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S1. The Reversible actuation at different temperatures 

 
Figure S1. Bending of the reversible strip. a) The printed strip after the first cycle 
of actuation; b) it bends relatively large after immersing in room temperature water 
for 12hrs; c) it bends more when immersing in hot water; d) after drying in low 
temperature air and then putting in the high temperature water, it returns to the 
straight shape. 
 
The strip, after the first cycle of actuation (Fig. S1a), was immersed in RT water 

(25oC). After 12hrs, the sample bent (S1, Fig. S1b), with a bending angle that is larger 

than that in cold water. This is because the SMP has a lower modulus at the room 

temperature than that in cold water. When the sample was immersed in high 

temperature water (75oC) again, it showed a nearly identical bending angle as that in 

the first cycle (Fig. S1c). After drying in low temperature, the sample completely 

recovered into its initial state (Fig. S1d). 

S2. Actuation in oven 

Fig. S2 shows the bending angle as functions of heating time in water and in oven 

in step S2, respectively. It can be seen that the same bending angle can be achieved in 

oven as compared to that in water, indicating there is no (or very little) water in-taking 

during the fast bending of the strip at high temperature. Bending in oven, however, is 

slower, as the connective heating by air is much slower than the conductive heating 

by water when the strip is immersed in hot water. 
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Figure S2. Bending angle as functions of time for heating in water and oven in step S2, 
respectively. 

S.3Constitutive models for the hydrogel and the SMP 

The non-equilibrium swelling model for the hydrogel and the thermomechanical 

model for the SMP are given below, respectively.  

S3.1Thermo-chemo-mechanicalproperty of hydrogel 

The constitutive model for the hydrogel follows the previous work1,2, and is briefly 

presented here. For the fluid flux, the spatial fluid flux, j , depends linearly on the 

spatial gradient of the chemical potential, gradµ , with the mobility tensor taken to be 

isotropic so that 

 gradm µ−j = , (S1) 

where m is a scalar mobility coefficient, which in general is an isotropic function of 

the stretch and the fluid concentration. 

The local balance for the fluid concentration is  

 
    !cR = −Jdivj , (S2) 

Assume swelling stretch is  

 ( )1 31s
Rcλ = +Ω , (S3) 

where Rc  represents the fluid concentration measured in moles of fluid per unit 

reference volume of the dry material. 

Then the constitutive equation for the Cauchy stress is given as 
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 ( ) ( )( )1 lns eJ G J K J− − +T = B I I , (S4) 

And the chemical potential is given by  

 
   
µ = µ0 + Rθ ln 1−φ( ) +φ + χφ 2( )−ΩK ln J e( ) + 1

2
KΩ ln J e( ) . (S5) 

S3.2Thermomechanical model of She SMP 

The multi-branch model (also referred as generalized standard linear solid model) 

has been shown to be able to capture the shape memory effects of the polymers3. 

Figure S3 shows a schematic representation of the model, where the choice of the 

number of branches depends on the width of glass transition and the structure of the 

polymers. In current analysis, 15 non-equilibrium branches and 1 equilibrium branch 

are adopted. 

 
FigureS3.1D rheological representain of the multi-branch model. 

 
The total deformation gradient of the model F is decomposed as: 

 M T=F F F , (S6) 

where MF  is the mechanical deformation gradient and TF  is the thermal 

deformation gradient. 

The total Cauchy stress of the model σ  is given as 
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1

m
i

eq
i=

= +∑σ σ σ , (S7) 

where eqσ and 
iσ  are the Cauchy stresses in the equilibrium and the ith (1 i m≤ ≤ ) 

nonequilibrium branches (as shown in  

FigureS), respectively. 

(a) Thermal Expansion 

The thermal expansion or contraction of the constructed thermal component in the 

model is assumed to be isotropic, i.e. 

 T TJ=F I , (S8) 

whereI is the second order unit tensor. JT is the volume change due to thermal 

expansion/contraction and is defined as: 

 
( ) ( ) ( )0
0

,
1 3 1T r

V T t
J T T

V
α δ⎡ ⎤= = + − +⎣ ⎦ , (S9) 

where ( ),V T t  is the volume at time t and temperature T. 0V  is the reference volume 

at the reference temperature T0. rα is the linear coefficient of thermal expansion 

(CTE) in the rubbery state and δ characterizes the deviation of volume from 

equilibrium volume and 
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( )
( )
,

1
eq

V T t
V T

δ = − , ( ) ( )0 01 3eq rV T T T Vα⎡ ⎤= + −⎣ ⎦ , (S10) 

whered  is calculated by the well-known KAHR 33-parameter. 

(b) Equilibrium Branch 

The Cauchy stress tensor in the equilibrium branch uses Arruda-Boyce eight-chain 

model, i.e. 

