

Supplementary Figure 1 | Morpholigical properties of  $TiO_{2-x}$  SCs. The statistical particle size distribution (a) of the defective {001}-TiO<sub>2-x</sub> SCs and their typical TEM images (b, c).



Supplementary Figure 2 | Crystal phase and surface area of different  $TiO_2$  catalysts. XRD pattern (a) and BET spectra (b) of the {001}-TiO<sub>2-x</sub> SCs, {001}-TiO<sub>2</sub> SCs and {101}-TiO<sub>2</sub> PCs.



Supplementary Figure 3 | Morphological properties of commercial TiO<sub>2</sub>. Typical TEM images of the  $\{101\}$ -TiO<sub>2</sub> PCs reference (**a**, **b**).



Supplementary Figure 4 | Surface area of two TiO<sub>2</sub> references. BET spectra of the  $\{101\}$ -TiO<sub>2</sub> PCs (a) and  $\{001\}$ -TiO<sub>2</sub> SCs (b).



Supplementary Figure 5 | XPS spectra of different TiO<sub>2</sub> catalysts. XPS spectra of the survey and the Zn 2p of the  $\{001\}$ -TiO<sub>2-x</sub> SCs (**a**, **b**) and the  $\{001\}$ -TiO<sub>2</sub> SCs (**a**, **c**).



Supplementary Figure 6 | ORR behaviors of different TiO<sub>2</sub> catalysts at various rotating rates. Linear voltammetry in O<sub>2</sub>-saturated 0.1 M aqueous KOH electrolyte solution at a scan rate of 10 mV s<sup>-1</sup> at different RDE rotation rates on the  $\{101\}$ -TiO<sub>2</sub> PC (**a**),  $\{001\}$ -TiO<sub>2</sub> SC (**b**) and  $\{001\}$ -TiO<sub>2-x</sub> SC (**c**) and  $\{001\}$ -TiO<sub>2-x</sub> SC supported by home-made rGO (**d**).



**Supplementary Figure 7** | **Calculation results from RDE tests.** K-L plots ( $i^{-1}$  vs.  $\omega^{-1/2}$ ) derived from the linear voltammetry in O<sub>2</sub>-saturated 0.1 M aqueous KOH electrolyte solution at a scan rate of 10 mV s<sup>-1</sup> at different RDE rotation rates on the {101}-TiO<sub>2</sub> PC (**a**), {001}-TiO<sub>2</sub> SC (**b**) and {001}-TiO<sub>2-x</sub> SC (**c**).



Supplementary Figure 8 | Calculation results from RRDE tests. Peroxide percentage and electron transfer number *n* of ORR on the defective  $\{001\}$ -TiO<sub>2-x</sub> SCs in O<sub>2</sub>-saturated 0.1 M aqueous KOH electrolyte solution at a scan rate of 10 mV s<sup>-1</sup> with a rotation rate of 400 rpm.



Supplementary Figure 9 | ORR behaviors of different  $TiO_2/C$  catalysts at various rotating rates. Linear voltammetry in O<sub>2</sub>-saturated 0.1 M aqueous KOH electrolyte solution at a scan rate of 10 mV s<sup>-1</sup> at different RDE rotation rates on the {101}-TiO<sub>2</sub> PC (a), {001}-TiO<sub>2</sub> SC (b) and {001}-TiO<sub>2-x</sub> SC (c) supported by commercial carbon.



Supplementary Figure 10 | Electronic properties of different TiO<sub>2</sub> catalysts at various applied bias. EIS plots of the three anatase TiO<sub>2</sub> surfaces under the external bias of -0.2 V/SCE (a), -0.4 V/SCE (b) and -0.6 V/SCE (c).

