Enantioselective Indoline Synthesis by a Conjugate Addition/Asymmetric Protonation/Aza-Prins Cyclization Cascade

Blake E. Daniels[‡], Jane Ni[‡], and Sarah E. Reisman*

The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 reisman@caltech.edu

Supporting Information 1 (Experimental Procedures):

Table of Contents

1.	General considerations	S3
2.	Procedures for substrate synthesis	S4
3.	Procedure for conjugate addition/asymmetric protonation/aza-Prins cyclization cascade	S15
4.	Catalyst Optimization	S25
5.	SFC/HPLC traces of racemic and enantioenriched indolines	S26
6.	Synthesis of deuterated amidoacrylate $2a-d_1$	S41
7.	Epimerization studies	S45
8.	Unsuccessful substrates	S48
9.	References	S50
10.	¹ H and ^{!3} C NMR Spectra for New Compounds	S51

General Considerations. Unless otherwise stated, reactions were performed under a nitrogen atmosphere using freshly dried solvents. Tetrahydrofuran (THF), methylene chloride (CH₂Cl₂), toluene (PhMe), and dimethylformamide (DMF) were dried by passing through activated alumina columns. Dimethylformamide was dried over activated molecular sieves. All other commercially obtained reagents were used as received unless specifically indicated. (R)-BINOL was obtained from Alfa Aesar. Reactions were monitored by thin-layer chromatography using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm) and were visualized by UV, panisaldehyde, CAM, or KMnO₄ staining. Flash column chromatography was performed either as described by Still et al.¹ using silica gel (particle size 0.032-0.063) purchased from Silicycle, or pre-packaged RediSep[®]Rf columns on a CombiFlash Rf system (Teledyne ISCO Inc.). Diastereomeric ratios were determined by integration of NMR spectra. Optical rotations were measured on a Jasco P-2000 polarimeter using a 100 mm path-length cell at 589 nm. ¹H and ¹³C NMR spectra were recorded on a Varian Mercury 300 (at 300 MHz and 75 MHz, respectively), a Varian 400 (at 400 MHz and 100 MHz, respectively) or a Varian Inova 500 (at 500 MHz and 125 MHz, respectively), and are reported relative to internal chloroform (¹H, $\delta = 7.26$, ¹³C, $\delta = 77.0$). Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicity and qualifier abbreviations are as follows: s = singlet, d = doublet, t = triplet, q = quartet, m =multiplet, br = broad, app = apparent. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in frequency of absorption (cm⁻¹). Preparative HPLC was performed with either an Agilent 1100 or 1200 Series HPLC utilizing an Agilent Zorbax RX-SIL 5µm column (9.4 x 250 mm). Analytical SFC was performed with a Mettler SFC supercritical CO₂ analytical chromatography system with Chiralcel AD-H and OJ-H columns (4.6 mm x 25 cm). Melting points were determined using a Büchi B-545 capillary melting point apparatus and the values reported are uncorrected. HRMS were acquired using either an Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) or mixed (MM) ionization mode.

Indole Substrates for Conjugate Addition/Asymmetric Protonation/Prins Cyclization Cascade

General Procedure A: Preparation of 3-(but-3-en-1-yl) N-H indoles

The preparation of 3-(but-3-en-1-yl)-indole derivatives was adapted from Youn et al.² To a solution of the indole substrate (1.00 equiv) in benzene was added a solution of MeMgCl (1.06 equiv, 3.0 M solution in THF) at rt. After 10 min, 4-bromobutene (0.86 equiv) was added and the reaction mixture was heated to reflux. After 27 h, the reaction mixture was cooled and quenched with sat. NH_4Cl . The organic phase was separated and the aqueous phase was extracted twice with EtOAc. The organic layer was washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel.

3-(but-3-en-1-yl)-1H-indole

Prepared from indole (1.75 g, 15 mmol) according to General Procedure A to yield 3-(but-3-en-1-yl)-1*H*-indole in 41% yield (1.07 g). Spectral data of 3-(but-3-en-1-yl)-1*H*-indol were found to be in agreement with those reported in the literature.³

4-methyl-3-(but-3-en-1-yl)indole (S1)

Prepared from 4-methylindole (2.6 g, 19.8 mmol) according to General Procedure A to yield 4-methyl-3-(but-3-en-1-yl)indole (**S1**) in 27% yield (983 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.19 (d, *J* = 8.1 Hz, 1H), 7.06 (t, *J* = 7.1 Hz, 1H), 6.95 (dt, *J* = 2.2, 1.0 Hz, 1H), 6.84 (dt, *J* = 7.1, 0.9 Hz, 1H), 5.97 (ddt, *J* = 16.8, 10.2, 6.5 Hz, 1H), 5.11 (dq, *J* = 17.1, 1.7 Hz, 1H), 5.02 (ddt, *J* = 10.2, 2.2, 1.2 Hz, 1H), 3.10 – 2.98 (m, 2H), 2.72 (s, 3H), 2.51 – 2.43 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 138.66, 136.75, 130.97, 125.93, 121.96, 121.29, 120.91, 117.25, 114.72, 108.98, 35.48, 26.82, 20.31; IR (NaCl/thin film) 3409, 1638, 1412, 1341, 1113, 910, 747 cm⁻¹; HRMS (ESI) calc'd for C₁₃H₁₅N [M*]⁺ 185.1199, found 185.1200.

5-methyl-3-(but-3-en-1-yl)indole (S2)

Prepared from 5-methylindole (2g, 15.2 mmol) according to General Procedure A to yield 5-methyl-3-(but-3-en-1-yl)indole (**S2**) in 48% yield (1.34 g). ¹H NMR (500 MHz, CDCl₃) δ 7.82 (s, 1H), 7.42 (dq, *J* = 1.6, 0.8 Hz, 1H), 7.30 – 7.24 (m, 1H), 7.07 – 7.03 (m, 1H), 6.98 (dd, *J* = 2.3, 1.1 Hz, 1H), 5.98 (ddt, *J* = 16.9, 10.2, 6.5 Hz, 1H), 5.13 (dq, *J* = 17.1, 1.7 Hz, 1H), 5.03 (ddt, *J* = 10.2, 2.3, 1.3 Hz, 1H), 2.91 – 2.83 (m, 2H), 2.54 – 2.47 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 138.87, 134.62, 128.34, 127.73, 123.49, 121.32, 118.58, 115.77, 114.60, 110.71, 34.29, 24.75, 21.55; IR (NaCl/thin film) 3413, 2919, 1640, 1423, 1225, 1091, 995, 911, 792 cm⁻¹; HRMS (ESI) calc'd for C₁₃H₁₅N [M+H]⁺ 186.1277, found 186.1274.

6-methyl-3-(but-3-en-1-yl)indole (S3)

Prepared from 6-methylindole (2.6 g, 19.8 mmol) according to General Procedure A to yield 6-methyl-3-(but-3-en-1-yl)indole **(S3)** in 42% yield (1.54 g). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.15 (s, 1H), 6.97 (dd, *J* = 8.1, 1.4 Hz, 1H), 6.96 – 6.89 (m, 1H), 5.95 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.10 (dq, *J* = 17.2, 1.7 Hz, 1H), 5.01 (ddt, *J* = 10.2, 2.3, 1.3 Hz, 1H), 2.89 – 2.81 (m, 2H), 2.53 – 2.44 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 138.88, 136.77, 131.71, 125.40, 120.92, 120.51, 118.60, 116.13, 114.63, 111.04, 34.34, 24.85, 21.74; IR (NaCl/thin film) 3412, 2918, 2100, 1639, 1455, 1339, 1229, 1089, 995, 910, 800 cm⁻¹; HRMS (ESI) calc'd for C₁₃H₁₅N [M+H]⁺ 186.1277, found 186.1277.

7-methyl-3-(but-3-en-1-yl)indole (S4)

Prepared from 7-methylindole (2.6 g, 19.8 mmol) according to General Procedure A to yield 7-methyl-3-(but-3-en-1-yl)indole (**S4**) in 38% yield (1.39 g). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.49 (d, *J* = 7.8, 1H), 7.10 – 7.04 (m, 1H), 7.04 – 7.00 (m, 2H), 5.96 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.11 (dq, *J* = 17.1, 1.7 Hz, 1H), 5.02 (ddt, *J* = 10.2, 2.3, 1.2 Hz, 1H), 2.91 – 2.85 (m, 2H), 2.55 – 2.45 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 138.85, 135.89, 127.05, 122.47, 120.90, 120.23, 119.40, 116.81, 116.70, 114.67, 34.35, 24.91, 16.64; IR (NaCl/thin film) 3419, 2919, 1639, 1433, 1342, 1065, 911, 783, 746 cm⁻¹; HRMS (ESI) calc'd for C₁₃H₁₅N [M+H]⁺ 186.1277, found 186.1277.

5-methoxy-3-(but-3-en-1-yl)indole (S5)

Prepared from 5-methoxyindole (3 g, 20.4 mmol) according to General Procedure A to yield 5-methoxy-3-(but-3en-1-yl)indole (**S5**) in 44% yield (1.80 g). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.25 (d, *J* = 8.5 Hz, 1H), 7.05 (d, *J* = 2.5 Hz, 1H), 6.98 (dd, *J* = 2.3, 1.1 Hz, 1H), 6.86 (dd, *J* = 8.8, 2.5 Hz, 1H), 5.96 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.10 (dq, *J* = 17.1, 1.7 Hz, 1H), 5.01 (ddt, *J* = 10.2, 2.2, 1.2 Hz, 1H), 3.88 (s, 3H), 2.87 – 2.79 (m, 2H), 2.48 (tdt, *J* = 7.9, 6.5, 1.5 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 153.83, 138.82, 131.46, 127.89, 122.05, 115.99, 114.70, 112.03, 111.77, 100.84, 55.98, 34.14, 24.76; IR (NaCl/thin film) 3414, 2919, 1584, 1482, 1291, 1213, 1172, 1059, 1028, 914, 794 cm⁻¹; HRMS (ESI) calc'd for C₁₃H₁₅NO [M+H]⁺ 202.1226, found 202.1223.

5-bromo-3-(but-3-en-1-yl)-indole (S6)

Prepared from 5-bromoindole (4.1 g, 21.1 mmol) according to General Procedure A to yield 5-bromo-3-(but-3-en-1-yl)-indole (**S6**) in 25% yield (1.34 g). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (s, 1H), 7.73 (d, *J* = 1.8 Hz, 1H), 7.28 – 7.25 (m, 1H), 7.22 (d, *J* = 8.6 Hz, 1H), 7.00 (d, *J* = 2.4 Hz, 1H), 5.91 (ddt, *J* = 16.8, 10.2, 6.6 Hz, 1H), 5.09 (dq, *J* = 17.1, 1.7 Hz, 1H), 5.01 (ddt, *J* = 10.2, 2.3, 1.3 Hz, 1H), 2.85 – 2.78 (m, 2H), 2.46 (tdt, *J* = 7.8, 6.5, 1.5 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 138.41, 134.86, 129.32, 124.72, 122.43, 121.57, 116.02, 114.94, 112.47, 112.45, 34.13, 24.52; IR (NaCl/thin film) 3429, 2921, 1639, 1458, 1224, 1093, 995, 912, 792 cm⁻¹; HRMS (MM) calc'd for C₁₂H₁₂BrN [M+K]⁻ 287.9796, found 287.9786.

