Human somatic cells subjected to genetic induction with six germ linerelated factors display meiotic germ cell-like features

Jose V. Medrano^{1,2,+}, Ana M. Martínez-Arroyo^{1,+}, Jose M. Míguez¹, Inmaculada Moreno³, Sebastián Martínez¹, Alicia Quiñonero¹, Patricia Díaz-Gimeno¹, Ana I. Marqués-Marí⁴, Antonio Pellicer², Jose Remohí¹ & Carlos Simón^{1,3,5*}

¹Fundación Instituto Valenciano de Infertilidad (FIVI), INCLIVA; Department of Pediatrics, Obstetrics and Gynecology, Valencia University; Valencia, 46015; Spain ²Fundación Instituto de Investigación Sanitaria La Fe; Valencia, 46015; Spain

³Igenomix S.L.; Paterna, 46980; Spain

⁴Valencia Node of the Spanish Stem Cell Bank, Prince Felipe Research Centre (CIPF) Valencia, 46012; Spain

⁵Department of Obstetrics and Gynecology, Stanford University; Stanford, CA 94305; USA

⁺These authors contributed equally to this work.

*Correspondence and reprint requests should be addressed to: Prof. Carlos Simon at Fundación Instituto Valenciano de Infertilidad (FIVI), PARC CIENTIFIC UNIVERSITAT DE VALENCIA, Catedrático Agustín Escardino 9, 46980 Paterna (Valencia), Spain; Phone: +34 963903305; Fax: +34 963902522; E-mail: carlos.simon@ivi.es

1. Inventory of Supplementary Information

Supplementary Figure S1. Analysis of the expression of induced factors over hFSK cells.

Supplementary Figure S2. Screening among i12F factors over hFSK cells.

Supplementary Figure S3. Supplementary information regarding culture set up, transcriptomic characterization of induced hFSK cells.

Supplementary Figure S4. Supplementary data regarding meiotic progression analysis in hFSK induced cells.

Supplementary Figure S5. Supplementary data regarding culture phenotype, meiotic progression analysis and transcriptomics in hMSC induced cells.

Supplementary Figure S6: Supplemental data relative to xenotransplant experiments.

Supplementary Figure S7. Male and female gonadal specific marker analysis and antibody staining controls.

Supplementary Table S1. List of the top represented terms of the functional enrichment analysis over the i12F and i6F cultures compared to MOCK. Supplementary Table S2. Summary of FISH-based ploidy counts in hFSK cells. Supplementary Table S3. Summary of FISH-based ploidy counts in hMSC cells. Supplementary Table S4. Primer sequences used to gene expression analysis by RT-qPCR.

Supplementary Table S5. List of the antibodies employed.

2. Supplementary Figures and Legends.

Supplementary Figure S1. Analysis of the expression of induced factors over hFSK cells. (A) Time course analysis of the mRNA expression of the transduced factors at 7, 14 and 21 days post-transduction in MOCK, i12F and i6F conditions (n=3). (B) RTqPCR expression analysis of the twelve overexpressed factors at day 14 post-transduction over i12F, i12 clumps, i6F and i6F clumps (n=3). Human testis cDNA physiological expression fold change relative to MOCK samples is also shown as a control. Data is presented as normalized fold change mean +/- SEM. (*) represent significant differences (p<0.05) with MOCK controls; (+) represents significant differences (p<0.05) between i12F/i6F conditions and their respective induced germ cell-like cell clumps. (C) Overview of the cloning methodology employed for the construction of lentiviral vectors. The table shows information regarding GeneBank

accession numbers, primers employed for the isolation of the cloned CCDSs and length of the amplicons. The map of the pLenti7.3/V5-DEST backbone with the site of insertion of cloned CCDSs is also shown.

