Supplementary Material

The hairpin region of Ndc80 is important for the kinetochore recruitment

of Mph1/MPS1 in fission yeast

Aldona Ewa Chmielewska , Ngang Heok Tang and Takashi Toda

Supplementary Table S1

Supplementary Figure legends

Figure S1. *ndc80-AK01* contains a single point mutation in the internal hairpin region.

Figure S2. ndc80-AK01 is defective in the SAC

Figure S3. Mad1, Mad3, Bub1 and Bub3 are mis-localized from the kinetochore in *ndc80-AK01*

Figure S4. Ark1-GFP does not localize to the unattached kinetochores in both ndc80-AK01 and $bub1\Delta$ cells.

Supplementary Figures 1-4

Strain	Genotype	Figures used
AEK513	h [.] ndc80-AK01-kan ^R mad1::ura4+ leu1 ura4	1B
513	h ⁻ leu1 ura4	1B, 2A-C
AEK423	h ⁻ mad1::ura4+ leu1 ura4	1B, 2C
AEK004	h ⁻ ndc80-AK01-kan ^R leu1 ura4 his2	1B, 2A-C
AEK220	h+ spc25+-YFP-nat ^R nuf2+-mCherry-ura4+ cut12+-2CFP-hph ^R leu1 ura4 his2	1D-E
AEK342	h ⁻ spc25+-YFP-nat ^R nuf2+-mCherry-ura4+ cut12+-2CFP-hph ^R ndc80-AK01-kan ^R	1D-E
AEK053	h ⁻ mad2::LEU2 leu1 ura4	2A-B
AEK156	h+ ndc80-AK01-kan ^R cut7-446 leu1 his2	2D-Е
AEK051	h+ cut7-446 leu1 his2	2D-Е
AEK150	h+ cut7-446 mad2::LEU2 his2	2D-Е
AEK595	h ⁻ ndc80-AK01-kan ^R mad2+-GFP-LEU2 plo1+-mCherry-hph ^R ura4	3A-D, 3H-I
AEK505	h ⁻ plo1+-mCherry-hph ^R mad2+-GFP-LEU2 leu1 lys1	3A-D,3H-I
AEK531	h ⁻ mph1+-S(GGGGS)3-GFP< <kan<sup>R plo1+-mCherry-hph^R leu1</kan<sup>	3E-I
AEK709	h ⁺ ndc80-AK01-kan ^R mph1 ⁺ -S(GGGGS)3-GFP< <kan<sup>R plo1⁺- mCherry-hph^R leu1 ura4 his2</kan<sup>	3E-I
AEK700	h^{-} leu1 ark1 ⁺ -GFP< <kan<sup>R plo1⁺-mCherry-hph^R ndc80-AK01-kan^R</kan<sup>	3H-I, S4
AEK704	h^{-} plo1+-mCherry-hph ^R ark1+-GFP< <kan<sup>R leu1 lys1</kan<sup>	3H-I, S4
AEK501	h^{-} plo1+-mCherry-hph ^R mad1+-GFP< <kan<sup>R lys1 ura4</kan<sup>	3H-I, S3A-B
AEK618	h ⁻ ndc80-AK01-kan ^R plo1 ⁺ -mCherry-hph ^R mad1 ⁺ -GFP< <kan<sup>R ura4 ade6-210 lvs1</kan<sup>	3Н-І, S3А-В
AEK526	h+ plo1+-mCherry-hph ^R mad3+-GFP< <kan<sup>R leu1 his2</kan<sup>	3H-I, S3C-D
AEK641	h ⁻ mad3+-GFP< <kan<sup>R ndc80-AK01-kan^R plo1+-mCherry-hph^R leu1</kan<sup>	3H-I, S3C-D
AEK590	h ⁺ ndc80-AK01-kan ^R bub1 ⁺ -GFP-kan ^R plo1 ⁺ -mCherry-hph ^R his2 ade6-210 ura4 lvs1	3H-I, S3E-F
AEK600	h+ bub1+-GFP-kan ^R plo1+-mCherry-hph ^R his2 ade6-210 leu1 lys1 ura4	3H-I, S3E-F
AEK555	h ⁻ bub3+-S(GGGGS)3-GFP< <kan<sup>R plo1+-mCherry-hph^R leu1</kan<sup>	3H-I, S3G-H
AEK634	h+ bub3+-S(GGGGS)3-GFP< <kan<sup>R ndc80-AK01-kan^R plo1+- mCherry-hph^R leu1 his2</kan<sup>	3H-I, S3G-H
AEK1031	h+ hph ^R < <pnm81<<mis12+-(ggsg)2-mph1+-s(ggggs)3- GFP<<kan<sup>R plo1+-mCherry<<nat<sup>R ndc80-AK01-kan^R leu1 ade6- M216 ura4 his2</nat<sup></kan<sup></pnm81<<mis12+-(ggsg)2-mph1+-s(ggggs)3- 	4A-C
AEK1036	h ⁻ hph ^R >>Pnmt81>>mph1 ⁺ -S(GGGGS)3-GFP< <kan<sup>R plo1⁺- mCherry<<nat<sup>R ndc80-AK01-kan^R leu1</nat<sup></kan<sup>	4A-C
AEK1107	h ⁻ hph ^R < <pnmt81<<mis12+-(ggsg)2-mph1+-gfp<<kan<sup>R mad2Δ::hph^R plo1+-mCherry-nat^R ndc80-AK01-kan^R leu1</pnmt81<<mis12+-(ggsg)2-mph1+-gfp<<kan<sup>	4A-C
AEK986	h ⁻ hph ^R >>Pnmt81>>mph1 ⁺ -S(GGGGS)3-GFP< <kan<sup>R plo1⁺- mCherrv<<nat<sup>R leu1 ade6-M216?</nat<sup></kan<sup>	4A-C
AEK990	h ⁻ hph ^R < <pnm81<<mis12+-(ggsg)2-mph1+-s(ggggs)3- GFP<<kan<sup>R plo1+-mCherrv<<nat<sup>R leu1 ade6-M216</nat<sup></kan<sup></pnm81<<mis12+-(ggsg)2-mph1+-s(ggggs)3- 	4A-C
AEK991	$h^{-}hph^{R} << Pnmt 81 << mis12^{+-}(GGSG)2^{-}mph1^{+}-S(GGGGS)3^{-}$ GFP << kan ^R mad2 Δ :: hph ^R plo1^{+-mCherry-nat ^R leu1	4A-C
AEK383	h+ nda3-1828 leu1 ura4 his2	S2A-B
AEK400	h [.] ndc80-AK01-kan ^R nda3-1828 leu1 ura4	S2A-B