General Procedure B: Preparation of 3-(but-3-en-1-yl) N-substituted indoles

The appropriate 3-(but-3-en-1-yl) N-H indole was dissolved in DMF. NaH (2.0 equiv, 60% dispersion in mineral oil) was added at rt, followed by either methyl iodide or allyl bromide or benzyl bromide (2.5 equiv). The reaction was stirred at room temperature until consumption of starting material of observed by TLC. The reaction was diluted with ethyl acetate, and quenched with water (10× volume of DMF). The aqueous layer was extracted 3× with ethyl acetate. The combined organic layers were washed with water, dried (MgSO₄), filtered, and concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel.

3-(but-3-en-1-yl)-1-methylindole (7a)

Prepared from 3-(but-3-en-1-yl)-1*H*-indole (1.07 g, 6.2 mmol) according to General Procedure B to yield **7a** in 95% yield (1.09 g). Spectral data of **7a** were found to be in agreement with those reported in the literature.⁴

3-(but-3-en-1-yl)-1-allylindole (7b)

Prepared from 3-(but-3-en-1-yl)-1*H*-indole (400 mg, 2.3 mmol) according to General Procedure B to yield **7b** in 73% yield (355 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.62 (dt, *J* = 7.9, 1.0 Hz, 1H), 7.30 (dt, *J* = 8.3, 0.9 Hz, 1H), 7.21 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.12 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 6.90 (s, 1H), 6.04 – 5.91 (m, 2H), 5.20 (dq, *J* = 10.2, 1.5 Hz, 1H), 5.10 (app ddq, *J* = 17.0, 3.0, 1.6 Hz, 2H), 5.01 (ddt, *J* = 10.2, 2.2, 1.2 Hz, 1H), 4.69 (dt, *J* = 5.4, 1.6 Hz, 2H), 2.91 – 2.84 (m, 2H), 2.49 (dtt, *J* = 9.2, 6.5, 1.4 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 138.82, 136.42, 133.73, 128.11, 125.03, 121.47, 119.09, 118.69, 117.04, 115.14, 114.64, 109.48, 48.63, 34.46, 24.74; IR (NaCl/thin film) 3075, 2917, 2848, 1640, 1466, 1374, 1326, 1190, 990, 738 cm⁻¹; HRMS (MM) calc'd for C₁₅H₁₇N [M+H]⁺ 212.1434, found 212.1434.

3-(but-3-en-1-yl)-1-benzylindole (7c)

Prepared from 3-(but-3-en-1-yl)-1*H*-indole (1.07 g, 6.2 mmol) according to General Procedure B to yield **7c** in 87% yield (1.42 g). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dt, *J* = 7.6, 1.0 Hz, 1H), 7.43 – 7.33 (m, 4H), 7.32 – 7.18 (m, 4H), 7.02 (s, 1H), 6.08 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.35 (s, 2H), 5.23 (dq, *J* = 17.2, 1.7 Hz, 1H), 5.14 (ddt, *J* = 10.2, 2.3, 1.3 Hz, 1H), 3.07 – 2.95 (m, 2H), 2.66 – 2.58 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 138.69, 137.77, 136.60, 128.61, 128.11, 127.39, 126.64, 125.40, 121.59, 119.05, 118.77, 115.31, 114.64, 109.54, 49.69, 34.37, 24.68; IR (NaCl/thin film) 3435, 3061, 2920, 1466, 1356, 1327, 1177, 1014, 911, 798, 738 cm⁻¹; HRMS (MM) calc'd for C₁₉H₁₉N [M*]⁺ 261.1512, found 261.1509.

4-methyl-3-(but-3-en-1-yl)-1-benzylindole (7d)

Prepared from 4-methyl-3-(but-3-en-1-yl)indole (**S1**) (871 mg, 5.2 mmol) according to General Procedure B to yield **7d** in 90% yield (1.31 g). ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.23 (m, 3H), 7.16 – 7.05 (m, 4H), 6.88 (s, 1H), 6.83 (dt, *J* = 6.9, 0.9 Hz, 1H), 5.96 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.26 (s, 2H), 5.10 (dq, *J* = 17.1, 1.6 Hz, 1H), 5.02 (ddt, *J* = 10.2, 2.2, 1.3 Hz, 1H), 3.08 – 3.00 (m, 2H), 2.74 (s, 3H), 2.51 – 2.42 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 138.62, 137.81, 137.04, 131.15, 128.68, 127.43, 126.68, 126.57, 125.67, 121.64, 120.66, 116.30, 114.72, 107.52, 49.83, 35.61, 26.76, 20.31; IR (NaCl/thin film) 2918, 1496, 1453, 910, 742 cm⁻¹; HRMS (MM) calc'd for C₂₀H₂₁N [M+H]⁺ 276.1747, found 276.1759.

5-methyl-3-(but-3-en-1-yl)-1-benzylindole (7e)

Prepared from 5-methyl-3-(but-3-en-1-yl)indole (**S2**) (963 mg, 5.2 mmol) according to General Procedure B to yield **7e** in 95% yield (1.37 g): ¹H NMR (500 MHz, CDCl₃) δ 7.41 (dt, J = 1.7, 0.8 Hz, 1H), 7.31 – 7.23 (m, 3H), 7.14 (d, J = 8.3 Hz, 1H), 7.11 – 7.08 (m, J = 7.2, 1.4, 0.7 Hz, 2H), 7.00 (dd, J = 8.3, 1.6 Hz, 1H), 6.89 (s, 1H), 5.95 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.26 (s, 2H), 5.14 – 5.05 (m, 1H), 5.00 (ddt, J = 10.2, 2.3, 1.2 Hz, 1H), 2.89 – 2.81 (m, 2H), 2.51 – 2.45 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 138.85, 138.01, 135.07, 128.67, 128.36, 128.02, 127.41, 126.66, 125.62, 123.21, 118.79, 114.83, 114.60, 109.32, 49.86, 34.45, 24.74, 21.50; IR (NaCl/thin film) 3434, 2916, 1639, 1487, 1453, 910, 787 cm⁻¹; HRMS (MM) calc'd for C₂₀H₂₁N [M*]⁺ 275.1669, found 275.1665.

6-methyl-3-(but-3-en-1-yl)-1-benzylindole (7f)

Prepared from 6-methyl-3-(but-3-en-1-yl)indole (**S3**) (963 mg, 5.2 mmol) according to General Procedure B to yield **7f** in 90% yield (1.29 g). ¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, *J* = 8.0 Hz, 1H), 7.33 – 7.24 (m, 3H), 7.13 – 7.09 (m, 2H), 7.06 (s, 1H), 6.96 (dd, *J* = 8.1, 1.4 Hz, 1H), 6.85 (s, 1H), 5.94 (ddt, *J* = 16.8, 10.2, 6.6 Hz, 1H), 5.26 (s, 2H), 5.09 (dq, *J* = 17.1, 1.7 Hz, 1H), 5.00 (ddt, *J* = 10.2, 2.3, 1.2 Hz, 1H), 2.93 – 2.87 (m, 2H), 2.51 – 2.45 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 138.84, 138.03, 137.11, 131.46, 128.69, 127.40, 126.66, 126.02, 124.84,

120.60, 118.80, 115.31, 114.61, 109.50, 49.61, 34.48, 24.83, 21.90; IR (NaCl/thin film) 2916, 1622, 1468, 1452, 1325, 1174, 1028, 910, 798 cm⁻¹; HRMS (MM) calc'd for $C_{20}H_{21}N$ [M+H]⁺ 276.1747, found 276.1755.

7-methyl-3-(but-3-en-1-yl)-1-benzylindole (7g)

Prepared from 7-methyl-3-(but-3-en-1-yl)indole (**S4**) (963 mg, 5.2 mmol) according to General Procedure B to yield **7g** in 92% yield (1.31 g). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.0 Hz, 1H), 7.31 – 7.20 (m, 3H), 7.02 (dd, *J* = 7.9, 7.1 Hz, 1H), 6.94 – 6.87 (m, 3H), 6.87 (s, 1H), 5.95 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.54 (s, 2H), 5.09 (dq, *J* = 17.1, 1.7 Hz, 1H), 5.00 (ddt, *J* = 10.2, 2.3, 1.2 Hz, 1H), 2.90 – 2.83 (m, 2H), 2.54 – 2.45 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 139.98, 138.81, 135.37, 129.18, 128.78, 127.46, 127.20, 125.43, 124.55, 121.07, 119.17, 117.13, 115.38, 114.69, 51.97, 34.32, 24.64, 19.56; IR (NaCl/thin film) 3434, 1639, 1495, 1451, 1414, 1366, 1325, 1173, 1077, 911, 781, 743 cm⁻¹; HRMS (MM) calc'd for C₂₀H₂₁N [M+OH]⁺ 292.1696, found 292.1694.

5-methoxy-3-(but-3-en-1-yl)-1-benzylindole (7h)

Prepared from 5-methoxy-3-(but-3-en-1-yl)indole (**S5**) (1.8 g, 8.9 mmol) according to General Procedure B to yield **7h** in 73% yield (1.90 g). ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.22 (m, 3H), 7.12 (d, *J* = 8.8 Hz, 1H), 7.10 – 7.07 (m, 2H), 7.05 (d, *J* = 2.3 Hz, 1H), 6.91 (s, 1H), 6.82 (ddd, *J* = 8.8, 2.5, 0.4 Hz, 1H), 5.95 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.25 (s, 2H), 5.09 (ddt, *J* = 17.1, 2.1, 1.6 Hz, 1H), 5.00 (ddt, *J* = 10.2, 2.0, 1.2 Hz, 1H), 3.87 (s, 3H), 2.87 – 2.80 (m, 2H), 2.48 (dtt, *J* = 9.2, 6.5, 1.4 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 153.67, 138.79, 137.92, 131.96, 128.69, 128.44, 127.46, 126.65, 126.20, 114.83, 114.68, 111.71, 110.39, 101.02, 55.95, 50.04, 34.28, 24.73; IR (NaCl/thin film) 2917, 1487, 1452, 1228, 1044, 909, 790 cm⁻¹; HRMS (MM) calc'd for C₂₀H₂₁NO [M+H]⁺ 292.1696, found 292.1699.

5-bromo-3-(but-3-en-1-yl)-1-benzylindole (7i)

Prepared from 5-bromo-3-(but-3-en-1-yl)indole (**S6**) (1.5 g, 6.0 mmol) according to General Procedure B to yield **7i** in 93% yield (1.9 g). ¹H NMR (500 MHz, CDCl₃) δ 7.74 (dd, *J* = 2.0, 0.5 Hz, 1H), 7.32 – 7.26 (m, 3H), 7.23 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.10 (dd, *J* = 8.7, 0.5 Hz, 1H), 7.08 – 7.05 (m, 2H), 6.93 (s, 1H), 5.91 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.25 (s, 2H), 5.08 (dq, *J* = 17.1, 1.6 Hz, 1H), 5.01 (ddt, *J* = 10.2, 2.2, 1.2 Hz, 1H), 2.85 – 2.79 (m, 2H), 2.46 (dtt, *J* = 9.2, 6.5, 1.4 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 138.40, 137.33, 135.27, 129.90, 128.79, 127.68, 126.75, 126.61, 124.43, 121.73, 115.06, 114.95, 112.25, 111.13, 50.04, 34.30, 24.52; IR (NaCl/thin film) 3429, 2920, 1639, 1470, 1453, 1355, 1175, 1053, 912, 789, 732 cm⁻¹; HRMS (ESI) calc'd for C₁₉H₁₈BrN [M+OH]⁺ 356.0645, found 356.0640.