Supplementary Figure S2. Screening among i12F factors over hFSK cells. (A) Illustrative bright field and GFP fluorescence pictures at days 3 and 14 posttransduction of human fibroblasts subjected to the overexpression of each germ linerelated factor alone and subjected to MOCK, i12F and i6F transduction. Scale bar represents a distance of 50µm. **(B)** Illustrative bright field and GFP fluorescence pictures of hFSK cells subjected to the overexpression of the most interesting combinations of factors among i12F that generated the formation of clumps. Red rectangles highlight the most efficient factors/combinations to induce the formation of clumps.

Supplementary Figure S3. Supplementary information regarding culture set up, transcriptomic characterization of induced hFSK cells. (A) Illustrative pictures at 7, 14 and 21 days post-transduction of the formation of induced germ cell-like cell clumps (indicated by red arrows) showing the morphology of primary cultures after transduction with the germ cell factors in standard and germ cell medium (GC-M). Higher magnifications correspond to hFSK cells at early (7 days) and late (21 days) time points post-transduction, respectively. (B) Expression analysis of the epithelial marker CDH1 and the early germ cell markers FRAGILIS and STELLA 14 days posttransduction with i12F/i6F transduced hFSK cells (n=3). (C) RT-qPCR expression analysis of the germ line markers *GFRA1*, *PIWIL2*, *TNP2*, *PRM1*, and *ACR* over i12F induced hFSKs at 7, 14 and 21 days post-transduction (n=8). (D) Unsupervised hierarchical clustering and heat map of differentially expressed genes in induced hFSKs.

Data is presented as normalized fold change mean +/- SEM. (*) represent significant differences (p<0.05) with MOCK controls; (+) represents significant differences (p<0.05) between i12F/i6F conditions and their respective induced germ cell-like cell clumps; (\wedge) represent significant differences (p<0.05) with day 7 expression within sample groups; (\vee) represent significant differences (p<0.05) with day 14 expression within sample groups. Scale bar represents a distance of 50µm.

Supplementary Figure S4. Supplementary data regarding meiotic progression analysis in hFSK induced cells. (A) Illustrative pictures of the SYCP3 staining pattern over i12F transduced cells. (B) Percentage of punctate/elongated staining pattern found in i12F and i6F transduced hFSK cells (n=8). (C) Aberrant SYCP3 staining patterns found over transduced cells. (D) Representative DNA-fluorescence-activated cell sorting plots for the isolation of the putative 1N populations. Sperm control was used to set the sorting parameters. (E) Re-hybridation of chromosomes 18, X and Y FISH analyzed nuclei with centromeric probes for chromosomes 10 (aqua), 12 (green) and 3 (red) confirms haploidy of induced cells. (F) Percentage of haploid cells found in

i12F/i6F treated cells based on the FISH analysis with probes for the chromosomes 18, X and Y in hFSK cells (n=8). Data is presented as mean +/- SEM. (*) and (**) represent significant differences (p<0.05 and p<0.01, respectively) with MOCK and MOCK 1N sorted controls, respectively. Scale bars represent a distance of 10 μ m.

Supplementary Figure S5. Supplementary data regarding culture phenotype, meiotic progression analysis and transcriptomics in hMSC induced cells. (A) Illustrative pictures at 7, 14 and 21 days post-transduction of the formation of induced germ cell-like cell clumps (indicated by red arrows) showing the morphology of primary cultures after transduction with the germ cell factors in standard and germ cell medium (GC-M). Scale bars represent a distance of 10µm. (B) Percentage of punctate/elongated staining pattern found in i12F and i6F transduced hMSCs (n=4). **(C)** Percentage of haploid cells found in i12F/i6F treated cells based on the FISH analysis with probes for the chromosomes 18, X and Y in hMSC cells (n=4). Data is presented as mean +/- SEM. (*) and (**) represent significant differences (p<0.05 and p<0.01, respectively) with MOCK and MOCK 1N sorted controls. **(D)** RT-qPCR expression analysis of the germ line markers *GFRA1*, *PIWIL2*, *TNP2*, *PRM1*, and *ACR* over i12F/i6F induced hMSCs at 7, 14 and 21 days post-transduction (n=8). Data is presented as normalized fold change mean +/- SEM. (*) represent significant differences (p<0.05) with MOCK controls; (+) represents significant differences (p<0.05) between i12F/i6F

conditions and their respective induced germ cell-like cell clumps; (\land) represent significant differences (p<0.05) with day 7 expression within sample groups; (\lor) represent significant differences (p<0.05) with day 14 expression within sample groups.