Supplementary Table S1. List of strains used in the study.

AEK403	h ⁻ nda3-1828 mad2::LEU2 leu1 ura4	S2A-B
AEK424	h+mph1::ura4+ leu1 ura4 ade6-210	S2C
AEK425	h ⁻ bub1::LEU2 ura4 ade6-216	S2C
AEK468	h ⁻ bub3::ura4+ leu1 ura4	S2C
AEK507	h ⁻ ndc80-AK01-kan ^R mph1::ura4+ leu1 ura4 ade6-210	S2C
AEK510	h ⁻ ndc80-AK01-kan ^R bub1::LEU2 ura4 leu1 ade6-M216	S2C
AEK517	h ⁻ ndc80-AK01-kan ^R mad3::ura4+ leu1 ura4	S2C
AEK521	h ⁻ ndc80-AK01-kan ^R bub3::ura4+ leu1 ura4	S2C
AEK586	h ⁻ ndc80-AK01-kan ^R mad2::LEU2 leu1 ura4 lys1	S2C
AEK659	h ⁻ mad3::ura4+ leu1 ura4	S2C
AEK996	h ⁻ bub1::LEU2 plo1+-mCherry-hph ^R ark1+-GFP-kan ^R leu1 ura4	S4

his2 = his-2-245; leu1 = leu1-32; ura4 = ura4-D18; lys1 = lys1-131

Supplementary Figure S1. *ndc80-AK01* contains a single point mutation in the internal hairpin region.

Alignment of Ndc80 amino acid sequences from 7 different species: *M. musculus*, *R. norvegicus*, *H. sapiens*, *G. gallus*, *X. laevis*, *S. pombe* and *S. cerevisiae*. Data was obtained from UniProt database and aligned using ClustalX online. Only the region surrounding the ndc80-AK01 mutant allele is presented.

Supplementary Figure S2. ndc80-AK01 is defective in the SAC.

A. Exponentially growing cells were shifted from 27° C to 36° C and samples were taken every 40 minutes for 240 minutes. Cells were then stained with DAPI and chromosome over-condensation (yellow arrowhead) was quantified. Scale bar, 10 μ m.

B. Quantification of cells displaying over-condensed chromosomes. For each time point, more than 150 cells were counted. The values are averages from two experiments.

C. A serial dilution assay of strains used in the current study. The number of initial spot cells (far-left) was 5 x 10^4 cells. Cells were plated on YE5S, YE5S containing 10 and 15 µg/ml TBZ at 27°C for 3 d.

Supplementary Figure S3. Mad1, Mad3, Bub1 and Bub3 are mis-localized from the kinetochore in *ndc80-AK01*.

A-H. Exponentially growing cells were placed in YE5S containing 50 μ g/ml TBZ and 60 μ g/ml of CBZ at 27°C. After 30 min, aliquots of cells were placed on lectin-coated dishes and imaged for 60 min. Representative images of wild type and *ndc80-AK01* cells that contain Mad1-GFP and Plo1-mCherry (**A**), Mad3-GFP and

4

Plo1-mCherry (**C**), Bub1-GFP and Plo1-mCherry (**E**), Bub3-GFP and Plo1mCherry (**G**) are shown. Scale bar, 10 μ m. Quantification of GFP signal intensities of each SAC components is presented in **B** (Mad1-GFP), **D** (Mad3-GFP), **F** (Bub1-GFP) and **H** (Bub3-GFP). n > 10 cells.

Supplementary Figure S4. Ark1-GFP does not localize to the unattached kinetochores in both *ndc80-AK01* and *bub1* Δ cells.

A. Representative images of wild type, *bub1* Δ and *ndc80-AK01* cells that contain Ark1-GFP and Plo1-mCherry are shown. Scale bar, 10 μ m.

- **B.** Quantification of Ark1-GFP signal intensities. n > 10.
- **C.** The duration of mitosis judged by Plo1-mCherry signals at the SPB. n > 30.