General Procedure C: Preparation of N-H indole substrates

N-H indoles were prepared according to either the method of Jørgensen and co-workers⁵ or a Fisher indole synthesis protocol. For the Fisher indole synthesis, the appropriate phenylhydrazine (1.0 equiv) and aldehyde (1.0 equiv) were refluxed in THF along with HCl (1.96 equiv) for 24 hr. Upon cooling to rt, the reaction mixture was diluted with water. The organic phase was separated and the aqueous phase was extracted with EtOAc twice. The organic layer was washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel.

5-chloro-3-methyl-1*H*-indole

Prepared from 2-bromo-4-chloroaniline (3.7 g, 18 mmol) according to the method of Jørgensen and co-workers to yield **5-chloro-3-methyl-1***H***-indole** in 29% yield (345 mg). **5-chloro-3-methyl-1***H***-indole**'s spectral properties were found to be in agreement with those reported in the literature.⁶

5-fluoro-3-methyl-1H-indole

Prepared from 4-fluorophenylhydrazine hydrochloride (1.5 g, 9.2 mmol) and propionaldehyde (538 mg, 9.2 mmol) according to the Fischer indole synthesis protocol to yield **5-fluoro-3-methyl-1***H***-indole** in 18% yield (245

mg). **5-fluoro-3-methyl-1***H***-indole**'s spectral properties were found to be in agreement with those reported in the literature.

MeC

5-methoxy-3-methyl-1*H*-indole

3-butyl-1*H*-indole

Prepared from phenylhydrazine (3.2 g, 30 mmol) and hexanal (3.0 g, 30 mmol) according to the Fischer indole synthesis protocol to yield **3-butyl-1***H***-indole** in 85% yield (4.4 g). **3-butyl-1***H***-indole**'s spectral properties were found to be in agreement with those reported in the literature.⁸

3-phenethyl-1*H*-indole

Prepared from phenylhydrazine (550 mg, 5.1 mmol) and 4-phenylbutanal (755 mg, 5.1 mmol) according to the Fischer indole synthesis protocol to yield **3-phenethyl-1***H***-indole** in 75% yield (845 mg). **3-phenethyl-1***H***-indole**'s spectral properties were found to be in agreement with those reported in the literature.⁹

General Procedure D: Preparation of N-(but-3-en-1-yl) indole substrates

The indole was dissolved in DMF. NaH (1.2 equiv, 60% dispersion in mineral oil) was added at rt, followed by either 4-bromo-1-butene or *O*-tosyl-but-3-en-1-ol (1.2 equiv). The reaction was stirred at room temperature for 24 h. The reaction was quenched with a 1:1 mixture of water and a saturated sodium bicarbonate solution ($10 \times$

volume of DMF). The aqueous layer was extracted $3 \times$ with ethyl acetate. The combined organic layers were washed with water, dried (MgSO₄), filtered, and concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel.

1-(but-3-en-1-yl)-3-methylindole (9a)

Prepared from 3-methylindole (500 mg, 3.8 mmol) according to General Procedure D to yield **9a** in 20% yield (141 mg). **9a**'s spectral properties were found to be in agreement with those reported in the literature.¹⁰

1-(but-3-en-1-yl)-5-chloro-3-methylindole (9b)

Prepared from 5-chloro-3-methylindole (345 mg, 2.1 mmol) according to General Procedure D to yield **9b** in 36% yield (289 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 1.9 Hz, 1H), 7.20 (d, *J* = 8.7 Hz, 1H), 7.13 (dd, *J* = 8.7, 2.0 Hz, 1H), 6.88 (s, 1H), 5.75 (ddt, *J* = 17.1, 10.2, 6.8 Hz, 1H), 5.07 (dtd, *J* = 17.1, 1.5, 0.5 Hz, 1H), 5.05 (dtd, *J* = 10.2, 1.7, 0.9 Hz, 1H), 4.09 (t, *J* = 7.2 Hz, 2H), 2.53 (q, *J* = 7.0 Hz, 2H), 2.27 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 134.60, 134.55, 129.78, 126.68, 124.37, 121.55, 118.55, 117.44, 110.15, 109.98, 45.90, 34.64, 9.48; IR (NaCl/thin film) 3431, 1641, 1471, 1354, 916, 834, 783 cm⁻¹; HRMS (ESI) calc'd for C₁₃H₁₄CIN [M+H]⁺ 220.0888, found 220.0890.

1-(but-3-en-1-yl)-5-fluoro-3-methylindole (9c)

Prepared from 5-fluoro-3-methylindole according (245 mg, 1.6 mmol) to General Procedure D to yield **9c** in 85% yield (283 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.16 (m, 1H), 6.93 (td, *J* = 9.2, 2.6 Hz, 1H), 6.90 (s, 1H), 5.77 (ddt, *J* = 17.1, 10.2, 6.8 Hz, 1H), 5.08 (dq, *J* = 17.1, 1.5 Hz, 1H), 5.05 (m, 1H), 4.10 (t, *J* = 7.2 Hz, 2H), 2.59 – 2.48 (m, 2H), 2.27 (d, *J* = 1.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ , 157.48 (d, *J* = 233.7 Hz), 134.65, 132.81, 128.95 (d, *J* = 9.5 Hz), 126.99, 117.34, 110.14 (d, *J* = 4.8 Hz), 109.73, 109.55 (d, *J* = 16.9 Hz), 103.84 (d, *J* = 22.9 Hz). 45.98, 34.67, 9.55; IR (NaCl/thin film) 3434, 2924, 1488, 1457, 1358, 1199, 906, 850, 785, 619 cm⁻¹; HRMS (MM) calc'd for C₁₃H₁₄FN [M+H]⁺ 204.1183, found 204.1189.

1-(but-3-en-1-yl)-5-methoxy-3-methylindole (9d)

Prepared from 5-methoxy-3-methylindole (450 mg, 2.8 mmol) according to General Procedure D to yield **9d** in 48% yield (290 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, *J* = 8.8 Hz, 1H), 7.00 (d, *J* = 2.2 Hz, 1H), 6.88 (dd, *J* = 2.5 Hz, 8.9 Hz, 1H), 6.85 (s, 1H), 5.78 (ddt, *J* = 17.1, 10.2, 6.8 Hz, 1H), 5.12 – 5.02 (m, 2H), 4.08 (t, *J* = 7.2 Hz, 2H), 3.88 (s, 3H), 2.58 – 2.50 (m, 2H), 2.29 (d, *J* = 1.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.57, 134.89, 131.54, 128.95, 126.03, 117.14, 111.56, 109.91, 109.64, 100.87, 55.99, 45.92, 34.77, 9.66; IR (NaCl/thin film) 3421, 2090, 1640, 1490, 1226, 783 cm⁻¹; HRMS (MM) calc'd for C₁₄H₁₇NO [M+H]⁺ 216.1383, found 216.1386.

1-(but-3-en-1-yl)-3-butylindole (9e)

Prepared from 3-butylindole (4.4 g, 25.4 mmol) according to General Procedure D to yield **9e** in 29% yield (1.68 g). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (dt, J = 7.9, 1.0 Hz, 1H), 7.33 (dt, J = 8.2, 1.0 Hz, 1H), 7.23 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.12 (ddd, J = 7.9, 6.9, 1.0 Hz, 1H), 6.89 (s, 1H), 5.82 (ddt, J = 17.1, 10.2, 6.8 Hz, 1H), 5.15 – 5.06 (m, 2H), 4.15 (t, J = 7.3 Hz, 1H), 2.82 – 2.73 (m, 2H), 2.59 (tdd, J = 8.2, 6.2, 1.3 Hz, 2H), 1.77 – 1.67 (m, 2H), 1.50 – 1.39 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 136.27, 134.92, 128.19, 124.84, 121.28, 119.22, 118.45, 117.19, 115.72, 109.22, 45.79, 34.70, 32.56, 24.82, 22.71, 14.06; IR (NaCl/thin film) 3431, 2954, 2927, 1641, 1467, 1373, 1181, 917, 736 cm⁻¹; HRMS (MM) calc'd for C₁₆H₂₁N [M*]⁺ 227.1669, found 227.1664.

1-(but-3-en-1-yl)-3-phenethylindole (9f)

Prepared from 3-phenethylindole (845 mg, 3.8 mmol) according to General Procedure D to yield **9f** in 43% yield (446 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (dt, *J* = 7.9, 1.0 Hz, 1H), 7.33 – 7.26 (m, 3H), 7.24 – 7.18 (m, 4H), 7.11 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 6.81 (s, 1H), 5.76 (ddt, *J* = 17.1, 10.2, 6.8 Hz, 1H), 5.12 – 5.02 (m, 2H), 4.12 (t, *J* = 7.2 Hz, 1H), 3.09 – 2.98 (m, 4H), 2.59 – 2.48 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 142.46, 136.22, 134.83, 128.51, 128.27, 127.95, 125.79, 125.10, 121.39, 119.04, 118.62, 117.21, 114.69, 109.30, 45.80, 36.69,

34.64, 27.27; IR (NaCl/thin film) 3430, 2102, 1641, 1467, 918, 737, 699 cm⁻¹; HRMS (MM) calc'd for $C_{20}H_{21}N$ [M+H]⁺ 276.1747, found 276.1747.

Aza-Prins Cascades

General Procedure E. Conjugate Addition/Asymmetric Protonation/Prins Cyclization Cascade

To a flame-dried flask was added indole (0.20 mmol, 1.00 equiv), acrylate (0.24 mmol, 1.20 equiv), and (*R*)-3,3'-dibromo-BINOL (0.04 mmol, 0.20 equiv), and 2,6-dibromophenol (0.20 mmol, 1.00 equiv). The flask was charged with DCM (1.5 mL), followed by addition of TMSCl (0.2 mmol, 1.00 equiv), ZrCl₄ (0.32 mmol, 1.60 equiv unless specifically indicated), then stirred at room temperature for 24 h. The reaction was quenched by diluting with 1 mL MeCN and 1 mL 1 M HCl, followed by addition of 5 mL H₂O. The aqueous layer was extracted with ethyl acetate (3 x 5 mL) and the combined organic layers were washed with either saturated NaHCO_{3(aq)} (10 mL). The aqueous layer was back extracted with EtOAc (10 mL) and the combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The crude residue was purified by flash chromatography.