 ( )1
eq M

M

1
3

chainB

chain

nk T N K J
J N

λ
λ

− ⎛ ⎞ ′= + −⎜ ⎟
⎝ ⎠

σ B IL ,   

 ( )1 3tr′ = −B B B I , T

M M=B F F , 1 3
M M MJ −=F F , (S11) 

 ( ) 3chain trλ = B , ( ) coth 1 .β β β= −L  

wheren is the crosslinking density, kB is Boltzmann’s constant, T is the temperature, 

N  is the number of Kuhn segments between two crosslink sites (and/or strong 

physical entanglements). The temperature dependent shear modulus ( )r Tµ  of the 

elastomer in the equilibriumstate (which is an indication of entropic elasticity) is 

given by Bnk T . K is the bulk modulus and is typically orders of magnitude larger  

than rµ  to ensure material incompressibility. 

(c) Non-equilibrium Branch 

We attempted a unified viscous flow rule for all non-equilibrium branches, and 

the relaxation time is considered as a function of temperatures for each branch. For 

the i-thnonequilibrium branch (1 i m≤ ≤ ), the deformation gradient can be further 

decomposed into an elastic part and a viscous part 

 i i i
M e v=F F F , (S12) 

where i
vF  is a relaxed configuration obtained by elastically unloading by i

eF . The 

Cauchy stress can be calculated using i
eF ,  



	 S-7 

 ( )1 :i i i
e ei

e

T
J

⎡ ⎤= ⎣ ⎦σ L E , for1 i m≤ ≤ , (S13a) 

 ( )deti i
e eJ = F , lni i

e e=E V , i i i T
e e e=V F R , (S13b) 

and ( )i
e TL  is the fourth order isotropic elasticity tensor in the i-thnonequilibrium 

branch (1 i m≤ ≤ ), which is taken to be temperature independent in general, i.e. 

 
( ) 12 -

3
i i i
e T G K⎛ ⎞= ⊗ + ⊗⎜ ⎟⎝ ⎠
L I I I II , for1 i m≤ ≤ , (S14) 

whereI  is the fourth order identity tensor, iG  and iK  are shear and bulk moduli 

for each nonequilibrium branch (1 i m≤ ≤ ), respectively. 

For the rnonequilibrium branches (1 i m≤ ≤ ), it is assumed that all the rubbery 

branches have the same shear modulus, i.e. 

 ( )i
R BG T n k T= for1 i m≤ ≤ , (S15) 

where Rn  is the crosslinking density.  Then The elastic modulus in each 

nonequilibrium branch is calculated as 

 ( ) ( )
2(1 )

i
i

i

G T
E T

v
=

+
for1 i m≤ ≤ , (S16) 

In the nonequilibrium branches, the temperature dependent relaxation times 

are calculated according to the thermorheological simplicity principle, 

 ( ) 0 ( )i i
TT Tτ τ α= for1 i m≤ ≤ ,  (S17) 

where ( )T Tα is the time-temperature superposition (TTSP) shift factor and 0
iτ  is the 

relaxation time at the reference temperature when ( ) 1T Tα = . At temperatures around 

or above Ts, the WLF equation  is applied, 

 

( )
( )

1

2

log ( ) M
T

M

C T T
T

C T T
α

−
= −

+ −
,  (S18) 

whereC1 and C2 are material constants and TM is the WLF reference temperature. 
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When the temperature is below Ts, ( )T Tα  follows the Arrhenius-type behavior: 

 

1 1ln ( ) c
T

b g

AFT
k T T

α
⎛ ⎞

= − −⎜ ⎟⎜ ⎟⎝ ⎠
, (S19) 

where A and Fc are material constants, kb is Boltzman’s constant. Here, Ts is 

calculated by equating ( )T Tα  in Eqs. Error! Reference source not found. and 

Error! Reference source not found..     

S4.Material parameters 

(a)  Material Parameters for the hydrogel model 

Table S1 Mechanical and diffusion parameters for hydrogel 

 

Hydrogel sampleswere printed with the dimension of 15mm 

(height)×3mm(width)×0.6mm(thickness), and then were stretched to break under 

displacement control by a dynamic mechanical analyzer (DMA, Model Q800, TA 

Instruments, New Castle, DE, USA). The obtained stress-strain curve is shown in 

Fig.S4, where the fitted simulation results is also presented.The fitted material 

parameters are listed in Table S1. 

 

 Description Value 

G Shear modulus 0.095 MPa 

K Volume modulus 100 MPa 

Ω Mole volume 1.0×10-4 m3/mol 

χ Diffusion parameter 0.1 

µo Initial chemical 0.0 J/mol 

D Diffusion coefficient 5.8×10-8 m2/s 
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Figure S4. Engineering stress-engineering strain curves of hydrogel. 
 

To obtain the material parameters associated with diffusion, two swelling 

experiments were conducted: one free swelling and one with a deadweight of 2g. By 

coupling the diffusion equation and chemical potential equation, the diffusion 

parameters are calibrated by one diffusion model and listed in Table S1. The fitted 

free swelling and weighted swelling ratio along with diffusion time are listed in Fig. 

S5. 
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(b) 
Figure S5.Swelling ratio of hydrogel (a) without weight and (b) with a 2g weight. 
 