Supplementary Figure S6. Supplementary data relative to xenotransplant experiments. (A) Illustrative pictures showing the presence of small GFP dots corresponding to putative colonizing cells within seminiferous tubules transplanted with i6F cells. (B) Normalized ratio of testis weight in milligrams with the body weight in grams of transplanted mice. Controls were busulfan treated but not transplanted mice (n=8 testes). (C) Illustrative staining of NuMA antibody localizing in the nucleus of human testicular cells but not in mouse. (D) Illustrative pictures showing co-localization of NuMA and DAZL and (E) NuMA/UTF1 in the nuclei of engrafted cells. Data is presented as mean +/- SEM. (*) represent significant differences (p<0.05) with non transplanted controls; (+) represents significant differences (p<0.05) with MOCK transplanted testes. Periphery of tubule cross-sections are highlighted by dashed lines. White arrows indicate colonizing human cells. Scale bar represents a distance of 50µm.

Supplementary Figure S7. Male and female gonadal specific marker analysis and antibody staining controls. (A) RTqPCR analysis of the expression of the folliclespecific developmental markers FIGLα, GDF9 and ZP1 over 12F/i6F induced hFSKs 14 days post-transduction. **(B)** Illustrative pictures of immunofluorescencent stainings for

the Leydig cell marker 3β HSD and the Sertoli cell markers FSHR and SOX9 over MOCK and i6F clumps from hFSK cells. **(C)** Antibody staining controls for primary antibodies over testicular sections. Data is presented as normalized fold change mean +/- SEM. (*) represent significant differences (p<0.05) with controls; (+) represents significant differences (p<0.05) between i12F/i6F conditions and their respective induced germ-cell like cell clumps. Scale bar represents a distance of 50µm.

3. Supplementary Tables.

Supplementary Table S1. List of the top represented terms of the functional enrichment analysis over the i12F and i6F cultures compared to MOCK. Term annotation % represents the ratio of represented genes in the list of the differentially expressed genes; GO, Gene Ontology; BP, Biological Process; MF, Molecular Function; CC, Cellular Compartment.

