
 
 

 

Supplementary Figure 1∣Morpholigical properties of TiO2-x SCs. The statistical 

particle size distribution (a) of the defective {001}-TiO2-x SCs and their typical TEM 

images (b, c). 
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Supplementary Figure 2∣Crystal phase and surface area of different TiO2 

catalysts. XRD pattern (a) and BET spectra (b) of the {001}-TiO2-x SCs, {001}-TiO2 

SCs and {101}-TiO2 PCs.



 
 

 

Supplementary Figure 3∣Morphological properties of commercial TiO2. Typical 

TEM images of the {101}-TiO2 PCs reference (a, b). 
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Supplementary Figure 4∣Surface area of two TiO2 references. BET spectra of the 

{101}-TiO2 PCs (a) and {001}-TiO2 SCs (b).
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Supplementary Figure 5∣XPS spectra of different TiO2 catalysts. XPS spectra of 

the survey and the Zn 2p of the {001}-TiO2-x SCs (a, b) and the {001}-TiO2 SCs (a, 

c). 
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Supplementary Figure 6∣ORR behaviors of different TiO2 catalysts at various 

rotating rates. Linear voltammetry in O2-saturated 0.1 M aqueous KOH electrolyte 

solution at a scan rate of 10 mV s
-1

 at different RDE rotation rates on the {101}-TiO2 

PC (a), {001}-TiO2 SC (b) and {001}-TiO2-x SC (c) and {001}-TiO2-x SC supported 

by home-made rGO (d).
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Supplementary Figure 7∣Calculation results from RDE tests. K-L plots (i
-1

 vs. 

ω
-1/2

) derived from the linear voltammetry in O2-saturated 0.1 M aqueous KOH 

electrolyte solution at a scan rate of 10 mV s
-1

 at different RDE rotation rates on the 

{101}-TiO2 PC (a), {001}-TiO2 SC (b) and {001}-TiO2-x SC (c). 



-1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4
0.0

0.5

1.0

1.5

2.0

2.5

{001}-TiO
2-x

 SC

@ 400 rpm

 n

 HO
2

-
 %

Potential (V, versus SCE)

E
le

ct
ro

n
 t

ra
n

sf
er

 n
u

m
b

er
 (

n
)

0

20

40

60

80

100

120

P
ero

x
id

e p
ercen

tag
e (%

)

 

 

 

Supplementary Figure 8∣Calculation results from RRDE tests. Peroxide 

percentage and electron transfer number n of ORR on the defective {001}-TiO2-x SCs 

in O2-saturated 0.1 M aqueous KOH electrolyte solution at a scan rate of 10 mV s
-1

 

with a rotation rate of 400 rpm.
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Supplementary Figure 9∣ORR behaviors of different TiO2/C catalysts at 

various rotating rates. Linear voltammetry in O2-saturated 0.1 M aqueous KOH 

electrolyte solution at a scan rate of 10 mV s
-1

 at different RDE rotation rates on the 

{101}-TiO2 PC (a), {001}-TiO2 SC (b) and {001}-TiO2-x SC (c) supported by 

commercial carbon.
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Supplementary Figure 10∣Electronic properties of different TiO2 catalysts at 

various applied bias. EIS plots of the three anatase TiO2 surfaces under the external 

bias of -0.2 V/SCE (a), -0.4 V/SCE (b) and -0.6 V/SCE (c).
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Supplementary Table 1 Comparison of ORR specific activities of different TiO2 

catalysts in O2-saturated 0.1 M aqueous KOH electrolyte solution (scan rate: 10 mV 

s
-1

, rotation rate: 400 rpm). 

 

ORR Catalyst 
Specific Activity (×10

-3
 mA cm

-2
) 

-0.35 V -0.40 V -0.45 V 

{101}-TiO2 PC -1.50 -1.88 -2.41 

{001}-TiO2 SC -12.11 -39.55 -106.65 

{001}-TiO2-x SC -62.17 -180.06 -349.41 

{101}-TiO2 PC/C -2.68 -9.43 -24.44 

{001}-TiO2 SC/C -10.13 -34.89 -95.23 

{001}-TiO2-x SC/C -180.82 -470.90 -748.66 

{001}-TiO2-x SC/rGO -269.51 -622.19 -943.19 
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Supplementary Table 2 O-O bond length in the oxygen substrate and its key 

intermediates in ORR on {101}-TiO2, {001}-TiO2 and {001}-TiO2-x. 