Indoline Products from Conjugate Addition/Asymmetric Protonation/Prins Cyclization Cascade Indoline 8a

Prepared from 1-methyl-3-(but-3-en-1-yl)-indole (**7a**) (37 mg, 0.2 mmol) and methyl 2-trifluoroacetamidoacrylate (**2a**) (47 mg, 0.24 mmol) using General Procedure C to yield a mixture of **8a** and **8a'** in 84% yield (70 mg). The diastereomeric ratio was determined to be 7:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 87% by chiral SFC analysis (AD-H, 2.5 mL/min, 7% IPA in CO₂, $\lambda = 254$ nm): t_R (major) = 4.9 min; t_R (minor) = 6.0 min. The major diastereomer was separated by flash chromatography (10% ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃) δ 7.14 (td, J = 7.7, 1.3 Hz, 1H), 6.95 (dd, J = 7.3, 0.8 Hz, 1H), 6.82 (d, J = 7.8 Hz, 1H), 6.75 (td, J = 7.4, 0.9 Hz, 1H), 6.54 (d, J = 7.8 Hz, 1H), 4.55 (td, J = 7.6, 5.8 Hz, 1H), 4.28 – 4.21 (m, 1H), 3.50 (s, 3H), 3.45 (t, J = 5.1 Hz, 1H), 2.72 (s, 3H), 2.41 (dd, J = 14.9, 7.4 Hz, 1H), 2.24 (dd, J = 14.9, 5.7 Hz, 1H), 2.13 – 1.99 (m, 2H), 1.91 – 1.76 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.3, 156.5 (q, $J_{C-F} = 37.7$ Hz), 150.9, 133.0, 128.5, 121.7, 118.8, 115.5 (q, $J_{C-F} = 287.6$ Hz), 108.8, 68.7, 55.8, 52.6, 50.2, 44.5, 37.8, 32.9, 32.8, 32.0, 31.0; IR (NaCl/thin film) 3312, 2954, 2864, 1711, 1607, 1482, 1209, 1178 cm⁻¹; [α]_D²⁵ = +55.6 (c = 2.06, CH₂Cl₂). HRMS (MM) calc'd for C₁₉H₂₂ClF₃N₂O₃ [M+H]⁺ 419.1344, found 419.1358.

Indoline 8b

Prepared from 1-allyl-3-(but-3-en-1-yl)indole (**7b**) (42 mg, 0.2 mmol) and methyl 2-trifluoroacetamidoacrylate (**2a**) (47 mg, 0.24 mmol) using General Procedure C to yield a mixture of **8b** and **8b'** in 70% yield (62 mg). The diastereomeric ratio was determined to be 4:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 89% by chiral SFC analysis (OD-H, 2.5 mL/min, 7% IPA in CO₂, $\lambda = 254$ nm): $t_R(\text{minor}) = 5.0$ min: $t_R(\text{major}) = 8.0$ min. The major diastereomer was separated by recrystallization (10% ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃) δ 7.11 (td, *J* = 7.7, 1.3 Hz, 1H), 6.94 (dd, *J* = 7.3, 0.8 Hz, 1H), 6.73 (td, *J* = 7.4, 0.9 Hz, 1H), 6.60 (d, *J* = 7.7 Hz, 1H), 6.57 (d, *J* = 7.8 Hz, 1H), 5.87 (dddd, *J* = 17.2, 10.2, 7.0, 4.8 Hz, 1H), 5.31 (ddd, *J* = 17.2, 3.1, 1.6 Hz, 1H), 5.25 (ddd, *J* = 10.2, 2.8, 1.4 Hz, 1H), 4.62 (dd, *J* = 13.8, 7.5 Hz, 1H), 4.23 (qd, *J* = 7.6, 3.7 Hz, 1H), 3.91 (ddt, *J* = 15.9, 4.8, 1.6 Hz, 1H), 3.68 (t, *J* = 4.9 Hz, 1H), 3.64 – 3.56 (m, 1H), 3.47 (s, *J* = 2.1 Hz, 3H), 2.41 (dd, *J* = 14.8, 7.3 Hz, 1H), 2.27 (dd, *J* = 14.8, 6.0 Hz, 1H), 2.11 (dt, *J* = 13.5, 4.1 Hz, 1H), 2.03 – 1.94 (m, 1H), 1.93 – 1.73 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 156.4 (q, *J*_{CF} = 37.8 Hz), 149.6, 133.2, 133.0, 128.4, 121.8, 118.6, 117.9, 115.4 (q, *J*_{C-F} = 288.0 Hz), 109.0, 65.8, 55.7, 52.6, 50.1, 48.2, 44.4, 37.33, 32.9, 32.2, 31.0; IR (NaCl/thin film) 3310, 2951, 1711, 1606, 1553, 1479, 1462, 1441, 1209, 1174 cm⁻¹; [α]_D²⁵ = +78.1 (*c* = 1.39, CH₂Cl₂). HRMS (MM) calc'd for C₂₁H₂₃ClF₃N₂O₃ [M+H]⁺ 445.1500, found 445.1496.

Indoline 8c

Prepared from 1-benzyl-3-(but-3-en-1-yl)indole (**7c**) (52 mg, 0.2 mmol) and methyl 2-trifluoroacetmidoacrylate (**2a**) (47 mg, 0.24 mmol) using General Procedure C to yield a mixture of **8c** and **8c**' in 82% yield (81 mg). The diastereomeric ration was determined to be 5:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 86% by chiral SFC analysis (AD-H, 2.5 mL/min, 10% MeOH in CO₂, $\lambda = 254$ nm): $t_R(major) = 2.5$ min; $t_R(minor) = 4.6$ min. ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.28 (m, 5H), 7.07 (td, J = 7.7, 1.2 Hz, 1H), 6.96 (dd, J = 7.3, 0.9 Hz, 1H), 6.73 (td, J = 7.4, 0.8 Hz, 1H), 6.57 (d, J = 7.9 Hz, 1H), 6.50 (d, J = 7.8 Hz, 1H), 4.64 (dd, J = 13.6, 7.5 Hz, 1H), 4.42 (d, J = 15.6 Hz, 1H), 4.22 (tt, J = 7.4, 3.5 Hz, 1H), 4.16 (d, J = 15.5 Hz, 1H), 3.63 (t, J = 5.1 Hz, 1H), 3.45 (s, J = 2.5 Hz, 3H), 2.44 (dd, J = 15.5 Hz, 1H), 3.63 (t, J = 5.1 Hz, 1H), 3.45 (s, J = 2.5 Hz, 3H), 2.44 (dd, J = 1.5 Hz, 1H), 3.63 (t, J = 5.1 Hz, 1H), 3.45 (s, J = 2.5 Hz, 3H), 2.44 (dd, J = 1.5 Hz, 1H), 3.63 (t, J = 5.1 Hz, 1H), 3.45 (s, J = 2.5 Hz, 3H), 2.44 (dd, J = 1.5 Hz, 1H), 3.63 (t, J = 5.1 Hz, 1H), 3.45 (s, J = 2.5 Hz, 3H), 2.44 (dd, J = 1.5 Hz, 1H), 3.63 (t, J = 5.1 Hz, 1H), 3.45 (s, J = 2.5 Hz, 3H), 2.44 (dd, J = 1.5 Hz, 1H), 3.63 (t, J = 5.1 Hz, 1H), 3.45 (s, J = 2.5 Hz, 3H), 2.44 (dd, J = 1.5 Hz, 1H), 3.63 (t, J = 5.1 Hz, 1H), 3.45 (s, J = 2.5 Hz, 3H), 3.44 (dd, J = 1.5 Hz, 1H), 3.63 (t, J = 5.1 Hz, 1H), 3.45 (s, J = 2.5 Hz, 3H), 3.44 (dd, J = 1.5 Hz, 1H), 3.63 (t, J = 5.1 Hz, 1H), 3.45 (s, J = 2.5 Hz, 3H), 3.44 (dd, J = 1.5 Hz, 1H), 3.63 (t, J = 5.1 Hz, 1H), 3.45 (s, J = 2.5 Hz, 3H), 3.44 (dd, J = 1.5 Hz, 1H), 3.63 (t, J = 5.1 Hz, 1H), 3.45 (s, J = 2.5 Hz, 3H), 3.44 (dd, J = 1.5 Hz, 1H), 3.63 (t, J = 5.1 Hz, 1H), 3.65 (t, J = 5.1 Hz, 1H), 3.65 (t, J = 5.1 Hz, 1H), 3.65 (t, J = 5.1 Hz, 3H), 3.65 (t, J = 5.1 Hz, 3H), 3.65 (t, J = 5.1 Hz,

14.8, 7.3 Hz, 1H), 2.29 (dd, J = 14.8, 5.8 Hz, 1H), 2.15 – 2.07 (m, 1H), 2.04 – 1.78 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 156.5 (q, $J_{C-F} = 37.8$ Hz), 150.1, 137.9, 132.9, 128.7, 128.7, 127.5, 127.4, 121.9, 118.6, 115.4 (q, $J_{C-F} = 287.9$ Hz) 109.0, 66.6, 55.9, 52.7, 50.2, 50.0, 44.5, 37.2, 33.0, 31.6, 30.9; IR (NaCl/thin film) 3309, 2952, 1717, 1605, 1495, 1479, 1210, 1174, 753 cm⁻¹; $[\alpha]_D^{25} = +65.1$ (c = 1.70, CH₂Cl₂). HRMS (MM) calc'd for C₂₅H₂₆ClF₃N₂O₃ [M+H]⁺ 495.1657, found 495.1648.

Indoline 8d

Prepared from 1-benzyl-3-(but-3-en-1-yl)-4-methylindole (7d) (55 mg, 0.2 mmol) and methyl 2trifluoroacetamidoacrylate (2a) (47 mg, 0.24 mmol) using General Procedure C to yield a mixture of 8d and 8d' in 90% yield (91 mg). The diastereomeric ratio was determined to be 4:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 88% by chiral SFC analysis (OD-H, 2.5 mL/min, 10% EtOH in CO₂, $\lambda = 254$ nm): $t_R(\text{minor}) = 6.7$ min; $t_R(\text{major}) = 7.5$ min. The major diastereomer was separated by flash chromatography (5 \rightarrow 10% ethyl acetate/hexanes). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 6.96 (t, *J* = 7.7 Hz, 1H), 6.67 (d, *J* = 7.6 Hz, 1H), 6.48 (d, *J* = 7.6 Hz, 1H), 6.37 (d, *J* = 7.9 Hz, 1H), 4.64 (q, *J* = 7.0 Hz, 1H), 4.40 (d, *J* = 15.8 Hz, 1H), 4.21 – 4.12 (m, 2H), 3.60 (t, *J* = 4.3 Hz, 1H), 3.38 (s, 3H), 2.51 (dd, *J* = 15.0, 6.6 Hz, 1H), 2.40 (dd, *J* = 15.0, 7.0 Hz, 1H), 2.29 (s, 3H), 2.21 (dt, *J* = 14.6, 4.3 Hz, 1H), 2.03 – 1.88 (m, 4H), 1.88 – 1.75 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 156.5 (q, *J*_{C-F} = 37.8 Hz), 150.9, 138.0, 133.9, 129.7, 128.7 (×2), 128.3, 127.4 (×2), 127.3, 122.2, 115.4 (q, *J*_{C-F} = 287.9 Hz), 107.0, 65.8, 55.5, 52.6, 50.6, 50.4, 46.2, 36.6, 33.1, 31.3, 31.1, 19.1; IR (NaCl/thin film) 3311, 2953, 1711, 1589, 1452, 1212, 1177 cm⁻¹; [a]_D²⁵ = +79.4 (*c* = 0.81, CH₂Cl₂). HRMS (MM) calc'd for C₂₆H₂₈ClF₃N₂O₃ [M+H]⁺ 509.1813, found 509.1806.