Trootmont	Torm	60 loval	Term	Appotntod ids	Adjusted p-
i12E/i6E		GO IEVEI		Annotated lus	value
1121/101	(GO:0042573)	BP	1.3	CYP26B1,CYP26A1,RBP1,MAFB	1.38352E-3
i12F/i6F	negative regulation of cell growth (GO:0030308)	BP	2.28	CGREF1,ENPP1,CDKN2C,BCL2,APB B2,INHBA,GREM1	4.55732E-3
i12F/i6F	mesenchymal cell development (GO:0014031)	BP	1.95	HGF,BCL2,GDNF,CYP26A1,EDN1,M AFB	4.88577E-3
i12F/i6F	negative regulation of transcription factor activity				
1405/165	(GO:0043433)	BP	1.63	ID1,ID3,ID2,HMOX1,MAFB	5.68985E-3
112F/16F	transcription initiation (GO:0006352)	BP	2.61	HIST1H4D,HIST1H4L,HIST1H4F,HIS T1H4C,HIST1H4J,HIST1H4E,HIST1H 4I,MAFB	6.80627E-3
i12F/i6F	regulation of protein kinase activity (GO:0045859)	BP	4.23	GAP43,ADORA2B,PKMYT1,RGS4,H GF,CDKN2C,CDKN1C,ERN1,WNT7B ,ITGA1,FPR1,EDN1,MAFB	1.60413E-2
i12F/i6F	positive regulation of DNA replication (GO:0045740)	BP	1.3	AREG,IL6,CSF2,MAFB	1.71113E-2
i12F/i6F	positive regulation of MAP kinase activity (GO:0043406)	BP	2.28	ADORA2B,HGF,WNT7B,ITGA1,FPR 1,EDN1,MAFB	1.9534E-2
i12F/i6F	transforming growth factor beta receptor signaling pathway (GO:0007179)	BP	1.95	ID1,GDF10,FMOD,CDKN1C,CHST11 ,MAFB	2.29673E-2
i12F/i6F	regulation of MAP kinase activity (GO:0043405)	BP	2.61	ADORA2B,RGS4,HGF,WNT7B,ITGA 1,FPR1,EDN1,MAFB	2.30361E-2
i12F/i6F	positive regulation of hormone secretion (GO:0046887)	BP	1.3	INHBA,CRH,EDN1,MAFB	2.56881E-2
i12F/i6F	anti-apoptosis (GO:0006916)	BP	3.26	CLU,HGF,CDC2,BCL2,GDNF,FN1,H MOX1,IL6,CSF2,MAFB	3.23274E-2
i12F/i6F	ovarian follicle development (GO:0001541)	BP	1.3	BCL2,LFNG,INHBA,MAFB	3.41505E-2
i12F/i6F	positive regulation of protein kinase activity (GO:0045860)	BP	2.93	GAP43,ADORA2B,HGF,ERN1,WNT7 B,ITGA1,FPR1,EDN1,MAFB	3.80244E-2
i12F/i6F	negative regulation of phosphorylation (GO:0042326)	BP	1.3	ENPP1,CDKN2C,CDKN1C,INHBA	4.06159E-2
i12F/i6F	regulation of cell migration (GO:0030334)	BP	3.75	SST, F10, IGFBP3, LAMA2, PRRX2, L AMA3, NEXN, ICAM1, IRS1,	0.0421
i12F/i6F	positive regulation of tyrosine phosphorylation of STAT protein (GO:0042531)	BP	0.98	IL6,CSF2,MAFB	4.36689E-2
1405/155	Positive regulation of gene- specific transcription from RNA polymerase II promoter				
112F/i6F	(GU:0010552)	ВР	1.28	HMGB2,NR1H3,E2F1,GDNF,MAFB	0.04461
i12F/i6F	(GO:0004523)	MF	0.77	RNASEH2A, FEN1, EXO1	0.005892
i12F/i6F	chromatin (GO:0000785)	сс	7.18	HIST1H1A,HIST1H3B,HIST1H1B,HIS T1H3D,HIST1H1D,HIST1H3F,HIST1	4.12325E-9