(b) Material parameters forthe SMP model 

Material parameters for the SMP and the elastomerwere obtained by fitting with 

experimental results. The method to calibrate corresponding material parameters for 

all equilibrium and non-equilibrium branches follows our previous work4. The fitted 

storage modulus and tan δ are presented and compared with the experiment in 

Fig.S6. All the material parameters are listed in Table S2. 
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(b) 
Figure S6. Fitted storage modulus and tanδfor (a) the SMP and (b) The elastomer. 
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Table S2.Material parameters for the SMP and the elastomer. 

 

 
 
 
 
S5. Theoretical analysis on folding angle of the hinge in origami design  
 

In this self-folding origami design, the hinge is composed of SMP, Gel and 

Tangoblack, while the panel is printed by Verowhite, a very stiff digital material with 

very high modulus. Then it is not difficult to find the bending moment of inertia along 

the long edge is largely greater than that along the short edge. To address this more 

clearly, we give a simple calculation on the bending angle in the following,  

From classical material mechanics, the bending angle of a beam is calculated by  

 Es 
(MPa) 

AFKB C_1 C_2 T_g (K) T_m 

The SMP 5.2 -10000 12.6 47.6 327.6 308.5 
The elastomer 0.6 -20500 12.4 51.6 286.7 271.0 

The SMP 

E1~E6(MPa) 2.0e3 2.1e3 6.0e2 2.7e2 3.2e2 2.1e2 
1
0τ ~ 6

0τ (s) 1.2e-5 1.0e-4 6.0e-3 1.0e-2 1.1e-1 1.0 

E7~E12(MPa) 1.3e2 7.8e1 4.1e1 1.7e1 6.2 1.5 

7
0τ ~ 12

0τ (s) 9.7 7.9e2 5.8e2 3.8e3 2.5e4 2.0e5 

E13~E15(MPa) 1.1e-1 4.0e-3 1.0e-3    

13
0τ ~ 15

0τ (s) 2.8e6 2.0e7 2.0e8    

The 
elastomer 

E1~E6(MPa) 3.3e2 3.2e2 3.8e2 4.5e2 3.6e2 2.8e2 

1
0τ ~ 6

0τ (s) 2.0e-7 6.e-6 8.e-5 9.4e-4 1.0e-2 9.8e-2 

E7~E12(MPa) 2.4e2 1.6e2 6.4e1 1.0e1 2.0 7.8e-1 

7
0τ ~ 12

0τ (s) 1 1.0e1 6.4e1 3.6e2 2.4e3 2.0e4 

E13~E15(MPa) 2.4e-1 6.7e-2 2.7e-2    

13
0τ ~ 15

0τ (s) 2.0e5 2.0e6 2.4e7    
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ML
EI

θ =  (S20) 

hereθ  is the bending angle, M  is the moment, EI is the bending stiffness and L is 

the length of the beam. 

We simplify the current problem to calculate bending angle of representative 

element, a rectangular square marked by red dashed line, along the x direction and y 

direction as shown in the Fig.S7. The element has a length of L , and the hinge has a 

width of w . The thickness of the sheet is h . Assume the generated isotropic swelling 

force by the hinge is f per unit length, i.e., it is the same along the x- and y-directions. 

 

Fig. S7. Folding origami design. 

 

As for the bending along the x-direction (long edge), we have 

xM fLw= , xL = L , xEI = ( ) 3

12
v hE L w E w h− +⎡ ⎤⎣ ⎦ , ( ) 3

12

x
v h

fLw L
E L w E w h

θ ⋅=
− +⎡ ⎤⎣ ⎦   ( S21) 

As for the bending along the y direction(short edge), we have  

 yM fwL= , yL =w , yEI =
3

12
hE wh ,

3

( )
12
h

y
E whfLw wθ ⎛ ⎞

= ⋅ ⎜ ⎟
⎝ ⎠

 (S22) 

Then we have   

L

w

o x

y
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( ) 3

3 1v hy v

x h h

E L w E w h EfLw w w w
E wh fLw L E L L

θ
θ

− +⎡ ⎤⋅ ⎛ ⎞⎣ ⎦= ⋅ = − +⎜ ⎟⋅ ⎝ ⎠
   (S23) 

here vE  is the modulus of the Verowhite (white panel), and hE is the effective 

modulus of the hinge which is the combination of three layers (SMP, Gel and 

Tangoblack). From the experiment results, the modulus of the Verowhite, SMP, the 

Tangoblack and the Gel are around 3700MPa, 2500MPa, 1000MPa, and 0.1MPa in 

the low temperature (2oC),and around 50MPa, 30MPa, 0.5MPa, and 0.1Mpa high 

temperature (75oC),respectively. The effective modulus of hE is calculated as 

~100MPa at low temperature, and ~0.5MPa at high temperature (75oC) by following 

equation, 

	
( ) ( ) ( )

3

12
h

SMP Gel TangobleckSMP Gel Tangobleck

E bh E I E I E I= + +
 (S24)	

Therefore we arrive at 

 v hE E ≈40~100. (S25) 

From Eq.(S23) and Eq.(S25), we can find it is only when length of representative 

element L equals the width of the hinge w, the bending angle is the same along the x 

and y. If the L is greater than w, the bending angle along y direction is greater than 

that along x direction, meaning the hinge is more likely to bend along the short edge, 

rather than long edge.  
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