Indoline 8e

Prepared from 1-benzyl-3-(but-3-en-1-yl)-5-methylindole (7e) (55 mg, 0.2 mmol) and methyl 2trifluoroacetamidoacrylate (2a) (47 mg, 0.24 mmol) using General Procedure C to yield a mixture of 8e and 8e' in quantitative yield (102 mg). The diastereomeric ratio was determined to be 6:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 92% by chiral SFC analysis (OJ-H, 2.5 mL/min, 8% EtOH in CO₂, $\lambda = 254$ nm); $t_R(\text{minor}) = 5.1$ min; $t_R(\text{major}) = 7.0$ min. The major diastereomer was separated by flash chromatography. ¹H NMR (500 MHz, CDCl₃) δ .39 – 7.27 (m, 5H), 6.87 (ddd, J = 7.9, 1.7, 0.7 Hz, 1H), 6.78 (d, J = 1.7 Hz, 1H), 6.50 (d, J = 7.7 Hz, 1H), 6.39 (d, J = 7.9 Hz, 1H), 4.62 (td, J = 7.6, 5.5 Hz, 1H), 4.37 (d, J = 15.4 Hz, 1H), 4.24 (dt, J = 11.3, 3.7 Hz, 1H), 4.10 (d, J = 15.4 Hz, 1H), 3.56 (t, J = 5.2 Hz, 1H), 3.49 (s, J = 2.3 Hz, 3H), 2.44 (dd, J = 14.8, 7.5 Hz, 1H), 2.30 – 2.21 (m, 4H), 2.09 – 1.78 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 156.4 (q, $J_{C-F} = 37.8$ Hz), 147.9, 138.0, 133.0, 128.7, 128.6 (×2), 128.0, 127.5 (×2), 127.3, 122.8, 116.6 (q, $J_{C-F} = 287.8$ Hz), 109.0, 66.9, 56.1, 52.6, 50.4, 50.1, 44.6, 37.3, 32.8, 31.1, 30.8, 20.7; IR (NaCl/thin film) 3314, 2951, 2868, 1715, 1552, 1490, 1440, 1210, 1177 cm⁻¹; [α]_D²⁵ = +55.3 (c = 0.85, CH₂Cl₂). HRMS (MM) calc'd for C₂₆H₂₈ClF₃N₂O₃ [M+H]⁺ 509.1813, found 509.1831.

Indoline 8f

Prepared from 1-benzyl-3-(but-3-en-1-yl)-6-methylindole (**7f**) (55 mg, 0.2 mmol) and methyl 2trifluoroacetamidoacrylate (**2a**) (47 mg, 0.24 mmol) using General Procedure C (but with 1.1 equiv ZrCl₄) to yield a mixture of **8f** and **8f'** in 74% yield (75 mg). The diastereomeric ratio was determined to be 3:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 93% by chiral SFC analysis (AD-H, 2.5 mL/min, 20% IPA in CO₂, $\lambda = 254$ nm): t_R (minor) = 1.9 min; t_R (major) = 2.6 min. The major diastereomer was separated by flash chromatography (5 \rightarrow 10% ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 6.84 (d, *J* = 7.4 Hz, 1H), 6.54 (d, *J* = 7.4 Hz, 1H), 6.49 (d, *J* = 7.7 Hz, 1H), 6.33 (s, 1H), 4.60 (td, *J* = 7.7, 5.4 Hz, 1H), 4.38 (d, *J* = 15.6 Hz, 1H), 4.21 (dq, *J* = 11.0, 3.7 Hz, 1H), 4.13 (d, *J* = 15.6 Hz, 1H), 3.58 (t, *J* = 5.3 Hz, 1H), 3.49 (s, *J* = 2.4 Hz, 3H), 2.39 (dd, *J* = 14.8, 7.6 Hz, 1H), 2.27 – 2.21 (m, 4H), 2.06 – 1.77 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 156.5 (q, *J*_{C-F} = 37.8 Hz), 150.3, 138.6, 138.0, 129.9, 128.7 (×2), 127.4 (×2), 127.3, 121.8, 119.2, 115.4 (q, *J*_{C-F} = 287.8 Hz), 109.8, 66.7, 56.0, 52.7, 50.1, 50.0, 44.37, 37.6, 33.0, 31.0, 30.8, 21.7; IR (NaCl/thin film) 3312, 2950, 1712, 1612, 1551, 1493, 1452, 1210, 1176 cm⁻¹; [a]_D²⁵ = +65.8 (*c* = 0.89, CH₂Cl₂). HRMS (MM) calc'd for C₂₆H₂₈ClF₃N₂O₃ [M+H]⁺ 509.1813, found 509.1823. **Indoline 8g**

Prepared from 1-benzyl-3-(but-3-en-1-yl)-7-methylindole (**7g**) (55 mg, 0.2 mmol) and methyl 2trifluoroacetamidoacrylate (**2a**) (47 mg, 0.24 mmol) using General Procedure C to yield a mixture of **8g** and **8g'** in 89% yield (90 mg). The diastereomeric ratio was determined to be 6:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 89% by chiral SFC analysis (AD-H, 2.5 mL/min, 20% IPA in CO₂, $\lambda = 254$ nm): $t_R(\text{minor}) = 1.8$ min; $t_R(\text{major}) = 2.5$ min. The major diastereomer was separated by flash chromatography (5 \rightarrow 10% ethyl acetate/hexanes). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 6.91 (d, *J* = 7.5 Hz, 1H), 6.82 (d, *J* = 7.3 Hz, 1H), 6.70 (t, *J* = 7.4 Hz, 1H), 6.46 (d, *J* = 7.8 Hz, 1H), 4.71 (d, *J* = 16.5 Hz, 1H), 4.62 – 4.49 (m, 2H), 4.19 (td, *J* = 7.9, 3.8 Hz, 1H), 3.51 (s, 3H), 3.45 (t, *J* = 4.9 Hz, 1H), 2.35 (s, 3H), 2.24 (d, *J* = 6.3 Hz, 2H), 2.04 (dt, *J* = 15.0, 4.4 Hz, 1H), 1.96 – 1.69 (m, 5H).; ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 156.4 (q, *J*_{C-F} = 37.7 Hz), 148.0, 139.3, 133.7, 132.3, 128.7 (×2), 127.3, 127.2 (×2), 120.4, 120.0, 119.3, 115.4 (q, *J*_{C-F} = 287.8 Hz), 66.4, 55.9, 52.7, 52.3, 50.0, 44.6, 37.9, 33.9, 32.0, 30.8, 19.6; IR (NaCl/thin film) 3314, 2952, 1715, 1558, 1452, 1208, 1176 cm⁻¹; [α]_D²⁵ = +57.2 (*c* = 0.94, CH₂Cl₂). HRMS (MM) cale'd for C₂₆H₂₈ClF₃N₂O₃ [M–H]⁻ 507.1668, found 507.1681.

Indoline 8h

Prepared from 1-benzyl-3-(but-3-en-1-yl)-5-methoxyindole (**7h**) (58 mg, 0.2 mmol) and methyl 2trifluoroacetamidoacrylate (**2a**) (47 mg, 0.24 mmol) using General Procedure C (but with 1.1 equiv ZrCl₄) to yield a mixture of **8h** and **8h'** in 93% yield (97 mg). The diastereomeric ratio was determined to be 6:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 91% by chiral SFC analysis (AD-H, 2.5 mL/min, 12% IPA in CO₂, $\lambda = 254$ nm): $t_R(\text{minor}) = 4.2$ min; $t_R(\text{major}) =$ 4.9 min. The major diastereomer was separated by flash chromatography (15→20% ethyl acetate/hexanes). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.27 (m, 5H), 6.63 – 6.57 (m, 2H), 6.53 (d, J = 7.7 Hz, 1H), 6.39 (d, J = 8.0 Hz, 1H), 4.60 (dd, J = 13.8, 6.8 Hz, 1H), 4.34 (d, J = 15.4 Hz, 1H), 4.23 (dd, J = 9.8, 6.4 Hz, 1H), 4.07 (d, J = 15.4Hz, 1H), 3.72 (s, 3H), 3.55 (t, J = 4.6 Hz, 1H), 3.47 (s, 3H), 2.44 (dd, J = 14.9, 7.0 Hz, 1H), 2.28 (dd, J = 14.9, 5.8 Hz, 1H), 2.16 – 2.09 (m, 1H), 1.99 – 1.72 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 156.4 (q, $J_{C-F} = 37.7$ Hz), 153.4, 144.2, 138.0, 134.7, 128.6 (×2), 127.5 (×2), 127.3, 115.4 (q, $J_{C-F} = 288.0$), 112.7, 109.8, 109.2, 67.0, 55.8, 52.7, 51.2, 50.1, 44.7, 36.9, 33.0, 32.3, 31.1, 29.7; IR (NaCl/thin film) 3315, 2925, 1716, 1555, 1490, 1215, 1176 cm⁻¹; $[\alpha]_D^{25} = +40.4$ (c = 0.96, CH₂Cl₂). HRMS (MM) calc'd for C₂₆H₂₈ClF₃N₂O₄ [M+H]⁺ 525.1762, found 525.1749.

Indoline 8i

Prepared from 1-benzyl-3-(but-3-en-1-yl)-5-bromoindole (**8i**) (68 mg, 0.2 mmol) and methyl 2trifluoroacetamidoacrylate (**2a**) (47 mg, 0.24 mmol) using General Procedure C to yield a mixture of **8i** and **8i'** in 70% yield (80 mg). The diastereomeric ratio was determined to be 5:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 85% by chiral SFC analysis (OD-H, 2.5 mL/min, 10% EtOH in CO₂, $\lambda = 254$ nm): $t_R(minor) = 7.7$ min; $t_R(major) = 9.5$ min. ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.28 (m, 5H), 7.15 (dd, J = 8.3, 2.0 Hz, 1H), 7.03 (d, J = 2.0 Hz, 1H), 6.68 (d, J = 8.1 Hz, 1H), 6.36 (d, J = 8.4 Hz, 1H), 4.62 (dd, J = 14.6, 6.6 Hz, 1H), 4.38 (d, J = 15.6 Hz, 1H), 4.22 – 4.09 (m, 2H), 3.66 (t, J = 4.8 Hz, 1H), 3.49 (s, 3H), 2.38 (dd, J = 14.9, 6.8 Hz, 1H), 2.28 (dd, J = 14.9, 6.2 Hz, 1H), 2.01 – 1.75 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 171.2, 156.5 (q, $J_{C-F} = 38.1$ Hz), 149.3, 137.3, 135.5, 131.0, 128.8 (×2), 127.5, 127.4 (×2), 125.0, 115.4 (q, $J_{C-F} = 287.9$ Hz), 110.4, 110.2, 66.6, 60.4, 55.3, 52.8, 50.2, 49.9, 44.7, 37.1, 33.0, 32.1, 30.9. IR (NaCl/thin film) 3308, 2951, 2864, 1713, 1475, 1210, 1175 cm⁻¹; [α]_D²⁵ = +41.4 (*c* = 0.90, CH₂Cl₂). HRMS (MM) calc'd for C₂₅H₂₅BrClF₃N₂O₃ [M+H]⁺ 573.0762, found 573.0745.