				H4D,HIST1H2AL,HIST1H4L,HIST1H	
				2AJ,HIST1H3H,HIST1H2AM,ID2,HIS	
				T1H4F,HIST1H4C,HIST2H2AC,HIST	
				BTB2.VDR.MAFB	
				HIST1H1A.HIST1H3B.HIST1H1B.HIS	
				T1H3D,HIST1H1D,HIST1H3F,HIST1	
				H4D,HIST1H2AL,HIST1H4L,HIST1H	
				2AJ,HIST1H3H,HIST1H2AM,HIST1H	
				4F,HIST1H4C,HIST2H2AC,HIST1H4J	
i12F/i6F	nucleosome (GO:0000786)	CC	5.13	,HIST1H4E,HIST1H4I,ABTB2,MAFB	4.12325E-9
				ZWINT,SPAG5,CENPM,C13orf3,BIR	
	-h			C5,KIF2C,MLF1IP,KIF22,CDCA8,ITG	
1125/165	chromosome, centromeric	cc	2 95	B3BP,CENPP,BUB1B,CENPF,OIP5,	1 17165-7
1121/101			3.85	SPAG5 CDC2 TPX2 C13orf3 BIRC5	1.1/100-7
				KIE15 KIE22 CDC6 PRC1 BUB1B PI	
i12F/i6F	spindle (GO:0005819)	сс	3.33	K1,NUSAP1,MYH9	2.07202E-5
	spindle microtubule			SPAG5,CDC2,C13orf3,BIRC5,PRC1,	
i12F/i6F	(GO:0005876)	СС	1.54	NUSAP1	2.31712E-4
				ZWINT,SPAG5,CENPM,C13orf3,ML	
i12F/i6F	kinetochore (GO:0000776)	СС	2.05	F1IP,KIF22,BUB1B,CENPF	9.21283E-4
	condensed chromosome			ZWINT,SPAG5,CENPM,C13orf3,ML	
i12F/i6F	kinetochore (GO:0000777)	CC	1.54	F1IP,BUB1B	5.08552E-3
				CDC45L,SPAG5,CDC2,TPX2,C13orf	
				3,BIRC5,KIF2C,TOP2A,KIF15,KIF22,	
	microtubula autockalatan			CDCA8, CDC6, PRC1, BUBIB, GTSEI, P	
i i12E/i6E	(GO:0015630)	CC	5.64	LIB MAER	6 25947F-3
11121/101			5.01	NCAPG.ZWINT.SPAG5.CENPM.C13	0.233 172 3
	condensed chromosome			orf3,HMGB2,TOP2A,MLF1IP,BUB1	
i i12F/i6F	(GO:0000793)	сс	2.31	В	6.25947E-3
112E/16E	integrin complex (CO:000830E)		1 20		6 562005 2
112F/10F	condensed chromosome		1.20	TIGAZ, WITH9, TIGATI, TIGAT, WAFB	0.50509E-5
	centromeric region			ZWINT.SPAG5.CENPM.C13orf3.ML	
i i12F/i6F	(GO:0000779)	сс	1.54	F1IP,BUB1B	7.19236E-3
				PCSK1,GAL,CFD,PLA2G4A,HGF,NPT	
i12F/i6F	secretory granule (GO:0030141)	СС	2.56	X1,FSTL3,ITGA1,FN1,MAFB	1.66104E-2
i12E/i6E	Collagen type IV (GO:0005587)	cc	1 25	PRRX2 FGR1 COL444	0.01737
1121/101	Basement membrane		1.25	IAMA2 PRRX2 IAMA3 ANXA2P3	0.01757
i12F/i6F	(GO:0005604)	сс	2.5	EGR1, COL4A4,	0.03728
			-	CDC45L, PKMYT1, PRKAR2B, ZWIN	
				T, CENPM, UBE2C, CDC2,TYMS, BI	
				RC5, RRM2, LIG1, KIF2C, MLF1IP,	
				MCM5, CDCA8, ITGB3BP, CDC6, PO	
				LA1, CENPP, FEN1, BUB1B, PLK1, E	
i12F/i6F	Cell Cycle, Mitotic (REACT_152)	REACTOME	6.15	2F1,MAFB,	4.51E-08
		REACTOME		HIST1H4D, HIST1H4L, HIST1H2AJ,	
	Talamara Maintananaa			HIST1H4F, HIST1H4C, LIG1, HIST2H	
1125/165	(PEACT 7970)		2.08	ZAC, HISTIH4J, HISTIH4E, POLAT,	4 515-08
1121/101	Integrin cell surface interactions	REACTOME	3.08	I AMA2 PRRX2 ICAM2 ICAM1 RA	4.511-08
i12F/i6F	(REACT 13552)	REACTOWE	2.92	SGRP2, EGR1, COL4A4.	0.001781
		REACTOME		CDC45L, LIG1, MCM5, CDC6, POLA	
i12F/i6F	DNA Replication (REACT_383)		1.79	1, FEN1, E2F1,	0.03135
				HIST1H4B,KRT84,HIST1H4K,IAPP,H	
				IST1H4H,HIST2H4B,CHRNB2,NPPC,	
	regulation of cell differentiation			SMAD1,SPP1,FGF2,APOE,LIF,ITGB3	
16F	(GO:0045595)	ВР	7.56	JUN,SOD2,HES1	5.55655E-3
i6F	DNA packaging (GO:0006323)	BP	4.89	A4	1.0232F-2
				HIST1H4B,HIST1H4K,IAPP.HIST1H4	
	negative regulation of cell			H,HIST2H4B,SPP1,LIF,ITGB3,SOD2,	
i6F	differentiation (GO:0045596)	BP	4.44	HES1	1.45926E-2
	negative regulation of DNA				
i6F	metabolic process	BP	2.22	ENPP7,BLM,IRF1,NPPC,STRA8	1.77042E-2

