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Electron filling in AIs 

Here we discuss how to determine the electron fillings consistent with atomic insulators. 

Given an SG , symmetry-related points are grouped under the `Wyckoff positions' 
w

, 

where the `Wyckoff letters' w (= a, b,…) label qualitatively distinct set of points. We denote 

by | |w
 the number of symmetry-related points in each primitive unit cell corresponding to 

w
. 

 

The AI fillings compatible with an SG  and TR take the form
AI

{ }

2 | |w

w

   , where the 

sum is over a set of Wyckoff positions w . The minimum filling for an AI is hence

AI

min a2 | |  . Symmorphic crystals always have 
a| | 1  and therefore AI

min 2  , which 

must coincide with BI

min  due to Kramers degeneracy. When  is non-symmorphic, 
a| | is 

SG-dependent but it is always 2 , giving AI

min 4  . 
w

 for the four Wyckoff-mismatched 

SGs are listed Ref. (5) and are reproduced in Table 1 of the main text. One sees that AI

min = 8, 

8, 12 and 16 for SGs No. 199, 214, 220 and 230 respectively. 

 

Next we argue a valence bond solid (VBS) arising from one spin-1/2 moment localized on 

each site of a SG-symmetric lattice either has an electron filling consistent with an AI, or 

breaks SG symmetries. Assume the VBS respects SG symmetries. Let r  and r  be the 

coordinates of two spin-1/2 moments paired into a spin-singlet state. By assumption any SG 

symmetry g  either moves both r  and r  (generating another valence bond), or leaves both 

invariant. In both cases, the system remains SG symmetric under the linear scaling of the 

valence bond by a factor t : ( ) / 2r r t r r    and ( ) / 2r r t r r    , where 

( ) / 2r r r   is the bond center. In particular, t=0 corresponds to localizing both spins in 

the valence bond to the same site r , reproducing an AI. 

 

To illustrate the idea we discuss below two concrete examples. First consider a 2D 

rectangular lattice with a glide symmetry ( , ) ( 1/ 2, )x y x y   . The SG-symmetric lattice 

generated by the site (a, b) contains two sites in each unit cell, with the other site at (a+1/2, -



b). (Note the abuse of notation: in these 2D setups we let `SG' stand for wallpaper group 

instead of space group). For this system the AI fillings are 
AI 4  . Now suppose the 

system is at filling 2 4   , with one electron localized on each site of the mentioned 

lattice. To respect time-reversal symmetry, one can attempt to pair the two spin-1/2 moments 

in the unit cell into a singlet state. Under the glide symmetry, however, the singlet bond 

changes from intra- to inter-cell, and therefore the considered VBS state breaks SG 

symmetries. 

 

As another example, consider replacing the glide reflection by a regular reflection symmetry

( , ) ( , )x y x y  . Since the point (a, 0) is taken back to itself under the mirror, a minimum of 

one site in each unit cell is sufficient to respect the SG symmetries, giving AI fillings 
AI 2  . Now suppose again we are at filling 2  , with two spin-1/2 moments localized 

on each of the two symmetry-related sites (a, b) and (a, -b) in the unit cell. This time, the 

valence bond between these two spins does not break any symmetries. Indeed, one sees that it 

is possible to smoothly deform the lattice and take 0b , reducing the VBS state to a strict 

AI. 

  



Symmetries of SG No. 199 

In this appendix we provide supplementary information on the symmetry properties of SG 

No. 199, an explicit tabulation of the feQBI tight-binding example discussed in Eq. 1 of main 

text, and also an additional tight-binding example. 

 

SG No. 199 has three Wyckoff positions labeled by a, b and c, which can respectively be 

realized by having 4, 6 and 12 sites in each primitive unit cell. In particular, the hyperkagome 

lattice in Fig. 1d of the main text corresponds to a lattice in 199

b
. To aid visualization, we 

present in fig. S1 views of the lattice from different angles. 