**Supplementary Table 1** Comparison of ORR specific activities of different  $TiO_2$  catalysts in O<sub>2</sub>-saturated 0.1 M aqueous KOH electrolyte solution (scan rate: 10 mV s<sup>-1</sup>, rotation rate: 400 rpm).

| ORR Catalyst –                  | Specific Activity ( $\times 10^{-3}$ mA cm <sup>-2</sup> ) |         |         |  |  |
|---------------------------------|------------------------------------------------------------|---------|---------|--|--|
|                                 | -0.35 V                                                    | -0.40 V | -0.45 V |  |  |
| {101}-TiO <sub>2</sub> PC       | -1.50                                                      | -1.88   | -2.41   |  |  |
| {001}-TiO <sub>2</sub> SC       | -12.11                                                     | -39.55  | -106.65 |  |  |
| {001}-TiO <sub>2-x</sub> SC     | -62.17                                                     | -180.06 | -349.41 |  |  |
| {101}-TiO <sub>2</sub> PC/C     | -2.68                                                      | -9.43   | -24.44  |  |  |
| {001}-TiO <sub>2</sub> SC/C     | -10.13                                                     | -34.89  | -95.23  |  |  |
| {001}-TiO <sub>2-x</sub> SC/C   | -180.82                                                    | -470.90 | -748.66 |  |  |
| {001}-TiO <sub>2-x</sub> SC/rGO | -269.51                                                    | -622.19 | -943.19 |  |  |

| Anatase TiO <sub>2</sub> surface | $O_2(\text{\AA})$ | ${O_2}^{2-}({\rm \AA})$ | OOH⁻(Å) |
|----------------------------------|-------------------|-------------------------|---------|
| {001}-TiO <sub>2</sub>           | 1.209             | 1.223                   | 1.321   |
| {001}-TiO <sub>2-x</sub>         | 1.209             | 1.296                   | 1.391   |
| {101}-TiO <sub>2</sub>           | 1.209             | 1.437                   | 1.411   |

**Supplementary Table 2** O-O bond length in the oxygen substrate and its key intermediates in ORR on  $\{101\}$ -TiO<sub>2</sub>,  $\{001\}$ -TiO<sub>2</sub> and  $\{001\}$ -TiO<sub>2-x</sub>.

**Supplementary Table 3** Calculated thermodynamic properties ( $\Delta G$ ) and energy barrier ( $E_a$ ) in ORR on {001}-TiO<sub>2</sub>, {001}-TiO<sub>2-x</sub> and {101}-TiO<sub>2</sub>, at 298.15 K and 1 atm.

| ORR Step                                         | {001}-TiO <sub>2</sub> |             | $\{001\}$ -TiO <sub>2-x</sub> |             | {101}-TiO <sub>2</sub> |                  |
|--------------------------------------------------|------------------------|-------------|-------------------------------|-------------|------------------------|------------------|
|                                                  | $\Delta G$             | $E_{\rm a}$ | $\Delta G$                    | $E_{\rm a}$ | $\Delta G$             | $E_{\mathrm{a}}$ |
| $O_2^* + 2e^- \rightarrow O_2^{2^-*}$            | -2.478                 | _           | -3.296                        |             | 3.945                  |                  |
| $O_2^{2-*} + H_2O \rightarrow OOH^{-*} + OH^{-}$ | -0.833                 | -0.091      | -0.923                        | 2.889       | -3.400                 | 2.950            |
| $OOH^-* \rightarrow O^* + OH^-$                  | 2.648                  | 2.900       | 1.372                         | 2.030       | -3.400                 | 0.800            |
| $O^* + H_2O + e^- \rightarrow OH^* + OH^-$       | -2.806                 | 7.550       | -4.431                        | 5.007       | -2.583                 | 10.582           |
| $OH^* + e^- \rightarrow OH^-$                    | -0.139                 | 0.430       | -0.463                        | -0.302      | 1.887                  | -3.080           |
| Total                                            | -3.608                 |             | -7.741                        |             | -3.551                 |                  |

Supplementary Note 1: ORR Properties on the Different Surfaces of Anatase TiO<sub>2</sub>. To date, the O<sub>2</sub> adsorption configurations on {101}-TiO<sub>2</sub> and {001}-TiO<sub>2</sub> have been studied extensively. It is generally agreed that {001}-TiO<sub>2</sub> is relatively more active for O<sub>2</sub> adsorption than {101}-TiO<sub>2</sub>, and also the 5-fold coordinated Ti<sup>4+</sup> surface ions are the active site for O<sub>2</sub> adsorption site<sup>1</sup>. In this study, to accurately understand the possible contribution of oxygen vacancy to ORR, we first modeled the O<sub>2</sub> adsorption onto a 5-fold coordinated Ti<sup>4+</sup> surface ion with two Ti-O bonds on {001}-TiO<sub>2</sub> and {001}-TiO<sub>2-x</sub> for comparison (Table 1). For {001}-TiO<sub>2</sub>, O<sub>2</sub> was weakly bound, with a low  $\Delta E_{ads}$  of 1.030 eV, compared to that onto {001}-TiO<sub>2-x</sub> with a much higher  $\Delta E_{ads}$  of 2.277 eV. Solid-liquid interfacial adsorption is usually the essential first step in heterogeneous catalysis<sup>2</sup>. This result indicates that the O<sub>2</sub> adsorption capacity onto {001}-TiO<sub>2</sub> could be significantly enhanced by crystal oxygen vacancy.