	(GO:0051053)				
				HIST1H4B,KRT84,HIST1H4K,IAPP,H	
				IST1H4H,HIST2H4B,SNCB,HELLS,C	
				HRNB2,SFRP1,NPPC,SMAD1,SPP1,	
	regulation of developmental			BIRC3,FGF2,SERPINE1,APOE,LIF,IT	
i6F	process (GO:0050793)	BP	10.22	GB3,PDPN,JUN,SOD2,HES1	2.83648E-2
				ENPP7,PRIM1,GINS2,CHAF1B,BLM,	
i6F	DNA replication (GO:0006260)	BP	4.44	RFC5,RFC4,IRF1,STRA8,JUN	2.9385E-2
				HIST1H4B, HIST1H4K, HIST1H4H, H	
				IST2H4B, HELLS, CENPQ, PRIM1, CE	
				NPN, BLM, RFC5, NCAPD3, INCENP	
				, RFC4, HIST1H3G,IRF1, JUN, HIST2	
i6F	chromosome (GO:0005694)	СС	7.56	H2AA4,	0.02965
				HIST1H4B, HIST1H4K, HIST1H4H, H	
	Telomere Maintenance			IST2H4B, PRIM1, RFC5, RFC4, IRF1,	
i6F	(REACT_7970)	REACTOME	4	HIST2H2AA4,	4.71E-07

Supplementary Table S2. Summary of FISH-based ploidy counts in hFSK cells.

*Aneuploid percentages include all the observed aneuploid combinations (1 18: 1 X: 1Y), (2 18: 2 X: 1Y), (2 18: 1 X: 2Y), (3 18: 1 X: 1Y), (3 18: 2 X: 2Y), (3 18: 2 X: 1Y), (2 18: 2 X: 2Y), (2 18: 0 X: 1Y) and (2 18: 1 X: 0Y).

	DIPLOID	HAPLOID	HAPLOID	TETRAPLOID	
% hFSK NUCLEI	(2 18: 1 X: 1 Y)	(1 18: 1 X: 0 Y)	(1 18: 0 X: 1 Y)	(4 18: 2 X: 2 Y)	ANEUPLOID*
MOCK WHOLE CULTURE	100.00 +/- 0.00	0.00 +/- 0.00	0.00 +/- 0.00	0.00 +/- 0.00	0.00 +/- 0.00
MOCK 1N SORTED	99.41 +/- 1.78	0.00 +/- 0.00	0.10 +/- 0.10	0.41 +/- 0.42	0.08 +/- 0.09
i12F WHOLE CULTURE	94.16 +/- 1.64	0.59 +/- 0.26	0.42 +/- 0.18	0.83 +/- 0.53	0.44 +/- 0.26
i12F 1N SORTED	90.38 +/- 1.77	3.07 +/- 1.57	2.61 +/- 1.62	0.66 +/- 0.56	0.36 +/- 0.27
i12F CLUMPS	90.77 +/- 1.85	0.67 +/- 0.33	1.89 +/- 0.21	2,25 +/- 0.91	0,48 +/- 0.29
i6F WHOLE CULTURE	95.40 +/- 1.24	0.58 +/- 0.22	0.48 +/- 0.12	1.00 +/- 1.01	0.27 +/- 0.03
i6F 1N SORTED	84.45 +/- 0.67	8.18 +/- 2.62	4.26 +/- 1.56	0.32 +/- 0.32	0.30 +/- 0.01
i6F CLUMPS	89.03 +/- 2.42	4.91 +/- 3.87	1.04 +/- 0.21	1.35 +/- 0.73	0.40 +/- 0.27

Supplementary Table S3. Summary of FISH-based ploidy counts in hMSC cells.

