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Supplemental Material

1 Derivation of a constitutive equation for elastic

bodies with residual stresses

Under the assumptions of a macroscopic length-scale at the tissue scale and a characteristic

time-scale short enough to neglect dissipative effects on the residual stresses (e.g. ageing

phenomena), it is possible to define an elastic free energy Ψ = Ψ(F, τ ). Since we neglect

any material anisotropy within the material (e.g. fiber reinforcement), we postulate that

Ψ is a scalar-valued function depending on ten invariants: the six principal invariants of C

and τ , and the four combined invariants of C and τ . From standard thermo-mechanical

arguments, the constitutive equation of the Cauchy stress can be expressed as:

σ = F∂Ψ
∂F

(F, τ ) = F

(
3∑

k=1

∂Ψ
∂ICk

∂ICk
∂F

+
4∑

m=1

∂Ψ
∂Jm

∂Jm
∂F

)
(S1)

where the chain differentiation rule has been used. Recalling the following tensor rules:

∂IC1

∂F
= 2FT ;

∂IC2

∂F
= 2IC1F

T + CFT ;
∂IC3

∂F
= 2IC3F

−1 (S2)

∂J1

∂F
= 2τFT ;

∂J2

∂F
= 2τCFT + 2CτFT ;

∂J3

∂F
= 2τ 2FT ;

∂J4

∂F
= 2τ 2CFT + 2Cτ 2FT

(S3)

it is possible to derive the Equation (3) of the Letter. It is useful to highlight that

the constitutive equation for a compressible material can easily be obtained by removing

the Lagrange multiplier p and postulating a functional dependence of the free energy on

IC3.
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2 Derivation of the initial stress symmetry condi-

tions

The initial stress symmetry (ISS) enforces the necessity to recover the residually stressed

configuration from the loaded state by reversing the deformation mapping:

τ = −pτI + F−1 ∂Ψ

∂F
(F−1,σ) (S4)

where pτ is the Lagrange multiplier due to the incompressibility constraint. Hereafter we

show that the ISS conditions in Eq. (S4) can be expressed as a set of scalar equations,

relating the free energy density Ψ(F , τ ) and the invariants of τ and C. Let us first use

Eq. (S4) to write the residual stress as

τ = −pτI + 2Ψσ
,I1
C−1 + 2Ψσ

,I2
(I2C

−1 −C−2) + 2Ψσ
,J1
F−1σF−T + 2Ψσ

,J3
F−1σ2F−T

+ 2Ψσ
,J2
F−1(σB−1 +B−1σ)F−T + 2Ψσ

,J4
F−1(σ2B−1 +B−1σ2)F−T (S5)

where Ψσ
Ik

:= Ψ,Ik(F
−1,σ), Ψσ

,Jm
:= Ψ,Jm(F−1,σ), I1 = tr(C), I2 = tr(C−1) using the

Cayley-Hamilton theorem with detC = 1, and comma denotes partial derivative with

respect to the following term. The above must hold for every τ and C. Thus, we can

substitute the constitutive equation for the Cauchy stress into Eq. (S5), obtaining :

αijkmnC
iτ jCkτmCn = 0, (S6)

where we assume summation for i, k, n over {−2,−1, 0, 1, 2} and j,m over {0, 1, 2}. Deal-

ing with symmetric tensors, we have the symmetries αijkmn = αnjkmi = αnmkji, where the

values of αijkmn are not reported here for the sake of brevity.

Finally, it is possible to further simplify Eq. (S6) to obtain nine scalar equations that hold

for any choice of Ψ and of all the invariants. This can be done by varying C and τ while
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keeping the invariants fixed. Since Eq.(S6) must hold for any C and τ , we obtain nine

scalar equations which compactly rewrite

b+ P {1}Ψσ
,J1

+ P {2}Ψσ
,J2

+ Ψ,Jn

(
P
{3}
{n}Ψ

σ
,J3

+ P
{4}
{n}Ψ

σ
,J4

)
= 0, (S7)

ΨJn

(
Q
{1}
{n}Ψ

σ
,J1

+Q
{2}
{n}Ψ

σ
,J2

+Q
{3}
{n}Ψ

σ
,J3

+Q
{4}
{n}Ψ

σ
,J4

)
= 0, (S8)

where n sums over {0, 1, 2, 3, 4}, ΨJ0 := 1, and:

b =



2Ψσ
,I2

−2Ψσ
,I1

pτ

0

0

1


, P {1} = 4



ΨI2

p/2

−Ψ,I1

−2Ψ,J2

2I2Ψ,J2

−Ψ,J1 − 2I1Ψ,J2


, P {2} = 4



p

I2p− 2Ψ,I1 − 2I1Ψ,I2

2Ψ,I2

0

−2Ψ,J1

−4Ψ,J2


, (S9)

Q
{1}
{1} = Q

{1}
{2} = Q

{2}
{1} = Q

{2}
{2} = 0. (S10)

The other matrices in Eq.(S7) have cumbersome expressions and will be not reported here

for the sake of brevity. In summary, Eqs (S7) and (S8) represent respectively 6 and 3

scalar equations, respectively, determining the ISS conditions, the unknowns being the

scalar functions Ψ, p and pτ .

