Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015.

Supporting Information

for Advanced Materials Interfaces, DOI: 10.1002/admi.201500441

The Role of Water in the Preparation and Stabilization of High-Quality Phosphorene Flakes

Manuel Serrano-Ruiz, Maria Caporali, * Andrea Ienco, Vincenzo Piazza, Stefan Heun, and Maurizio Peruzzini*

Supporting Information

The role of water in the preparation and stabilization of high quality phosphorene flakes

Manuel Serrano-Ruiz,^a Maria Caporali,^{a,*} Andrea Ienco,^a Vincenzo Piazza,^b Stefan Heun,^c Maurizio Peruzzini^{a,*}

Test A) P/H₂O molar ratio equal to 15.0.

Figure S1. Up: ³¹P NMR and down: ³¹P {¹H} NMR (DMSO-d₆, T = 25°C, 121.49 MHz) spectrum of a sample of Test A after 4 hours of sonication.

Figure S2. ¹H NMR spectrum (DMSO-d₆, T = 25° C, 300.13 MHz) after 4 hours of sonication.

x (that

Figure S4. ¹H NMR (DMSO, T = 25°C, 300.13 MHz, capillary C_6D_6). Down: reaction mixture before adding [S(CH ₃)₂]; top: after adding [S(CH ₃)₂].

Figure S5. ¹³C NMR (DMSO, T = 25°C, 75.5 MHz, capillary C₆D₆). Down: reaction mixture before adding [S(CH $_3$)₂]; top: after adding [S(CH $_3$)₂].

Figure S6. Left: optical microscopy image; Right: AFM of a sample of Test A after 20 hours of sonication, scale bar 2.0 μ m.

Figure S7. Bright field TEM image on holey carbon Cu grid of the sample in DMSO where P/H_2O molar ratio equal to 15. Scale bar: 500 nm.

Test B) P/H₂O molar ratio equal to 2.0.

Figure S8. ³¹P{¹H} NMR spectra (DMSO-d₆, T = 25°C, 121.49 MHz) of a sample of Test B, P/H2O molar ratio equal to 2, during sonication.

Figure S9. EDX carried out on the sample of Test B, P/H2O molar ratio equal to 2, after 20 h of sonication.

Test C) P/H₂O molar ratio equal to 0.7.

Figure S10. Bright field TEM image of DMSO-exfoliated BP nanosheets. Scale bar: 200 nm.

Figure S11. Left: Optical microscopy image, $144 \ \mu m \ x \ 108 \ \mu m$, scale bar 30 μm ; right: AFM image of a sample with P/H₂O molar ratio equal to 0.7.

Figure S12. ³¹P{¹H} NMR spectra (DMSO-d₆, $T = 25^{\circ}C$, 121.49 MHz) measured during the sonication.

Figure S13. Starting of the exfoliated BP decomposition plotted against the P/H_2O molar ratio (as shown by the appearance of the -24.9 ppm signal in the ${}^{31}P{}^{1}H{}$ NMR)

Figure S14. Picture of a BP crystal obtained after the synthesis (left); X-Ray powder diffraction of BP crystals (right).