

Supplementary Figure 1∣**Morpholigical properties of TiO2-***^x* **SCs.** The statistical particle size distribution (a) of the defective {001}-TiO_{2-*x*} SCs and their typical TEM images (**b**, **c**).

Supplementary Figure 2∣**Crystal phase and surface area of different TiO² catalysts.** XRD pattern (**a**) and BET spectra (**b**) of the $\{001\}$ -TiO_{2-*x*} SCs, $\{001\}$ -TiO₂ SCs and ${101}$ -TiO₂ PCs.

Supplementary Figure 3∣**Morphological properties of commercial TiO2.** Typical TEM images of the $\{101\}$ -TiO₂ PCs reference (a, b) .

Supplementary Figure 4∣**Surface area of two TiO² references.** BET spectra of the {101}-TiO² PCs (**a**) and {001}-TiO² SCs (**b**).

Supplementary Figure 5∣**XPS spectra of different TiO² catalysts.** XPS spectra of the survey and the Zn 2p of the $\{001\}$ -TiO_{2-x} SCs (**a**, **b**) and the $\{001\}$ -TiO₂ SCs (**a**, **c**).

Supplementary Figure 6∣**ORR behaviors of different TiO² catalysts at various rotating rates.** Linear voltammetry in O_2 -saturated 0.1 M aqueous KOH electrolyte solution at a scan rate of 10 mV s^{-1} at different RDE rotation rates on the {101}-TiO₂ PC (**a**), {001}-TiO² SC (**b**) and {001}-TiO2-*^x* SC (**c**) and {001}-TiO2-*^x* SC supported by home-made rGO (**d**).

Supplementary Figure 7 | Calculation results from RDE tests. K-L plots $(i^1$ vs. $\omega^{-1/2}$) derived from the linear voltammetry in O₂-saturated 0.1 M aqueous KOH electrolyte solution at a scan rate of 10 mV s^{-1} at different RDE rotation rates on the {101}-TiO² PC (**a**), {001}-TiO² SC (**b**) and {001}-TiO2-*^x* SC (**c**).

Supplementary Figure 8∣**Calculation results from RRDE tests.** Peroxide percentage and electron transfer number *n* of ORR on the defective $\{001\}$ -TiO_{2-*x*} SCs in O₂-saturated 0.1 M aqueous KOH electrolyte solution at a scan rate of 10 mV s⁻¹ with a rotation rate of 400 rpm.

Supplementary Figure 9∣**ORR behaviors of different TiO2/C catalysts at various rotating rates.** Linear voltammetry in O₂-saturated 0.1 M aqueous KOH electrolyte solution at a scan rate of 10 mV s^{-1} at different RDE rotation rates on the {101}-TiO₂ PC (**a**), {001}-TiO₂ SC (**b**) and {001}-TiO_{2-*x*} SC (**c**) supported by commercial carbon.

Supplementary Figure 10∣**Electronic properties of different TiO² catalysts at various applied bias.** EIS plots of the three anatase TiO₂ surfaces under the external bias of -0.2 V/SCE (**a**), -0.4 V/SCE (**b**) and -0.6 V/SCE (**c**).

Supplementary Table 1 Comparison of ORR specific activities of different TiO₂ catalysts in O_2 -saturated 0.1 M aqueous KOH electrolyte solution (scan rate: 10 mV s^{-1} , rotation rate: 400 rpm).

ORR Catalyst	Specific Activity ($\times 10^{-3}$ mA cm ⁻²)				
	-0.35 V	-0.40 V	-0.45 V		
${101}$ -TiO ₂ PC	-1.50	-1.88	-2.41		
${001}$ -TiO ₂ SC	-12.11	-39.55	-106.65		
$\{001\}$ -TiO _{2-x} SC	-62.17	-180.06	-349.41		
${101}$ -TiO ₂ PC/C	-2.68	-9.43	-24.44		
$\{001\}$ -TiO ₂ SC/C	-10.13	-34.89	-95.23		
${001}$ -TiO _{2-x} SC/C	-180.82	-470.90	-748.66		
${001}$ -TiO _{2-x} SC/rGO	-269.51	-622.19	-943.19		

Anatase $TiO2$ surface	$O_2(A)$	$O_2^{2-}(\AA)$	OOH ^(A)
$\{001\}$ -TiO ₂	1.209	1.223	1.321
$\{001\}$ -TiO _{2-x}	1.209	1.296	1.391
${101}$ -TiO ₂	1.209	1.437	1411

Supplementary Table 2 O-O bond length in the oxygen substrate and its key intermediates in ORR on $\{101\}$ -TiO₂, $\{001\}$ -TiO₂ and $\{001\}$ -TiO_{2-*x*}.

Supplementary Table 3 Calculated thermodynamic properties (Δ*G*) and energy barrier (E_a) in ORR on $\{001\}$ -TiO₂, $\{001\}$ -TiO_{2-*x*} and $\{101\}$ -TiO₂, at 298.15 K and 1 atm.