For the sake of simplicity, we now look for simplified expression neglecting the functional

dependence on J3 and J4, which represent higher order terms in the mixed functional

dependence. In this case, the fourth scalar equation of Eq. (S7) rewrites:

−8Ψ,J2Ψ
σ
,J1

= 0 (S11)
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which is only possible, for every F and τ , if and only if Ψ does not depend on J2 or on

J1. In particular, if Ψ does not depend also on J2, then Eq. (S7) reduces to:

4Ψ,J1Ψ
σ
,J1

= 1,
Ψσ
,I2√

Ψσ
,J1

+
Ψ,I2√
Ψ,J1

= 0, pΨσ
,J1

= Ψσ
,I1
, pτΨ,J1 = Ψ,I1 , (S12)

where we have used Eq. (S12)1 to derive the other three equations. Let us now impose

the physical compatibility of the strain energy, by letting F = I, σ = τ and pτ =

p. We obtain that Ψ,J1 = 1/2, 2Ψ,I1 = p and Ψ,I2 = 0 for F = I. Accordingly, we

derive the class of free energies for residually stressed material expressed by Eq.(5) in

our Letter. The generalization to incompressible neo-Hookean materials in Eq.(6) in our

Letter is straightforward, thanks to the possibility to invert explicitly its constitutive

relation in order to write the strain as a function of the Cauchy stress [1]. Finally, the

proposed approach and the initial stress symmetry condition are also valid for compressible

materials, with minor alterations introduced by the chosen functional dependence on

IC3 = detC.

3 Optimal solution for the Cauchy stress within an

artery

The variational problem determining the optimal distribution of the Cauchy stress in an

artery under internal pressure rewrites:

δL = δ

∫ ro

ri

[σ2
rr,r + (rσrr)

2
,rr]dr = 0 (S13)

under the constraint
∫ ro
ri
σrr,rdr = P given by the boundary conditions. Before solving

the corresponding Euler-Lagrange equations, let us introduce the following dimensionless
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variables:

% =
r − ri
ro − ri

and ς(ρ) =
σrr(r)

P
, (S14)

so that

σrr,r = ς ′
P

ro − ri
, σrr,rr = ς ′′

P

ro − ri2
(S15)

and

σθθ,r =
P

ro − ri
(2ς ′ + (ρ+ α)ς ′′) (S16)

where we have introduced α = ri/(ro − ri). The functional L in Eq.(S13) therefore

rewrites :

L =
P 2

r2
i

α2

∫ 1

0

[(ς ′)
2

+ (2ς ′ + (%+ α) ς ′′)
2
]d% (S17)

with the constraint

ς(1) = 0 and ς(0) = −1 =⇒
∫ 1

0

ς ′d% = 1. (S18)

Using the calculus of variations [2], we find the following Euler-Lagrange equation

∂f

∂ς ′
− d

d%

∂f

∂ς ′′
= Λ for % ∈ (0, 1) and

∂f

∂ς ′′
= 0 for % = 0, 1 (S19)

where

f = (ς ′)
2

+ (2ς ′ + (%+ α) ς ′′)
2

(S20)

and Λ is a Lagrange multiplier that appears due to the constraint (S18). The solution

of (S19) is given by

ς ′ =
Λ

6
− Λ

6
(
√

13− 3)
α

√
13
2

+ 1
2 − (1 + α)

√
13
2

+ 1
2

α
√

13 − (1 + α)
√

13
(α + %)

√
13
2

+ 1
2

+
2Λ

3(
√

13− 3)

α
√
13
2
− 1

2 − (1 + α)
√

13
2
−1 1

2

α
√

13 − (1 + α)
√

13

(
α(1 + α)

α + %

)√
13
2

+ 1
2

(S21)

6



Finally, we determine Λ from the constraint (S18) to be

Λ = 6
(∫ 1

0

1− (
√

13− 3)
α

√
13
2

+ 1
2 − (1 + α)

√
13
2

+ 1
2

α
√

13 − (1 + α)
√

13
(α + %)

√
13
2

+ 1
2

+
4√

13− 3

α
√
13
2
− 1

2 − (1 + α)
√
13
2
−1 1

2

α
√

13 − (1 + α)
√

13

(
α(1 + α)

α + %

)√
13
2

+ 1
2

d%
)−1

. (S22)

Finally, we compare our optimal solution for the Cauchy stress against the one obtained

using a opened ring as virtual state, also known as the opening angle method [3], as

depicted in Figure 1.
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Figure 1: The curves of the dimensionless Cauchy stress against the dimensionless radius
ρ for the opening angle method (dashed lines) and our optimal stress (red solid lines).
We set physically relevant parameters for the descending thoracic aorta: ri = 20 mm,
ro = 21.4 mm, so that α−1 = 0.07. As the dashed curves shade from yellow to green P/µ
goes through the values 0.05, 0.2 and 0.35 with optimal opening angle φ = 65.9◦, 204.2◦

and 261.723◦; stress free reference inner radius 20.3 mm, 25.2 mm and 31.1 mm; and stress
free reference outer radius 22 mm, 27.8 mm and 34.4 mm respectively.

