions 2,007,288 and 2007095. Thus we cloned 
the region between genomic positions 2,007,288 and 2,007,669 (the latter corresponding to 
Bja_TSS_3939, the TSS of AsR1). Finally, the constructs containing promoter, sequence corresponding 
to AsR1 and terminator was cleaved out using EcoRI and XhoI and ligated into the broad host range 
vector pRK290XhoI.  

The oligonucleotides used for cloning are listed in see Additional file 11: Table S14.  

 

RT-PCR 

Reverse transcription (RT)-PCR analyses were performed with the Tetro Reverse Transcriptase 
(Bioline) and Taq polymerase. 100 ng total RNA from free living cells in the exponential growth phase 
or 300 ng RNA from nodules were mixed with 10 pmol of the reverse primer and subjected to 
denaturation and annealing (5 min at 70 °C, 5 min at 50°C and 5 min at 37°C) in a 5 µl sample. 
Reverse transcriptase (200 u) was added together with the supplied buffer, 1 µl dNTPs (10 mM) and 
40 u of the RNase inhibitor Ribolock (ThermoScientific) in a final volume of 10 µl. The sample was 
incubated at 45°C for 30 min for synthesis of cDNA. After inactivation of the reverse transcriptase for 
10 min at 85°C, 5 µl of the cDNA-containing sample was subjected to standard PCR (30 cycles) after 
adding 10 pmol of each of the forward and reverse primer, the supplied buffer, 1 µl dNTPs (10 mM) 
and 0.25 u of Taq polymerase in a final volume of 12,5 µl. Primers used for RT-PCR are listed in see 
Additional file 11: Table S14.  

 

qRT-PCR  

The qRT-PCR analysis was performed with the Brilliant III Ultra-Fast SYBR Green Kit (Agilent). For 
strand-specific qRT-PCR, first cDNA synthesis was performed using 1 µl of the 10 mM solution of the 
primer complementary to the RNA of interest and 20 ng (for analysis of mRNA, asRNA or sRNA) or 0.2 
ng (for the 16S rRNA reference) total RNA in a 9 µl final volume containing the master mix and the 
enzyme mixture of the kit. The sample was incubated for 10 min at 50°C followed by 10 min at 96 °C. 
Thereafter 1 µl of the 10 mM second primer corresponding to the opposite strand was added and 
real time PCR was performed using the BioRad Real-Time PCR Detection System CFX96 and the 
following program: initial denaturation for 5 min at 95°C and 40 cycles consisting of denaturation for 
10 sec 95°C and annealing/elongation for 10 sec at 60°C. For normalization of mRNA, sRNA and 
asRNA levels, 16S rRNA was used. The relative level of an RNA under a given condition was calculated 
in relation to the level under other conditions and in relation to 16S rRNA (Pfaffl, 2001). Similarly, the 
relative level of an asRNA and mRNA was calculated including the data for 16S rRNA. Primers used 
for RT-PCR are listed in see Additional file 11: Table S14.  

 



22 
 

 

References 

Alvarez-Morales A, Betancourt-Alvarez M, Kaluza K, Hennecke H. Activation of the Bradyrhizobium 
japonicum nifH and nifDK operons is dependent on promoter-upstream DNA sequences. Nucleic 
Acids Res. 1986;14:4207-27. 

Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S. New unstable variants of green 
fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol. 
1998;64:2240-6. 

Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, 
Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello 
B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. The RAST Server: rapid 
annotations using subsystems technology. BMC Genomics. 2008;9:75. 

Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, 
Wilczynski B, and de Hoon MJ. Biopython: freely available Python tools for computational molecular 
biology and bioinformatics. Bioinformatics. 2009; 25:1422-3.  

Ederveen, T. H. a, Overmars, L., & van Hijum, S. a F. T. Reduce manual curation by combining gene 
predictions from multiple annotation engines, a case study of start codon prediction. PloS One. 2013; 
8: e63523.  

Hemmerich C, Buechlein A, Podicheti R, Revanna KV, Dong Q. An Ergatis-based prokaryotic genome 
annotation web server. Bioinformatics. 2010;26:1122-4. 

Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene 
recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119. 

Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, 
Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, 
Tabata S. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium 
japonicum USDA 110. DNA Res. 2002;9:189-97. 

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., 
Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P., & Drummond, A. (2012). Geneious 
Basic: an integrated and extendable desktop software platform for the organization and analysis of 
sequence data. Bioinformatics. 28(12), 1647-1649. 

Kingsford CL, Ayanbule K, Salzberg SL. Rapid, accurate, computational discovery of Rho-independent 
transcription terminators illuminates their relationship to DNA uptake. Genome Biol. 2007;8:R22 

Madhugiri R, Evguenieva-Hackenberg E. RNase J is involved in the 5'-end maturation of 16S rRNA and 
23S rRNA in Sinorhizobium meliloti. FEBS Lett. 2009;583:2339-42. 

Madhugiri R, Pessi G, Voss B, Hahn J, Sharma CM, Reinhardt R, Vogel J, Hess WR, Fischer HM, 
Evguenieva-Hackenberg E. Small RNAs of the Bradyrhizobium/Rhodopseudomonas lineage and their 
analysis. RNA Biol. 2012;9:47-58. 

Mitra A, Kesarwani AK, Pal D, Nagaraja V. WebGeSTer DB--a transcription terminator database. 
Nucleic Acids Res. 201139:D129-35. 

Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D. ARNold: a web tool for the prediction of 
Rho-independent transcription terminators. RNA Biol. 2011;8:11-3. 

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids 
Res. 2001;29:e45 

http://dx.doi.org/10.1093/bioinformatics/btp163
http://dx.doi.org/10.1093/bioinformatics/btp163
http://dx.doi.org/10.1093/bioinformatics/btp163


23 
 

Rudolph G, Semini G, Hauser F, Lindemann A, Friberg M, Hennecke H, Fischer HM. The Iron control 
element, acting in positive and negative control of iron-regulated Bradyrhizobium japonicum genes, 
is a target for the Irr protein. J Bacteriol. 2006;188:733-44.  

Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A laboratory manual. 2. Cold Spring Harbor 
Laboratory Press, Cold Spring Harbor, NY. 1989. 

Schlüter JP, Reinkensmeier J, Daschkey S, Evguenieva-Hackenberg E, Janssen S, Jänicke S, Becker JD, 
Giegerich R, Becker A. A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-
proteobacterium Sinorhizobium meliloti. BMC Genomics. 2010;11:245 

Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: 
transposon mutagenesis in gram-negative bacteria. Biotechnology. 1982; 1:784-791. 

Taboada B, Ciria R, Martinez-Guerrero CE, Merino E. ProOpDB: Prokaryotic Operon DataBase. Nucleic 
Acids Res. 2012;40:D627-31. 

Tsoy OV, Pyatnitskiy MA, Kazanov MD, Gelfand MS. Evolution of transcriptional regulation in closely 
related bacteria. BMC Evol Biol. 2012;12:200. 

Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: 
nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 1985;33:103-119. 

 

 
 


	Experimental procedures……………………………………………………………………………………………… 20
	Cloning procedures……………………………………………………………………………………………….. 20
	RT-PCR …………………………………………………………………………………………………………………. 21
	qRT-PCR …………………………………………………………………………………………………………………. 21

	References…………………………………………………………………………………………………………………….. 22
	De novo prediction of promoters in B. japonicum USDA 110
	Overview
	Step 1: Finding abundant patterns
	Scoring scheme
	Selection of α
	Scoring of patterns and normalizing for the GC-content of a pattern
	Selecting over-represented patterns

	Step 2: Clustering of the upstream regions using PCA
	Score of a pattern in upstream regions
	Identification of top-scoring upstream regions
	Principal component analysis to find different classes of upstream regions
	Iterative algorithm to build a PWM
	Calculating statistical significance

	Step 3: Locating promoter sequences upstream of TSSs
	Calculating statistical significance


	iTSS distribution in genes
	Experimental procedures
	Cloning procedures
	RT-PCR
	qRT-PCR