It is widely agreed that adsorbed  $O_2$  is initially reduced to  $O_2^{-3}$ , which is the precursor of other further reduced active species, such as  $O_2^{2-}$  and HOO<sup>-</sup>. Moreover, on metal oxide catalyst surface, the ORR in alkaline media is generally proposed to proceed through the chained steps including peroxide and oxide formation, hydroxide displacement, and hydroxide regeneration<sup>4-6</sup>. Thus, the ORR mechanism on anatase TiO<sub>2</sub> surface could be described in Fig. 7a, similar to the series two-electron pathway of ORR on metal catalysts<sup>7</sup>, and the key intermediates of  $O_2^{-}$ ,  $O_2^{2-}$ , HOO<sup>-</sup> and OH<sup>-</sup> were detected by in situ infrared measurements<sup>8</sup>.

The key intermediates of ORR on anatase TiO2 surfaces involve the active

species of  $O_2^{-*}$ ,  $O_2^{2^-*}$ , HOO<sup>-\*</sup>, OH\* and O\* (\*: adsorbed state). Their geometry structures of adsorption configuration on {001}-TiO<sub>2</sub>, {001}-TiO<sub>2-x</sub> and {101}-TiO<sub>2</sub> were thermodynamically optimized, as illustrated in Fig. 6, to understand their catalytic activities. As anticipated, all the O-O bonds in  $O_2^{-*}$ ,  $O_2^{2^-*}$ , HOO<sup>-\*</sup> were elongated over that of O<sub>2</sub> (Supplementary Table 2), indicating their thermodynamic activation for further ORR. The ORR could be divided into two stages (Fig. 7a): reducing absorbed O<sub>2</sub> to adsorbed peroxide and peroxide decomposition, followed by the regeneration of hydroxide from absorbed oxide.

## **Supplementary References**

- Mattioli, G.; Filippone, F.; Bonapasta, A. A., Reaction intermediates in the photoreduction of oxygen molecules at the (101) TiO<sub>2</sub> (anatase) surface. *J. Am. Chem. Soc.* **128**, 13772-13780 (2006).
- George, C.; Ammann, M.; D'Anna, B.; Donaldson, D. J.; Nizkorodov, S. A., Heterogeneous photochemistry in the atmosphere. *Chem. Rev.* (In the press) DOI: 10.1021/cr500648z (2015).
- Wang, Z. H.; Ma, W. H.; Chen, C. C.; Ji, H. W.; Zhao, J. C., Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy-A mini review. *Chem. Eng. J.* 170, 353-362 (2011).
- 4. Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.;

Shao-Horn, Y., Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. *Nat. Chem.* **3**, 647-647 (2011).

- 5. Cheng, F. Y.; Chen, J., Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. *Chem. Soc. Rev.* **41**, 2172-2192 (2012).
- Cheng, F. Y.; Zhang, T. R.; Zhang, Y.; Du, J.; Han, X. P.; Chen, J., Enhancing electrocatalytic oxygen reduction on MnO<sub>2</sub> with vacancies. *Angew. Chem. Int. Edit.* 52, 2474-2477 (2013).
- Farberow, C. A.; Godinez-Garcia, A.; Peng, G. W.; Perez-Robles, J. F.; Solorza-Feria, O.; Mavrikakis, M., Mechanistic studies of oxygen reduction by hydrogen on PdAg(110). ACS Catal. 3, 1622-1632 (2013).
- Nakamura, R.; Imanishi, A.; Murakoshi, K.; Nakato, Y., In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO<sub>2</sub> films in contact with aqueous solutions. *J. Am. Chem. Soc.* **125**, 7443-7450 (2003)