*Aneuploid percentages include all the observed aneuploid combinations (1 18: 1 X: 1Y), (2 18: 2 X: 1Y), (2 18: 1 X: 2Y), (3 18: 1 X: 1Y), (3 18: 2 X: 2Y), (3 18: 2 X: 1Y), (2 18: 2 X: 2Y), (2 18: 0 X: 1Y) and (2 18: 1 X: 0Y).

	DIPLOID	HAPLOID	HAPLOID	TETRAPLOID	
% hMSC NUCLEI	(2 18: 1 X: 1 Y)	(1 18: 1 X: 0 Y)	(1 18: 0 X: 1 Y)	(4 18: 2 X: 2 Y)	ANEUPLOID*
MOCK WHOLE CULTURE	100.00 +/- 0,00	0.00 +/- 0.00	0.00 +/- 0.00	0.00 +/- 0.00	0.00 +/- 0.00
MOCK 1N SORTED	87.66 +/- 4.96	0.00 +/- 0.00	0.00 +/- 0.00	2.32 +/- 2.33	1.11 +/- 0.50
i12F WHOLE CULTURE	91.82 +/- 2.05	0.75 +/- 0.19	0.24 +/- 0.18	2.46 +/- 0.89	0.52 +/- 0.38
i12F 1N SORTED	76.84 +/- 4.39	17.79 +/- 6.26	0.91 +/- 0.70	0.00 +/- 0.00	0.49 +/- 0.30
i6F WHOLE CULTURE	90.90 +/- 2.15	2.28 +/- 0.74	1.82 +/- 0.70	3.93 +/- 1.27	0.11 +/- 0.08
i6F 1N SORTED	80.00 +/- 2.35	20.00 +/- 0.98	0.00 +/- 0.00	0.00 +/- 0.00	0.00 +/- 0.00

Supplementary Table S4. Primer sequences 5'-3' used to gene expression analysis by RT-qPCR.

GENE	PRIMER SEQUENCES	LENGTH				
	F: GCCAAGTTCACCCAGTTTGT	183				
PRDMI	R: GATTCGGGTCAGATCTTCCA					
	F: TCTCTACGATCTGCCCTGGT	221				
PRDM14	R: CTCAGCCCCTCAGGTAACAG	231				
	F: CTTCTCCGAACCAACCCTTT	220				
LIN28A	R: CGCACGTTGAACCACTTACA	239				
NANOC	F: GATTTGTGGGCCTGAAGAAA	155				
NANUG	R: AAGTGGGTTGTTTGCCTTTG	155				
NANOS2	F: GGGAAAGAGGGTCCTGAAAC	221				
NANU55	R: AGCACGTGGGACTGGTAGAT	221				
D 4 72	F: GAGATTGGAAGCTGCTTTGG	212				
DALL	R: TGCACATGACGAGCACATAA					
DAZI	F: AATGACGTGGATGTGCAGAA	150				
DALL	R: AACTGTGGTGGAGGAGGATG	152				
	F: CTAATCCTGTGTCACCTGTGC	205				
BOLL	R: ACGAAACCATACCCTTTGGA	205				
VACA	F: ATGGATGATGGACCTTCTCGA					
VASA	R: CCTCTGTTCCGTGTTGGATT	248				
	F: AATCCCATGACAGAGCAAC	227				
SIKAð	R: TTATCCAGGGTTTGCTCCAG	221				
SVCD2	F: AGCCGTCTGTGGAAGATCAG	107				
SYCPS	R: AACTCCAACTCCTTCCAGCA	197				
DMC1	F: CTTTCAGGCAGATCCCAAAA	170				
DNICI	R: CCCAATTCCTCCAGCAGTTA	1/2				
CDH1	CDH1 F: TGAAGGTGACAGAGCCTCTGGAT					