We highlight that σθθ for the opening angle method tends to the optimal stress σθθ only

if P/µ tends to zero, while the plots for σrr do not show significant differences between

the two methods.
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Wave propagation in a residually stressed tube

Let us deal with the infinitesimal wave propagation of an undeformed tubular tissue with

residual stresses. We consider an inhomogeneous infinitesimal wave u of the form:

u = u(R,Θ, t)eR + v(R,Θ, t)eΘ, (S23)

where ER and EΘ are the radial and tangential unit vectors, so that u, v represent

the incremental radial and hoop displacement fields, respectively. Indicating with Γ =

Grad u the spatial displacement gradient associated with the incremental deformation,

the incremental incompressibility condition reads:

tr Γ = 0 (S24)

Following the incremental elastic theory [4], the incremental equations of motion read:

Div s = ρ
∂2u

∂t2
(S25)

with boundary conditions eRs = 0 at the inner and outer radii, Ri and Ro, respectively.

The components of the incremental nominal stress s for the constitutive theory in Eq.(5)

of the article read:

sij = λτ (Γji + Γij) + τikΓjk − qτδij, (S26)

where qτ is the incremental pressure, and λτ is the real root of λ2 + λIτ1 + Iτ3 − µ2 = 0,

which is the equivalent of Eq.(6) of the article in plane strain conditions.

Let as now make an educated guess of the solution in the form of a time-harmonic cylin-
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drical wave, having displacement and stress components defined as:

[u, sRR, qτ ] = [U(R), SRR(R), Q(R)] cos(mΘ− ωt),

[v, sRΘ] = [V (R), SRΘ(R)] sin(mΘ− ωt),
(S27)

where m is the integer angular wavenumber, ω is the angular frequency, and the ampli-

tudes U, V, SRR, SRΘ, Q are scalar functions of R only. Following [5], the incompressibiity

condition Eq.(S24) and the equation of motion Eq.(S25) can be recast in a system of four

ordinary differential equation of the first order:

d

dR

 U

RS

 =
1

R

G1 G2

G3 −GT
1


 U

RS

 with

 U = [U(R), V (R)]T ,

S = [SRR(R), SRΘ(R)]T ,
(S28)

also known as the Stroh formulation of the incremental problem. The sub-blocks of the

Stroh matrix in Eq.(S28) have the following components

G1 =

 −1 −m
mRλτ
f+Rλτ

λτ
τRR+λτ

 , G2 =

0 0

0 1
τRR+λτ

 ,

G3 =

4λτ − ρR2ω2 + (1 +m2)τΘΘ + τRR[τRR+(1+m2)λτ ]
τRR+λτ

m
[
4λτ + 2τΘΘ + τRR(τRR+2λτ )

τRR+λτ

]
m
[
4λτ + 2τΘΘ + τRR(τRR+2λτ )

(τRR+λτ )

]
4m2λτ + (1 +m2)Iτ1 −

τ2RR
(τRR+λτ )

− ρR2ω2

 ,
(S29)

Let us now introduce a functional relation between the incremental traction and the

displacements vectors as RS(R) = Z(R)U(R), where Z is a surface impedance matrix

[6]. Substituting the previous expression into Eq.(S28), we derive the following differential

Riccati equation for Z,

d

dR
Z =

1

R

(
G3 −GT

1 Z− ZG1 − ZG2Z
)
, (S30)
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Let us now clarify how Eq.(S30) can be used to establish a non-destructive method for

measuring the residual stress distribution within a pre-stressed tube. An illustrative ex-

ample is sketched in the following. Imposing the equilibrium equations in the undeformed

configuration, a simple expression of residual stress distribution is given by:

τRR = α(R−Ri)(Ro −R)/R2
i ; τΘΘ = (RτRR),R (S31)

Using the stress-free boundary conditions and the functional form in Eq.(S31) it is possible

to numerically integrate Eq. (S30) from the initial condition Z = Z(Ri) = 0 (resp.

Z = Z(Ro) = 0) , proving the existence of a time-harmonic cylindrical wave when the

target condition det Z(Ro) = 0 (resp.det Z(Ri) = 0) is met.

The Hamiltonian structure and algebraic properties of the Stroh matrix yield a robust

numerical procedure to determine when cylindrical waves appear on either of the faces of

the residually stressed tube. In particular, we found the unique, symmetric, semi-definite

solution of the differential Riccati equation for Z in Eq.(S30) by numerical integration

using the software Mathematica (Wolfram Inc., version 10.1, Champaign, IL) once τRR, ω,

Ro and Ri are prescribed. Thus, for a given tube, we adjust the pre-stress parameter α/µ,

proportional to the amplitude of the residual stress, until we meet the target condition

for a given m. Once α/µ is determined, we integrate the first line of Eq.(S28), i.e.

dU

dR
=

1

R
G1U +

1

R
G2ZU, (S32)

simultaneously with Eq.(S30) to compute the incremental wave field throughout the thick-

ness of the tube wall.
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