

Supplementary Figure 1. Low-energy collision-induced dissociation spectra for (A) the phosphopeptide immunoprecipitated from yeast, (B) the synthetic phosphopeptide and (C) the synthetic unphosphorylated peptide. and their predicted fragment ions. # denotes phosphophorylation, * in sequence denotes residue containing ¹³C and ¹⁵N. Red and blue stars indicate select fragment ions specifically labeled in spectra.

(+1)

(+1)

(+1)

Supplementary Figure 2. Low-energy collision-induced dissociation spectra for (A) the phosphopeptide immunoprecipitated from yeast, (B) the synthetic phosphopeptide and (C) the synthetic unphosphorylated peptide. and their predicted fragment ions. # denotes phosphophorylation, * in sequence denotes residue containing ¹³C and ¹⁵N. Red and blue stars indicate select fragment ions specifically labeled in spectra.

(+1) y 1352.58 11 1239.50 10 1124.47 9 1010.43 8 7 953.41 896.39 6 733.32 5 490.29 4 377.21 3 276.16 2 175.11 1

Fragment lons z=1

672.7	Seq	#	d	У		# (+1)		
Building the second se	L* D G G* Y# I T R	1 2 3 4 5 6 7 8 9 10 11	121.10 236.13 350.17 407.20 467.22 630.28 873.31 986.40 1087.45 1188.49 1344.59 [M+2H⁺]	1362.60 1242.50 1127.48 1013.43 956.41 896.39 733.32 490.29 377.21 276.16 175.11 2+= 681.808	* * * *** *	11 10 9 8 7 6 5 4 3 2 1		
L*DNGGYYITTR (Y214) (Synthetic)	Fragment lons z=1							
MH-2114 11 0124 C24 2	Sea	#	b	v		# (+1)		
Provide a state of the state of	L* D G G Y Y I T R	1 2 3 4 5 6 7 8 9 10 11	121.10 236.13 350.17 407.20 464.22 627.28 790.34 903.43 1004.48 1105.52 1261.62 [M+2H+] ²	1279.63 1159.53 1044.51 930.46 873.44 816.42 653.36 490.29 377.21 276.16 175.11 *= 640.323	* * * * * * * *	11 10 9 8 7 6 5 4 3 2 1		

Supplementary Figure 3. Low-energy collision-induced dissociation spectra for (A) the phosphopeptides co-eluting immunoprecipitated from **(B)** the veast. synthetic phosphopeptide and (C) the synthetic unphosphorylated peptide. and their predicted fragment ions. # denotes phosphophorylation, * in sequence denotes residue containing ${}^{13}C$ and ¹⁵N. Red and blue stars indicate select fragment ions specifically labeled in spectra.

Supplementary Figure 4. Low-energy collision-induced dissociation spectra for (A) the phosphopeptide immunoprecipitated from yeast, (B) the synthetic phosphopeptide and (C) the synthetic unphosphorylated peptide. and their predicted fragment ions. # denotes phosphophorylation, * in sequence denotes residue containing ¹³C and ¹⁵N. Red and blue stars indicate select fragment ions specifically labeled in spectra.

Supplementary Figure 5. Low-energy collision-induced dissociation spectra for (A) the phosphopeptide immunoprecipitated from yeast, (B) the synthetic phosphopeptide and (C) the synthetic unphosphorylated peptide. and their predicted fragment ions. # denotes phosphophorylation, * in sequence denotes residue containing ¹³C and ¹⁵N. Red and blue stars indicate select fragment ions specifically labeled in spectra.