Indoline 10a

Prepared from 1-(but-3-en-1-yl)-3-methylindole (9a) (37 mg) and methyl 2-trifluoroacetamidoacrylate (2a) (47 mg, 0.24 mmol) using General Procedure C to yield a mixture of **10a** and **10a'** in 93% yield (70 mg). The diastereomeric ratio was determined to be 4:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 86% by chiral SFC analysis (OD-H, 2.5 mL/min, 8% EtOH in CO₂, $\lambda = 254$ nm): $t_R(\text{minor}) = 5.3$ min; $t_R(\text{major}) = 6.0$ min. The major diastereomer was separated by flash chromatography (12 \rightarrow 15% ethyl acetate/hexanes). ¹H NMR (500 MHz, CDCl₃) δ 7.12 (td, J = 7.7, 1.2 Hz, 1H), 6.99 (dd, J = 7.7, 1.3 Hz, 1H), 6.89 (d, J = 7.9 Hz, 1H), 6.74 (td, J = 7.4, 0.9 Hz, 1H), 6.50 (d, J

= 7.9 Hz, 1H), 4.58 (td, J = 7.8, 4.6 Hz, 1H), 3.98 (tt, J = 11.8, 4.0 Hz, 1H), 3.72 (ddd, J = 13.3, 4.7, 2.1 Hz, 1H), 3.59 (s, J = 3.5 Hz, 3H), 3.16 (dd, J = 11.8, 2.7 Hz, 1H), 2.82 (tt, J = 18.4, 9.2 Hz, 1H), 2.30 (dd, J = 14.9, 4.7 Hz, 1H), 2.21 – 2.07 (m, 3H), 1.89 – 1.77 (m, 1H), 1.72 (q, J = 11.9 Hz, 1H), 1.22 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.3, 156.6 (q, J_{C-F} = 37.7 Hz), 148.8, 134.4, 128.5, 122.7, 118.8, 115.5 (q, J_{C-F} = 287.7 Hz), 107.3, 70.1, 57.1, 52.7, 50.3, 45.7, 43.9, 40.4, 35.9, 34.6, 21.0; IR (NaCl/thin film) 3314, 2958, 1711, 1606, 1482, 1454, 1211, 1173 cm⁻¹; $[\alpha]_D^{25}$ = +42.0 (c = 4.3, CH₂Cl₂). HRMS (MM) calc'd for C₁₉H₂₂ClF₃N₂O₃ [M+H]⁺ 419.1344, found 419.1342.

Indoline 10b

Prepared from 1-(but-3-en-1-yl)-5-chloro-3-methylindole (**9b**) (44 mg) and methyl 2-trifluoroacetamidoacrylate (**2a**) (47 mg, 0.24 mmol) using General Procedure C to yield a mixture of **10b** and **10b'** in 56% yield (51 mg). The diastereomeric ratio was determined to be 4:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 87% by chiral SFC analysis (AD-H, 2.5 mL/min, 7% IPA in CO₂, $\lambda = 254$ nm): $t_R(major) = 10.3$ min; $t_R(minor) = 13.4$ min. ¹H NMR (500 MHz, CDCl₃) δ 7.11 (dd, J = 8.3, 2.1 Hz, 1H), 6.96 (d, J = 2.1 Hz, 1H), 6.71 (d, J = 8.2 Hz, 1H), 6.44 (d, J = 8.3 Hz, 1H), 4.64 (td, J = 7.6, 5.1 Hz, 1H), 4.00 (tt, J = 11.8, 4.0 Hz, 1H), 3.71 (ddd, J = 13.2, 4.7, 2.2 Hz, 1H), 3.65 (s, 3H), 3.24 (dd, J = 11.8, 2.7 Hz, 1H), 2.86 (td, J = 12.9, 2.9 Hz, 1H), 2.35 (dd, J = 14.9, 5.2 Hz, 1H), 2.21 (ddq, J = 12.4, 4.2, 2.2 Hz, 1H), 2.13 (ddq, J = 12.2 4.4, 2.1 Hz, 1H), 2.10 (dd, J = 15.0, 7.2 Hz, 1H), 1.87 (qd, J = 12.5, 4.7 Hz, 1H), 1.75 (q, J = 11.9 Hz, 1H), 1.24 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.11, 156.42 (q, $J_{C-F} = 37.9$ Hz), 147.47, 136.39, 128.22, 123.41, 123.11, 115.45 (q, $J_{C-F} = 287.8$ Hz), 108.09, 69.82, 56.71, 52.92, 50.03, 45.78, 43.96, 40.64, 35.80, 34.48, 21.12; IR (NaCl/thin film) 3403, 2360, 1714, 1646, 1481, 1212, 1171, 811, 726 cm⁻¹; [α]_D²⁵ = +22.9 (c = 0.14, CH₂Cl₂). HRMS (ESI) calc'd for C₁₉H₂₁Cl₂F₃N₂O₃ [M+Cl]⁻487.0575, found 487.0594.

Indoline 10c

Prepared from 1-(but-3-en-1-yl)-5-fluoro-3-methylindole (**9c**) (40 mg) and methyl 2-trifluoroacetamidoacrylate (**2a**) (47 mg, 0.24 mmol) using General Procedure C to yield a mixture of **10c** and **10c'** in 82% yield (71 mg). The diastereomeric ratio was determined to be 4:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 84% by chiral SFC analysis (AD-H, 2.5 mL/min, 7% IPA in CO₂, $\lambda = 254$ nm): $t_R(major) = 6.2$ min; $t_R(minor) = 7.5$ min. ¹H NMR (400 MHz, CDCl₃) δ 6.81 (td, J = 8.9, 2.6 Hz, 1H), 6.71 (dd, J = 8.2, 2.6 Hz, 2H), 6.38 (dd, J = 8.5, 4.1 Hz, 1H), 4.58 (td, J = 7.8, 4.9 Hz, 1H), 3.94 (tt, J = 11.8, 4.1 Hz, 1H), 3.65 (ddd, J = 4.7, 2.2, 13.2 Hz, 1H), 3.62 (s, 3H), 3.13 (dd, J = 11.8, 2.7 Hz, 1H), 2.78 (td, J = 12.9, 2.8 Hz, 1H), 2.31 (dd, J = 15.0, 5.0 Hz, 1H), 2.19 – 2.12 (m, 1H), 2.07 (dd, J = 14.3, 6.7 Hz, 1H), 2.04-2.10 (m, 1H), 1.84 (qd, J = 12.5, 4.7 Hz, 1H), 1.72 (q, J = 11.9 Hz, 1H), 1.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.17, 156.98 (d, $J_{C-F} = 237.1$ Hz), 156.45 (q, $J_{C-F} = 37.8$ Hz), 145.03, 136.24, 116.90 (q, $J_{C-F} = 288.86$ Hz), 114.36 (d, $J_{C-F} = 23.1$ Hz), 110.52 (d, $J_{C-F} = 24.4$ Hz), 107.61 (d, $J_{C-F} = 8.3$ Hz), 70.19, 56.87, 52.89, 50.10, 45.81, 44.39, 40.30, 35.74, 34.49, 21.16. IR (NaCl/thin film) 3412, 2095, 1708, 1643, 1486, 1212, 1171, 859, 808, 730 cm⁻¹; [α]_D²⁵ = +43.3 (c = 0.53, CH₂Cl₂). HRMS (MM) calc'd for C₁₉H₂₁ClF₄N₂O₃ [M*]⁺ 436.1171, found 436.1187.

Indoline 10d

Prepared from 1-(but-3-en-1-yl)-5-methoxy-3-methylindole (**9d**) (43 mg) and methyl 2-trifluoroacetamidoacrylate (**2a**) (47 mg, 0.24 mmol) using General Procedure C to yield a mixture of **10d** and **10d'** in 80% yield (72 mg). The diastereomeric ratio was determined to be 3:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 81% by chiral SFC analysis (OD-H, 2.5 mL/min, 4% IPA in CO₂, λ = 254 nm): *t*_R(minor) = 22.4 min; *t*_R(major) = 24.2 min. ¹H NMR (400 MHz, CDCl₃) δ 6.80 (d, *J* = 7.9 Hz, 1H), 6.67 (dd, *J* = 8.4, 2.6 Hz, 1H), 6.62 (d, *J* = 2.5 Hz, 1H), 6.41 (d, *J* = 8.4 Hz, 1H), 4.51 (td, *J* = 7.7, 4.7 Hz, 1H), 3.94 (tt, *J* = 11.9, 4.1 Hz, 1H), 3.74 (s, 3H), 3.65 (ddd, *J* = 13.3, 4.9, 2.5 Hz, 1H), 3.61 (s, 3H), 3.08 (dd, *J* = 11.7, 2.7 Hz, 1H), 2.77 (td, *J* = 12.9, 2.8 Hz, 1H), 2.29 (dd, *J* = 15.0, 4.8 Hz, 1H), 2.16 – 2.01 (m, 3H), 1.84 (qd, *J* = 12.5, 4.6 Hz, 1H), 1.71 (q, *J* = 11.9 Hz, 1H), 1.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ

171.22, 156.45 (q, $J_{C-F} = 37.7$ Hz), 153.61, 142.80, 135.94, 116.91 (q, $J_{C-F} = 287.8$ Hz), 112.82, 110.15, 107.93, 70.45, 57.19, 55.85, 52.80, 50.36, 45.89, 44.56, 40.35, 35.71, 34.36, 21.13. IR (NaCl/thin film) 3429, 2100, 1644, 1486, 1212, 1182, 730 cm⁻¹; $[\alpha]_D^{25} = 57.4$ (c = 0.54, CH₂Cl₂). HRMS (MM) calc'd for C₂₀H₂₄ClF₃N₂O₄ [M+H]⁺ 449.1449, found 449.1451.

Indoline 10e

Prepared from 1-(but-3-en-1-yl)-3-butylindole (**9e**) (45 mg) and methyl 2-trifluoroacetamidoacrylate (**2a**) (47 mg, 0.24 mmol) using General Procedure C to yield a mixture of **10e** and **10e'** in 87% yield (80 mg). The diastereomeric ratio was determined to be 5:1 by ¹H NMR analysis of the crude reaction mixture. The enantiomeric excess of the major diastereomer was determined to be 90% by chiral SFC analysis (AS-H, 2.5 mL/min, 10% IPA in CO₂, $\lambda = 254$ nm): $t_R(major) = 2.5$ min; $t_R(minor) = 3.5$ min. ¹H NMR (500 MHz, CDCl₃) δ 7.12 (td, J = 7.7, 1.2 Hz, 1H), 6.94 (dd, J = 7.2, 1.2 Hz, 1H), 6.73 (td, J = 7.4, 0.9 Hz, 1H), 6.58 (d, J = 8.0 Hz, 1H), 6.50 (d, J = 7.8 Hz, 1H), 4.53 (td, J = 7.8, 4.9 Hz, 1H), 3.95 (tt, J = 11.8, 4.1 Hz, 1H), 3.70 (ddd, J = 12.9, 4.7, 2.2 Hz, 1H), 3.54 (s, 3H), 3.15 (dd, J = 11.8, 2.6 Hz, 1H), 2.75 (td, J = 12.8, 2.8 Hz, 1H), 2.40 (dd, J = 15.0, 4.9 Hz, 1H), 2.17 (ddq, J = 12.9, 4.5, 2.2 Hz, 1H), 2.10 (dd, J = 15.1, 7.7 Hz, 1H), 1.87 (qd, J = 12.5, 4.7 Hz, 1H), 1.81 (q, J = 11.9 Hz, 2H), 1.76 (td, J = 13.0, 3.9 Hz, 1H), 1.44 – 1.37 (m, 1H), 1.37 – 1.20 (m, 3H), 1.18 – 1.09 (m, 1H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.33, 156.42 (q, $J_{C-F} = 37.8$ Hz), 149.15, 133.09, 128.48, 123.82, 118.73, 116.58 (q, $J_{C-F} = 288.54$ Hz), 107.71, 70.74, 57.13, 52.73, 50.15, 48.51, 44.42, 37.15, 35.31, 34.62, 33.17, 26.29, 23.24, 14.01; IR (NaCl/thin film) 3418, 2957, 1713, 1644, 1460, 1210, 1184, 911, 730 cm⁻¹; [α]p²⁵ = +7.85 (c = 0.20, CH₂Cl₂). HRMS (MM) calc'd for C₂₂H₂₈ClF₃N₂O₃ [M+OH]⁺477.1762, found 477.1765.