	R: TGGGTGAATTCGGGCTTGTT		
CTELL A	F: CAGTCTCAGGGAAATCGAA	202	
SIELLA	R: GCAGAAACTGCAGGGACATT	203	
	F: ATGTCGTCTGGTCCCTGTTC	267	
FRAGILIS	R: AACCCCGTTTTTCCTGTATT	207	
	F: GCAAGGAGACCAACTTCAGC	100	
GFKAI	R: TCCTCCAGCAGATGATTTCC	190	
	F: GTTAATGGTGATCGGGATGG	120	
PIWIL2	R: ATGCATGCCATTTATCAGCA	120	
TND	F: CCAACACTAGTCCACCACCA	107	
INPZ	R: GTTGGATTTCCATCCTGAGC		
	F: CCGCCAGAGACAAAGAAGTC	200	
PRMI	R: GGATGGTGGCATTTTCAAGA	200	
	F: ATTCTGCTGGTCTTGGCAGT	102	
ACKU	R: TGTGTGGTACCTGTGGCTGT	192	
DNIN#T1	F: TACCTGGACGACCCTGACCTC	102	
	R: CGTTGGCATCAAAGATGGACA	103	
	F: TATTGATGAGCGCACAAGAGAGC	111	
DNWIJJA	R: GGGTGTTCCAGGGTAACATTGAG		
DNIMT2D	F: GGCAAGTTCTCCGAGGTCTCTG	100	
DINIVITSB	R: TGGTACATGGCTTTTCGATAGGA	188	
	F: GCTATACACAGAGCTCACAG	120	
	R: GCCAAAAGAGAATGAAGCTCC	139	
TETA	F: CTTTCCTCCCTGGAGAACAGCTC	146	
	R: TGCTGGGACTGCTGCATGACT	140	
тет2	F: ATTCTGCTGGTCTTGGCAGT	102	
1613	R: TGTGTGGTACCTGTGGCTGT	193	
DDI 10	F: GTTCCTGGAGCATGTACTTC	100	
KPLIY	R: CTTCCTCTTTGGGATTGTCC		

	F: TCAGCAAAGTCAAGCTCACCA	102	
I (BRACHIURI)	R: CCCCAACTCTCACTATGTGGATT	102	
SOV17	F: TCTGCCTCCTCCACGAAG	101	
50A17	R: CAGAATCCAGACCTGCACAA	101	
CD39	F: TTGGGAACTCAGACCGTACC	200	
CD30	R: GTTGCTGCAGTCCTTTCTCC	200	
TECD2L 1	F: GTGTACCACGCCATCTTCCT	176	
IFCF2L1	R: TGTGCTGAGGACAAAACAGG	1/0	
	F: AATCTCAACCGTGGTTTTGC	215	
FIGLα	R: CTTGCCGAGGATCTATGTGA	215	
CDE0	F: GGGAGAAGCTCAGATTGCTG	225	
GDF9	R: GGAATCCCTTCCTTGGTAGC		
7.01	F: CGCCATGTTCTCTGTCTCAA	1(1	
ZFI	R: CGTTTGTTCACATCCCAGTG	101	

Sunnlementary	Table S5	List of the	antibodies	employed
Supplementary	Table 55	. List of the	antipoules	empioyeu.

ANTIGEN	HOST	COMPANY	DILUTION
VIMENTIN	Mouse	Dako	1:200
Human PLZF	Mouse	R&D	1:50
UTF1	Mouse	Milipore	1:50
VASA	Goat	R&D	1:200
DAZL	Rabbit	Abcam	1:200
HIWI	Rabbit	Novex	1:200
Human-SYCP3	Rabbit	Novus	1:75
Human-centromere protein (CREST)	Human	Fisher	1:1000
5-methyl Cytosine (5-mC)	Mouse	Eurogentec	1:500
5-hydroxymethyl Cytosine (hmC)	Rabbit	Active motif	1:200
Human NuMA	Rabbit	Abcam	1:200
3B-HSD	Mouse	Abcam	1:50
FSHR	Rabbit	Abcam	1:50
SOX9	Mouse	Abcam	1:50