Weir et al. Supplementary Figure 6

F	١

Β

Yes	GIFLV <mark>R</mark> ESETTKGA <mark>Y</mark> SLSIRDWDEIRGDNVKHYKIRKLDNGG <mark>YY</mark> ITTRAQF
Src	GTFLV <mark>R</mark> ESETTKGA <mark>Y</mark> CLSVSDFDNAKGLNVKHYKIRKLDSGG <mark>FY</mark> ITSRTQF
Fyn	GTFLIRESETTKGAYSLSIRDWDDMKGDHVKHYKIRKLDNGG <mark>YY</mark> ITTRAOF
Fgr	GAFLIRESETTKGAYSLSIRDWDQTRGDHVKHYKIRKLDMGGYYITTRVQF
Lyn	GAFLI <mark>R</mark> ESETLKGS <mark>F</mark> SLSVRDFDPVHGDVIKHYKIRSLDNGG <mark>YY</mark> ISPRITF
Hck	GSFMI <mark>R</mark> DSETTKGS <mark>Y</mark> SLSVRDYDPRQGDTVKHYKIRTLDNGG <mark>FY</mark> ISPRSTF
Lck	GSFLI <mark>R</mark> ESESTAGS <mark>F</mark> SLSVRDFDQNQGEVVKHYKIRNLDNGG <mark>FY</mark> ISPRITF
Blk	GSFLI <mark>R</mark> ESETNKGA <mark>F</mark> SLSVKDVT-TQGELIKHYKIRCLDEGG <mark>YY</mark> ISPRITF
Frk	GSFLI <mark>R</mark> ESESQKGE <mark>F</mark> SLSVLDGAVVKHYRIKRLDEGG <mark>FF</mark> LTRRRIF
Srm	GAFLI <mark>R</mark> PSESSLGG <mark>Y</mark> SLSVRAQAKVCHYRVSMAADGS <mark>LY</mark> LQKGRLF
Brk	GAFLI <mark>R</mark> VSEKPSAD <mark>Y</mark> VLSVRDTQAVRHYKIWRRAGGR <mark>LH</mark> LNEAVSF
Hs_Fyn	GTFLI <mark>R</mark> ESETTKGA <mark>Y</mark> SLSIRDWDDM-KGDHVKHYKIRKLDN-GG <mark>YY</mark> ITTRAQF
Mm_Fyn	GTFLI <mark>R</mark> ESETTKGA <mark>Y</mark> SLSIRDWDDM-KGDHVKHYKIRKLDN-GG <mark>YY</mark> ITTRAQF
Rn_Fyn	GTFLI <mark>R</mark> ESETTKGA <mark>Y</mark> SLSIRDWDDM-KGDHVKHYKIRKLDN-GG <mark>YY</mark> ITTRAQF
Gg_Fyn	GTFLI <mark>R</mark> ESETTKGA <mark>Y</mark> SLSIRDWDDM-KGDHVKHYKIRKLDN-GG <mark>YY</mark> ITTRAQF
Xt_Fyn	GTYLI <mark>R</mark> ESETTKGA <mark>Y</mark> SLSIRDWDDM-KGDHVKHYKIRKLDN-GG <mark>YY</mark> ITTRAQF
Dr_Fyn	GTFLI <mark>R</mark> ESETTKGA <mark>Y</mark> SLSIQDWDET-KGDHVKHYKIRKLDN-GG <mark>YY</mark> ITTRAQF
Ce_Src1	GTFLI <mark>R</mark> EREADTRE <mark>F</mark> ALTIRDTDDQRNGGTVKHYKIKRLDHDQG <mark>YF</mark> ITTRRTF
Dm_Src64B	GTFLV <mark>R</mark> PSEHNPNG <mark>Y</mark> SLSVKDWEDGR-GYHVKHYRIKPLDN-GG <mark>YY</mark> IATNQTF
Ce_Src2	GAFLV <mark>R</mark> DSESRQHD <mark>L</mark> SLSVRENDSVKHYRIRQLDH-GG <mark>Y</mark> FIARRRPF
Dm_SRC42	GAFLI <mark>R</mark> DSESRHND <mark>Y</mark> SLSVRDGDTVKHYRIRQLDE-GG <mark>FF</mark> IARRTTF
Sl_Srk1	GSFLI <mark>R</mark> DSETTPGD <mark>F</mark> SLSVKDQDRVRHYRVRRLED-GS <mark>LF</mark> VTRRSTF
Sl_Srk4	GSFLI <mark>R</mark> DSDTTPGD <mark>F</mark> SLSVRDIDRVRHYRIKKLEN-GT <mark>YF</mark> VTRRLTF

Supplementary Figure 6. Multiple sequence alignment of the region of the SH2 domain harboring the equivalents of Tyr185, Tyr213 and Tyr14 of human Fyn for (A) all human SFKs and (B) vertebrate Fyn orthologues (upper) and the SFKs found in worm (Ce), fly (Dm) and sponge (Sl). Hs=human, Mm=mouse, Rn=rat, Gg=chicken, Xt=frog and Dr=zebrafish. Blue highlight indicates the phosphotyrosine-interacting arginine. Red highlight indicates tyrosine residues and yellow highlight indicates non-tyrosine residues.