Indoline 10f

Prepared from 1-(but-3-en-1-yl)-3-phenethylindole (9a) (55 mg) and methyl 2-trifluoroacetamidoacrylate (2a) (47 mg, 0.24 mmol) using General Procedure C to yield a mixture of **10f** and **10f**' in 83% yield (84 mg). The diastereomeric ratio was determined to be 3:1 by ¹H NMR analysis of the crude reaction mixture. The

enantiomeric excess of the major diastereomer was determined to be 91% by chiral SFC analysis (OB-H, 2.5 mL/min, 8% IPA in CO₂, λ = 254 nm): $t_{\rm R}$ (minor) = 7.5 min; $t_{\rm R}$ (major) = 10.1 min. ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.24 (m, 2H), 7.20 – 7.13 (m, 2H), 7.11 – 7.08 (m, 2H), 7.01 (dd, J = 7.7, 0.9 Hz, 1H), 6.77 (td, J = 7.4, 1.0 Hz, 1H), 6.68 (d, J = 8.0 Hz, 1H), 6.54 (d, J = 7.8 Hz, 1H), 4.62 (td, J = 7.6, 5.4 Hz, 1H), 3.95 (tt, J = 11.7, 4.1 Hz, 1H), 3.72 (ddd, J = 12.7, 4.7, 2.2 Hz, 1H), 3.55 (s, 3H), 3.21 (dd, J = 11.8, 2.4 Hz, 1H), 2.74 (td, J = 12.6, 2.7 Hz, 1H), 2.67 (td, J = 13.1, 4.8 Hz, 1H), 2.57 (dd, J = 15.0, 5.4 Hz, 1H), 2.46 (td, J = 13.2, 4.4 Hz, 1H), 2.20 (m, 2H), 2.17 (dd, J = 14.9, 7.2 Hz, 1H), 2.06 (td, J = 13.4, 4.8 Hz, 1H), 1.90 (qd, J = 12.4, 4.6 Hz, 1H), 1.88 (q, 12.0 Hz, 2H), 1.70 (ddd, J = 13.8, 12.7, 4.4 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 171.37, 156.46 (q, $J_{\rm CF}$ = 37.8 Hz), 149.57, 141.64, 132.30, 128.64, 128.49, 128.20, 126.05, 123.70, 118.81, 115.44 (q, $J_{\rm CF}$ = 287.9 Hz), 107.79, 70.22, 56.99, 52.81, 50.09, 48.57, 44.57, 36.93, 36.32, 35.34, 34.90, 30.50; IR (NaCl/thin film) 3324, 2925, 2357, 1713, 1605, 1557, 1480, 1456, 1211, 1174, 747, 699 cm⁻¹; [α]_D²⁵ = +5.17 (c = 1.03, CH₂Cl₂). HRMS (MM) calc'd for C₂₅H₂₈ClF₃N₂O₃ [M+H]⁺ 509.1813, found 509.1821.

Catalyst Optimization

 Table 1. Reaction optimization: Lewis Acid and chiral diol screen.

Entry	Lewis Acid	Diol	Yield 8 (%) ^[b]	dr	ee 8a (%) ^[c]
1	SnCl₄	(<i>R</i>)-BINOL (L1)	19	10:1	88
2	TiCl₄	(R)-BINOL	27	6:1	0
3	SbCl ₅	(R)-BINOL	0		
4	ZrCl ₄	(R)-BINOL	30	9:1	40
5	Zr(O ^t Bu) ₄	(R)-BINOL	0		
6	ZrCl ₄	(<i>R</i>)-6,6'-dibromo- BINOL (L2)	38	9:1	30
7	ZrCl₄	(<i>R</i>)-3,3'-dibromo- BINOL (L3)	40	7:1	76
8	ZrCl ₄	(S)-VANOL (L4)	33	6:1	74
9	ZrCl ₄	(4 <i>R</i> , 5 <i>R</i>)-Ph- TADDOL (L5)	37	>10:1	66

[a] Reactions conducted with 0.20 mmol **7a** and 0.24 mmol **2a**. [b] Combined isolated yield of two diastereomers. [c] The ee of the major diastereomer was determined by SFC using a chiral stationary phase.

(R)-6,6'-dibromo-BINOL

(R)-3,3'-dibromo-BINOL

(S)-VANOL

SFC/HPLC traces of racemic and enantioenriched indolines

8a: racemic

8a: 87% ee

DAD1 D, Sig=254,8 Ref=360,100 (C:\CHEM32\1\DATA\BED3\2015-09-28 16-38-15\BED2-167-SINGLEDMER.D)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	11.082	MM	0.3059	289.07486	15.74899	6.9679
2	12.719	MM	0.3589	3859.57520	179.25320	93.0321

8d: racemic

8d (major diastereomer purified by column chromatography only): 88% ee

S30

8h: racemic

8i (major diastereomer purified by column chromatography only): 85% ee

10a: racemic

522.12537

50.1409

10e: 90% ee

10f: racemic

0.5397 2818.41040

62.31292

49.2882

10f: 91% ee

2

10.442 BB

2 10.108 MM 0.8299 6340.36426 127.33179 95.4837

Synthesis of deuterated amidoacrylate 7-d₁

Acrylate **2a** (1.97 g, 10 mmol, 1.0 equiv) was dissolved in 50 mL CH_2Cl_2 and cooled to -78 °C. Molecular bromine (0.51 mL, 10 mmol, 1.0 equiv) was added dropwise, and the reaction was stirred for 10 minutes before moving to an ice bath, where it was stirred for 40 minutes. DABCO (1.1 g, 10 mmol, 1.0 equiv) was added as a solution in 15 mL CH_2Cl_2 . The reaction was stirred for 1.5 h, then filtered through celite, and concentrated. The crude mixture was purified by flash chromatography (30% Et₂O/pentane) to provide bromoacrylate **S7** in 74% yield (2.03 g).

S7: ¹H NMR (300 MHz, acetone) δ 7.89 (s, 1H), 3.80 (s, 3H); ¹³C NMR (126 MHz, acetone) δ 161.13, 155.06 (q, J = 37.9 Hz), 130.41, 121.72, 115.86 (q, J = 287.2 Hz), 52.35; IR (NaCl/thin film) 3256, 1733, 1669, 1623, 1506, 1436, 1336, 1232, 1122 cm⁻¹; HRMS (MM) calc'd for C₆H₅BrF₃NO₃ [M+Li]⁺ 280.9551, found 280.0969.

Bromoacrylate **S7** (830 mg, 3 mmol) was dissolved in 6 mL ethyl acetate (not dried), and Pd/BaSO₄ (reduced, 29 mg) was added. The reaction was sparged with D₂, then sealed and stirred until the reaction no longer progressed by TLC (approximately four days). The reaction was filtered through celite, concentrated, and purified by flash chromatography (20% Et₂O/pentane) to provide deuterium labeled acrylate **2a**-*d*₁ in 30% yield (180.5 mg).

2a-*d*₁: ¹H NMR (500 MHz, CDCl₃) δ 8.53 (s, 1H), 6.13 (d, *J* = 1.4 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.5, 155.1 (q, *J*_{C-F} = 38.2 Hz), 129.4, 115.2 (q, *J*_{C-F} = 288.3 Hz), 112.1 (t, *J*_{C-D} = 26 Hz), 53.47; IR (NaCl/thin film) 3385, 1714, 1539, 1444, 1294, 974, 862, 763, 734 cm⁻¹; HRMS (MM) calc'd for C₆H₅DF₃N₂O₃ [M–H]⁻ 197.0290, found 197.0295.

Investigation of the reversibility of the conjugate addition.

To a flame-dried flask was added indole (0.20 mmol, 1.00 equiv), acrylate (0.24 mmol, 1.20 equiv), and (*R*)-3,3'-dibromo-BINOL (0.04 mmol, 0.20 equiv), and 2,6-dibromophenol (0.20 mmol, 1.00 equiv). The flask was charged with DCM (1.5 mL), followed by addition of TMSCI (0.20 mmol, 1.00 equiv), ZrCl₄ (0.32 mmol, 1.60 equiv), then stirred at room temperature for 30 min. The reaction was quenched by diluting with 1 mL MeCN and 1 mL 1 M HCl, followed by addition of 5 mL H₂O. The aqueous layer was extracted with ethyl acetate (3 x 5 mL) and the combined organic layers were washed with either saturated NaHCO_{3(aq)} (10 mL). The aqueous layer was back extracted with EtOAc (10 mL) and the combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The ratio of *Z*-2a-*d* and *E*-2a-d was found to be 1:1 by analysis of the ¹H NMR of the crude reaction mixture. The combined yield of product (both diastereomers) was determined to be 44% by ¹H NMR by integration of the product signals at 4.55 ppm and 4.63 ppm relative to that of 3,3'-dibromo-BINOL (as an internal standard).

JN-5-117

Date collected 2014-08-05	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser	
Sample Name JN-5-117	Pulse sequence PROTON	Temperature 25	Study owner jni	

Epimerization Studies

Diastereomerically pure **8c** (1.0 equiv) was dissolved in CD_2Cl_2 and DBU (3.0 equiv) was added. After 24 h, the reaction mixture was concentrated in vacuo. SFC analysis (OD-H, 2.5 mL/min, 3% MeOH in CO_2 , $\lambda = 254$ nm) showed that the previously diastereomerically pure **8c** was now a 1.8:1 mixture of (*S*,*S*)-**8c** and (*R*,*S*)-*ent*-**8c'**, where (*R*,*S*)-*ent*-**8c'** is the enantiomer of the minor diastereomer originally formed in the Prins reaction.

8c: racemic, mixture of major and minor diastereomers

eak? #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.968	MM	0.2401	402.03046	27.90723	7.7617
2	10.606	MM	0.2802	2157.87891	128.36487	41.6606
3	11.483	MM	0.3005	439.24347	24.35994	8.4802
4	12.333	MM	0.3424	2180.50879	106.14445	42.0975

8c: enantioenriched, mixture of major and minor diastereomers

8c: enantioenriched, major diastereomer, before epimerization

S46

8c and ent-8c': after epimerization

4 12.347 MM

Selected Unsuccessful Substrates

Scheme S1. Unsuccesful alternative substrates.