 

Anatase TiO2 surface O2 (Å) O2
2- 

(Å) OOH
- 
(Å) 

{001}-TiO2 1.209 1.223 1.321 

{001}-TiO2-x 1.209 1.296 1.391 

{101}-TiO2 1.209 1.437 1.411 
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Supplementary Table 3  Calculated thermodynamic properties (ΔG) and energy 

barrier (Ea) in ORR on {001}-TiO2, {001}-TiO2-x and {101}-TiO2, at 298.15 K and 1 

atm. 

 

ORR Step 
{001}-TiO2 {001}-TiO2-x {101}-TiO2 

ΔG Ea ΔG Ea ΔG Ea 

O2* + 2e
- 
→ O2

2-
* -2.478 – -3.296  3.945  

O2
2-

* + H2O → OOH
-
* + OH

-
 -0.833 -0.091 -0.923 2.889 -3.400 2.950 

OOH
-
* → O* + OH

-
 2.648 2.900 1.372 2.030 -3.400 0.800 

O* + H2O + e
- 
→ OH* + OH

-
 -2.806 7.550 -4.431 5.007 -2.583 10.582 

OH* + e
- 
→ OH

-
 -0.139 0.430 -0.463 -0.302 1.887 -3.080 

Total -3.608  -7.741  -3.551  
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Supplementary Note 1: ORR Properties on the Different Surfaces of Anatase 

TiO2. To date, the O2 adsorption configurations on {101}-TiO2 and {001}-TiO2 have 

been studied extensively. It is generally agreed that {001}-TiO2 is relatively more 

active for O2 adsorption than {101}-TiO2, and also the 5-fold coordinated Ti
4+

 surface 

ions are the active site for O2 adsorption site
1
. In this study, to accurately understand 

the possible contribution of oxygen vacancy to ORR, we first modeled the O2 

adsorption onto a 5-fold coordinated Ti
4+

 surface ion with two Ti-O bonds on 

{001}-TiO2 and {001}-TiO2-x for comparison (Table 1). For {001}-TiO2, O2 was 

weakly bound, with a low ΔEads of 1.030 eV, compared to that onto {001}-TiO2-x with 

a much higher ΔEads of 2.277 eV. Solid-liquid interfacial adsorption is usually the 

essential first step in heterogeneous catalysis
2
. This result indicates that the O2 

adsorption capacity onto {001}-TiO2 could be significantly enhanced by crystal 

oxygen vacancy. 

It is widely agreed that adsorbed O2 is initially reduced to O2
– 3

, which is the 

precursor of other further reduced active species, such as O2
2–

 and HOO
–
. Moreover, 

on metal oxide catalyst surface, the ORR in alkaline media is generally proposed to 

proceed through the chained steps including peroxide and oxide formation, hydroxide 

displacement, and hydroxide regeneration
4-6

. Thus, the ORR mechanism on anatase 

TiO2 surface could be described in Fig. 7a, similar to the series two-electron pathway 

of ORR on metal catalysts
7
, and the key intermediates of O2

–
, O2

2–
, HOO

–
 and OH

–
 

were detected by in situ infrared measurements
8
. 

The key intermediates of ORR on anatase TiO2 surfaces involve the active 
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species of O2
–
*, O2

2–
*, HOO

–
*, OH* and O* (*: adsorbed state). Their geometry 

structures of adsorption configuration on {001}-TiO2, {001}-TiO2-x and {101}-TiO2 

were thermodynamically optimized, as illustrated in Fig. 6, to understand their 

catalytic activities. As anticipated, all the O-O bonds in O2
–
*, O2

2–
*, HOO

–
* were 

elongated over that of O2 (Supplementary Table 2), indicating their thermodynamic 

activation for further ORR. The ORR could be divided into two stages (Fig. 7a): 

reducing absorbed O2 to adsorbed peroxide and peroxide decomposition, followed by 

the regeneration of hydroxide from absorbed oxide. 
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