Weir et al. Supplementary Figure 7

Α

Β

Sl Srk4

Yes	DFGLA	RLIE-	DNE <mark>)</mark>	TARQC	JAKFP]	[KWT <mark>Z</mark>	APEA	AL <mark>Y</mark> (GRFTI	ΓK
Src	DFGLA	RLIE-	DNE <mark>3</mark>	TARQO	JAKFP]	[KWT <mark>7</mark>	APE A	AL <mark>Y</mark> (GRFTI	ΓK
Fyn	DFGLA	RLIE-	DNE <mark>3</mark>	TARQO	GAKFPI	[KWT <mark>7</mark>	APEA	AL <mark>Y</mark> (GRFTI	ΓK
Fgr	DFGLA	RLIK-	DDE <mark>3</mark>	NPCQ0	GSKFPI	[KWT <mark>7</mark>	APEA	AL <mark>F</mark> (GRFTI	ΓK
				_						
Lyn	DFGLA	RVIE-	DNE <mark>y</mark>	TARE(JAKFP]	[KWT <mark>Z</mark>	APEA	IN <mark>F</mark> (GCFTI	ΓK
Hck	DFGLA	RVIE-	DNE <mark>}</mark>	TARE(JAKFP]	[KWT <mark>Z</mark>	APEA	.IN <mark>F</mark> (GSFT]	ΓK
Lck	DFGLA	RLIE-	DNE <mark>y</mark>	TARE(JAKFP]	[KWT <mark>Z</mark>	APEA	IN <mark>Y</mark> (GTFT]	ΓK
Blk	DFGLA	RIID-	S-E <mark>)</mark>	TAQE(JAKFP]	[KWT <mark>Z</mark>	APEA	.IH <mark>F</mark> (GVFTI	ΓK
Frk	DFGLA	RVFKV	DNEDI <mark>N</mark>	ESRHI	EIKLP\	/KWT <mark>Z</mark>	APEA	IR <mark>S</mark> I	NKFSI	ΓK
Srm	DFGLA	RLLK-	DDI <mark>Z</mark>	<mark>(</mark> SPSSS	SSKIP	/KWT <mark>2</mark>	APEA	AN <mark>Y</mark> I	RVFSÇ	ŊΚ
Brk	DFGLA	RLIK-	EDV <mark>y</mark>	<mark>7</mark> -LSHI	OHNIPY	(KWT <mark>2</mark>	APEA	LS <mark>R</mark> (GHYSI	ΓK
Hs_Fyn	DF	GLARL [.]	-IEDNE	<mark>Y</mark> TARQ	GAKFP	IKWT	APE	AAL <mark>Y</mark>	GRFT	ΊK
Mm_Fyn	DF	GLARL [.]	-IEDNE	<mark>Y</mark> TARQ	GAKFP	IKWT	APE	AAL <mark>Y</mark>	GRFT	ΊK
Rn_Fyn	DF	GLARL [.]	-IEDNE	<mark>Y</mark> TARQ	GAKFP	IKWT	APE	AAL <mark>Y</mark>	GRFT	ΊK
Gg_Fyn	DF	GLARL [.]	-IEDNE	<mark>Y</mark> TARQ	GAKFP	IKWT	APE	AAL <mark>Y</mark>	GRFT	ΊK
Xt_Fyn	DF	GLARL [.]	-IEDNE	<mark>Y</mark> TARQ	GMKFP	IKWT	APE	AAL <mark>Y</mark>	GRFT	ΊK
Dr_Fyn	DF	GLARL [.]	-IEDNE	<mark>Y</mark> TARQ	GAKFP	IKWT	APE	AAL <mark>Y</mark>	GRFT	ΊK
				_					-	
Ce_Src1	DF	<mark>G</mark> LARKI	LMEEDI	<mark>Y</mark> EART	GAKFP	IKWT	APE	AAT <mark>C</mark>	GNFT	'VK
Dm_Src64	4B DF	GLARV [.]	-IADDE	<mark>Y</mark> CPKQ	GSRFP	VKWT	APE	AII <mark>Y</mark>	GKFS	IK
Ce_Src2	DF	GLARI	LMKENE	Y <mark>EART</mark>	GARFP	IKWT	APE	AAN <mark>Y</mark>	NRFT	тк

Dm SRC42 DFGLARV-IKEDE<mark>Y</mark>EARVGARFPIKWT<mark>APE</mark>AAN<mark>Y</mark>SKFSIK <mark>DFG</mark>LARV-IDEEI<mark>Y</mark>EAHTGAKFPIKWT<mark>APE</mark>AAM<mark>Y</mark>NRFTIK Sl Srk1 <mark>DFG</mark>LARV-IDEEI<mark>Y</mark>EAKLGAKFPIKWT<mark>APE</mark>AAM<mark>Y</mark>SRFTIK

Supplementary Figure 7. Multiple sequence alignment of the activation loop region of the kinase domain harboring the equivalent of Tyr420 (green highlight) of human Fyn for (A) all human SFKs and (B) vertebrate Fyn orthologues (upper) and the SFKs found in worm (Ce), fly (Dm) and sponge (Sl). Hs=human, Mm=mouse, Rn=rat, Gg=chicken, Xt=frog and Dr=zebrafish. Blue highlight indicates the conserved activation loop features. Red highlight indicates tyrosine residues and yellow highlight indicates nontyrosine residues.