ORR Step	${001}$ -TiO ₂		${001}$ -TiO _{2-x}		${101}$ -TiO ₂	
	ΔG	$E_{\rm a}$	ΔG	$E_{\rm a}$	ΔG	$E_{\rm a}$
$Q_2^* + 2e^- \rightarrow Q_2^{2-*}$	-2.478		-3.296		3.945	
$Q_2^{2-*} + H_2O \rightarrow OOH^{*} + OH^{-}$	-0.833	-0.091	-0.923	2.889	-3.400	2.950
$OOH^* \rightarrow O^* + OH^-$	2.648	2.900	1.372	2.030	-3.400	0.800
O^* + H ₂ O + e ^{\rightarrow} OH [*] + OH ^{\rightarrow}	-2.806	7.550	-4.431	5.007	-2.583	10.582
$OH^* + e^- \rightarrow OH^-$	-0.139	0.430	-0.463	-0.302	1.887	-3.080
Total	-3.608		-7.741		-3.551	

Supplementary Note 1: ORR Properties on the Different Surfaces of Anatase TiO₂**.** To date, the O₂ adsorption configurations on $\{101\}$ -TiO₂ and $\{001\}$ -TiO₂ have been studied extensively. It is generally agreed that ${001}$ -TiO₂ is relatively more active for O_2 adsorption than {101}-TiO₂, and also the 5-fold coordinated Ti⁴⁺ surface ions are the active site for O_2 adsorption site^{[1](#page-14-0)}. In this study, to accurately understand the possible contribution of oxygen vacancy to ORR, we first modeled the $O₂$ adsorption onto a 5-fold coordinated Ti^{4+} surface ion with two Ti-O bonds on ${001}$ -TiO₂ and ${001}$ -TiO_{2-*x*} for comparison (Table 1). For ${001}$ -TiO₂, O₂ was weakly bound, with a low ΔE_{ads} of 1.030 eV, compared to that onto $\{001\}$ -TiO_{2-*x*} with a much higher ΔE_{ads} of 2.277 eV. Solid-liquid interfacial adsorption is usually the essential first step in heterogeneous catalysis^{[2](#page-14-1)}. This result indicates that the O_2 adsorption capacity onto ${001}$ -TiO₂ could be significantly enhanced by crystal oxygen vacancy.

It is widely agreed that adsorbed O_2 is initially reduced to O_2^{-3} O_2^{-3} O_2^{-3} , which is the precursor of other further reduced active species, such as O_2^2 and HOO⁻. Moreover, on metal oxide catalyst surface, the ORR in alkaline media is generally proposed to proceed through the chained steps including peroxide and oxide formation, hydroxide displacement, and hydroxide regeneration^{[4-6](#page-14-3)}. Thus, the ORR mechanism on anatase $TiO₂$ surface could be described in Fig. 7a, similar to the series two-electron pathway of ORR on metal catalysts^{[7](#page-15-0)}, and the key intermediates of O_2^- , $O_2^2^-$, HOO[–] and OH[–] were detected by in situ infrared measurements 8 .

The key intermediates of ORR on anatase $TiO₂$ surfaces involve the active

species of O_2^{-*} , O_2^{2-*} , HOO^{-*}, OH^{*} and O^{*} (*: adsorbed state). Their geometry structures of adsorption configuration on {001}-TiO₂, {001}-TiO_{2-*x*} and {101}-TiO₂ were thermodynamically optimized, as illustrated in Fig. 6, to understand their catalytic activities. As anticipated, all the O-O bonds in O_2^{2*} , O_2^{2-*} , HOO^{-*} were elongated over that of O_2 (Supplementary Table 2), indicating their thermodynamic activation for further ORR. The ORR could be divided into two stages (Fig. 7a): reducing absorbed O_2 to adsorbed peroxide and peroxide decomposition, followed by the regeneration of hydroxide from absorbed oxide.

Supplementary References

- 1. Mattioli, G.; Filippone, F.; Bonapasta, A. A., Reaction intermediates in the photoreduction of oxygen molecules at the (101) TiO₂ (anatase) surface. *J. Am. Chem. Soc.* **128**, 13772-13780 (2006).
- 2. George, C.; Ammann, M.; D'Anna, B.; Donaldson, D. J.; Nizkorodov, S. A., Heterogeneous photochemistry in the atmosphere. *Chem. Rev.* (In the press) DOI: 10.1021/cr500648z (2015).
- 3. Wang, Z. H.; Ma, W. H.; Chen, C. C.; Ji, H. W.; Zhao, J. C., Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy-A mini review. *Chem. Eng. J.* **170**, 353-362 (2011).
- 4. Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.;

Shao-Horn, Y., Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. *Nat. Chem.* **3**, 647-647 (2011).

- 5. Cheng, F. Y.; Chen, J., Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. *Chem. Soc. Rev.* **41**, 2172-2192 (2012).
- 6. Cheng, F. Y.; Zhang, T. R.; Zhang, Y.; Du, J.; Han, X. P.; Chen, J., Enhancing electrocatalytic oxygen reduction on MnO₂ with vacancies. *Angew. Chem. Int. Edit.* **52**, 2474-2477 (2013).
- 7. Farberow, C. A.; Godinez-Garcia, A.; Peng, G. W.; Perez-Robles, J. F.; Solorza-Feria, O.; Mavrikakis, M., Mechanistic studies of oxygen reduction by hydrogen on PdAg(110). *ACS Catal.* **3**, 1622-1632 (2013).
- 8. Nakamura, R.; Imanishi, A.; Murakoshi, K.; Nakato, Y., In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO² films in contact with aqueous solutions. *J. Am. Chem. Soc.* **125**, 7443-7450 (2003)