Several substrates with alternative tether structures were synthesized. When exposed to the conditions for the conjugate addition/Prins cyclization, many formed complex mixtures of products (Scheme S1). However, some substrates underwent competing reaction mechanisms. For example, the allylsilane moiety of indole **S13** facilitates cyclization such that it occurs at a faster rate than conjugate

addition, and the observed product results from protonation of the indole followed by cyclization. On the other hand, a small amount of the desired product was formed from allylsilane substrate **S15**, likely because cyclization to form the seven-membered ring is slower than the six-membered ring analogue (**S16** vs. **S14**). Friedel–Crafts substrate **S17** failed to undergo cyclization by the aryl ring, forming pyrroloindoline **S18** instead. Intermolecular allylsilane trapping to provide **S21** failed, as did an intramolecular Prins-pinacol rearrangement to afford **S23**.

References

- (1) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
- (2) Youn, S.W.; Pastine, S.J.; Sames, D. Org. Lett. 2004, 581.
- (3) Liu, C. and Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 10250.
- (4) *Ibid*.
- (5) Jørgensen, M. et. al. Angew. Chem. Int. Ed. 2008, 47, 888.
- (6) *Ibid*.
- (7) Quancard, J. and Trost, B. M. J. Am. Chem. Soc. 2006, 128, 6314.
- (8) Imm, S. et. al. Chem Eur. J. 2010, 16, 2705.
- (9) Siddiki, S. M. A. H.; Kon, K.; and Shimizu, K. Chem. Eur. J. 2013, 19, 14416.
- (10) Zhang, L. et. al. Tetrahedron Lett. 2015, 56, 1703.

JI	N-4-269B-char			
Agilent Technologies	Cample Name JN-4-269B-char	Pulse sequence PROTON	Temperature 25	Study owner bdaniels
	Date collected 2015-06-03	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser

_ --- -

Data file /indy/bdaniels/vnmrsys/data/JN-4-269B-char/CARBON01.fid

Data file /indy/bdaniels/vnmrsys/data/JN-5-013A-char/PROTON01.fid

Agilent Technologies	
Agilent Technologies	

JN-5-013A-char

Sample Name JN-5-013A-char	Pulse sequence CARBON	Temperature 25	Study owner bdaniels
Date collected 2015-06-03	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser

BED2-87char				
Sample Name BED2-87char	Pulse sequence PROTON	Temperature 25	Study owner bdaniels	
Date collected 2015-06-10	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser	

Agilent Technologie	es
---------------------	----

BED2-87char				
Sample Name BED2-87char	Pulse sequence CARBON	Temperature 25	Study owner bdaniels	
Date collected 2015-06-10	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser	

Data file /indy/bdaniels/vnmrsys/data/JN-4-299-char/PROTON01.fid

Agilent Technologie	S
---------------------	---

JN-4-299-char

Sample Name JN-4-299-char	Pulse sequence CARBON	Temperature 25	Study owner bdaniels
Date collected 2015-06-03	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser

Data file /indy/bdaniels/vnmrsys/data/JN-4-299-char/CARBON01.fid

Data file /indy/bdaniels/vnmrsys/data/JN-5-013B-char/PROTON01.fid

	JN-5-013B-char				
Agilent Technologies	Sample Name JN-5-013B-char Date collected 2015-06-03	Pulse sequence CARBON Solvent cdcl3	Temperature 25 Spectrometer -vnmrs400	Study owner bdaniels Operator autouser	

Data file /indy/bdaniels/vnmrsys/data/JN-5-013B-char/CARBON01.fid

S68

JN-4-295A-char

Sample Name JN-4-295A-char	Pulse sequence PROTON	Temperature 25	Study owner bdaniels	
Date collected 2015-06-03	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser	

Agilent Technologies
Agilent Technologies

JN-4-295A-char				
Sample Name JN-4-295A-char	Pulse sequence CARBON	Temperature 25	Study owner bdaniels	
Date collected 2015-06-03	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser	

×	Agilent Technologies
---	----------------------

BED2-88char			
Sample Name BED2-88char	Pulse sequence PROTON	Temperature 25	Study owner bdaniels
Date collected 2015-06-10	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser

Agilent Technologie	S
---------------------	---

BED2-88char				
Sample Name BED2-88ch	ar Pulse sequence CARBON	Temperature 25	Study owner bdaniels	
Date collected 2015-06-10	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser	

Data file /data/indy/bdaniels/vnmrsys/data/BED2-88char/CARBON01.fid

Data file /indy/bdaniels/vnmrsys/data/JN-4-295B-char/PROTON01.fid

	JN-4-295B-char				
Agilent Technologies	Sample Name JN-4-295B-char	Pulse sequence CARBON	Temperature 25	Study owner bdaniels	
	Date collected 2015-06-03	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser	

Data file /indy/bdaniels/vnmrsys/data/JN-4-295B-char/CARBON01.fid

Data file /data/indy/jni/vnmrsys/data/JN-5-061a-col2/PROTON01.fid

Data file /data/indy/jni/vnmrsys/data/JN-5-061a-col2/CARBON01.fid

Agilent Technologies	
----------------------	--

JN-4-239b-rxst-Mar6

Sample Name JN-4-239b-rxst-Mar6	Pulse sequence PROTON	Temperature 25	Study owner jni
Date collected 2014-03-06	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser

Data file /data/indy/jni/vnmrsys/data/JN-4-239b-rxst-Mar6-carbon/CARBON01.fid

	JN-4-275b-col2				
Agilent Technologies	Sample Name JN-4-275b-col2	Pulse sequence PROTON	Temperature 25	Study owner jni	
	Date collected 2014-09-21	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser	

- -

	JN-4-275b-col2				
Agilent Technologies	Sample Name JN-4-275b-col2 Date collected 2014-09-21	Pulse sequence CARBON Solvent cdcl3	Temperature 25 Spectrometer -vnmrs400	Study owner jni Operator autouser	

Data file /data/indy/jni/vnmrsys/data/JN-4-275b-col2/CARBON01.fid

Agilent	Fechnologies
---------	---------------------

JN-5-055a-col2				
Sample Name JN-5-055a-col2	Pulse sequence PROTON	Temperature 50	Study owner jni	
Date collected 2014-01-22	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser	

Data file /data/siena/jni/vnmrsys/data/JN-5-055a-col2/PROTON01.fid

	JN-5-055a-col2				
Agilent Technologies Sample Name JN-5-055a-col2 Pulse sequence CARBON	Temperature 50	Study owner jni			
Date collected 2014-01-22 Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser			

Data file /data/siena/jni/vnmrsys/data/JN-5-055a-col2/CARBON01.fid

	JN-5-053b-col2		
Agilent Technologies	Sample Name JN-5-053b-col2	Pulse sequence PROTON	Temperature
	Date collected 2014-01-24	Solvent cdcl3	Spectrometer

Study owner **jni** Operator **autouser**

25 -vnmrs400

	JN-5-053b-col2			
Agilent Technologies	Sample Name JN-5-053b-col2	Pulse sequence CARBON	Temperature 25	Study owner jni
	Date collected 2014-01-24	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser

Data file /data/indy/jni/vnmrsys/data/JN-5-049a-col2/CARBON01.fid

	Agilent Technologies
--	----------------------

JN-5-055b-col2				
Sample Name JN-5-055b-col2	Pulse sequence PROTON	Temperature 50	Study owner jni	
Date collected 2014-01-22	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser	

	JN-5-055b-col2			
Agilent Technologies	Sample Name JN-5-055b-col2	Pulse sequence CARBON	Temperature 50	Study owner jni
	Date collected 2014-01-22	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser

Data file /data/siena/jni/vnmrsys/data/JN-5-055b-col2/CARBON01.fid

	JN-5-049b-col2	JN-5-049b-col2			
Agilent Technologies	Sample Name JN-5-049b-col2 Date collected 2014-01-15	Pulse sequence PROTON Solvent cdcl3	Temperature 65 Spectrometer -vnmrs400	Study owner jni Operator autouser	

Data file /data/siena/jni/vnmrsys/data/JN-5-049b-col2/PROTON01.fid

_

Data file /data/siena/jni/vnmrsys/data/JN-5-049b-col2/CARBON01.fid

Agilent Technologie	S
---------------------	---

JN-5-053a-col2				
Sample Name JN-5-053a-col2	Pulse sequence PROTON	Temperature 25	Study owner jni	
Date collected 2014-01-30	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser	

	JN-5-053a-col2				
Agilent Technologies	Sample NameJN-5-053a-col2Date collected2014-01-30	Pulse sequence CARBON Solvent cdcl3	Temperature 25 Spectrometer -vnmrs400	Study owner jni Operator autouser	

Data file /data/indy/jni/vnmrsys/data/JN-5-053a-col2/CARBON01.fid

Data file /data/indy/jni/vnmrsys/data/JN-5-061b-col2/PROTON01.fid

JN-5-061b-col2

Data file /data/indy/jni/vnmrsys/data/JN-5-061b-col2/CARBON01.fid

ppm

Data file /indy/bdaniels/vnmrsys/data/BED2-70char/PROTON01.fid

Data file /indy/bdaniels/vnmrsys/data/BED2-70char/CARBON01.fid

S114

-

BED1-272majordiastereomer10-2-2014

Sample Name BED1-272majordiastereomeF1.0s2-2014ence PROTON Study owner bdaniels Temperature 25 Date collected 2014-10-02 Solvent cdcl3 Spectrometer -vnmrs400 Operator autouser MeO₂C ۰H NHTFA 10e Т 10 5 2 9 8 7 6 3 1 4 ppmүүүү ¥ үүү ү Υ Υ Y ¥ Ŷ ų 1.171.19 1.01 1.01.04 1.01 2.96 1.02 3.36 1.00 0.96 1.00 1.06 1.02 1.02 3.32 3.29 3.67

-- ---

_

Data file /indy/bdaniels/vnmrsys/data/BED1-272longercarbon/CARBON01.fid

Data file /indy/bdaniels/vnmrsys/data/BED2-77charcheckpostfailedcarbon/PROTON01.fid

_ ___ _

- --

	BED2-77char				
Agilent Technologies	Sample Name BED2-77char	Pulse sequence CARBON	Temperature 25	Study owner bdaniels	
	Date collected 2015-05-12	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser	

Data file /indy/bdaniels/vnmrsys/data/BED2-77char/CARBON01.fid

nologies

JN-5-085-col						
Sample Name JN-5-085-col	Pulse sequence PROTON	Temperature 25	Study owner jni			
Date collected 2014-04-14	Solvent acetone	Spectrometer -vnmrs400	Operator autouser			

Data file /data/indy/jni/vnmrsys/data/JN-5-085-col2/CARBON01.fid

JN-5-117						
Sample Name JN-5-117	Pulse sequence PROTON	Temperature 25	Study owner jni			
Date collected 2014-08-05	Solvent cdcl3	Spectrometer -vnmrs400	Operator autouser			

Data file /data/indy/jni/vnmrsys/data/JN-5-117/PROTON01.fid

Data file /data/indy/jni/vnmrsys/data/JN-5-117/CARBON01.fid