 

 

 

fig. S1. Reproduction of Fig. 1D with different viewing conditions and extra annotation. The 

screw axes are also included, indicated by dashed lines. On each site, the colored double-

headed arrows indicate the direction of the site-dependent spin-quantization axes for the SG-

symmetric spin-texture. 

 

Symmetries elements 

Up to lattice translations, No. 199 contains 12 symmetry elements. We parameterize the SG 

element g by g =
·

{  |  }gi L

g gR Ie t


 , where I = +1 (-1) for proper (improper) rotation. While 

these can be easily determined from the information listed in ITC (5), we tabulate them in 

table S1 for completeness (`el'. denotes the symmetry operation indexed by the same number 

in ITC).  



table S1. List of symmetry elements for SG No. 199. Elements are parameterized by 

·
{  |  }gi L

g gg R Ie t


  . 

el. I g  gt  

(1) + (0, 0, 0) (0, 0, 0) 

(2) +  (0, 0, 1) (1/2, 0, 1/2) 

(3) +  (0, 1, 0) (0, 1/2, 1/2) 

(4) +  (1, 0, 0) (1/2, 1/2, 0) 

(5) + 
2 1

3 3


(1, 1, 1) (0, 0, 0) 

(6) + 
2 1

3 3


(-1, 1, -1) (1/2, 1/2, 0) 

(7) + 
2 1

3 3


(1, -1, -1) (1/2, 0, 1/2) 

(8) + 
2 1

3 3


(-1, -1, 1) (0, 1/2, 1/2) 

(9) + 
4 1

3 3


(1, 1, 1) (0, 0, 0) 

(10) + 
4 1

3 3


(1, -1, -1) (0, 1/2, 1/2) 

(11) + 
4 1

3 3


(-1, -1, 1) (1/2, 1/2, 0) 

(12) + 
4 1

3 3


(-1, 1, -1) (1/2, 0, 1/2) 

 

Space-group-symmetric spin-texture 

Our notion of a SG-symmetric spin-orbital entanglement cut requires the existence of SG-

symmetric spin-texture, i.e. an assignment of polarized spin states on each site of the lattice 

that does not break any of the SG symmetries. In this subsection we elaborate on their 

existence for lattices corresponding to 199

a
 and 199

b
. 

 

Sites in 199

a
 are invariant under a three-fold rotation, but the rotation axes are site-

dependent. An SG symmetric spin-texture can be formed by polarizing spins along the 

corresponding axis on each site. Sites in 199

b
 are invariant up to lattice translation under 



one of the two-fold screws, and so the spin-texture has the spins polarized along the 

corresponding screw axes. The spin-quantization axes are uniquely defined for sites in 199

a
 

and 199

b
 (up to a global choice of up vs down), but to be self-contained we list them in 

table S2. The spin-quantization axes for 199

b
 are also shown in fig. S1. 

 

We also clarify here a subtle point (though non-essential for our arguments): if the screws 

were `intrinsically' non-symmorphic (NS), no site should be taken back to itself nor its 

lattice-translation images. This, however, is not the case for SG No. 199 as the screws are not 

intrinsic: given any of the screws, one can choose an origin such that the `screw' factorizes 

into a point-group rotation followed by lattice translation. No. 199 is nonetheless NS because 

no common origin can be picked to render all space group elements symmorphic. SGs like 

No. 199, which are NS but do not contain any intrinsically NS element, are known as 

`exceptional' NS SGs, and in fact there are only two of them out of the 230 SGs: No. 24 and 

No. 199. 

 

table S2. Spin-quantization axes corresponding to the SG symmetric spin texture. The sites 

are labeled by l in the same order as they are listed in ITC (5). The axes are parameterized as 

ˆ (sin cos ,sin sin ,cos )l l l l l ln      , and we let 
1

[111] cos (1/ 3)  . 

(a) 199

a
 

 
(b) 199

b
 

l l  l  
 

l l  l  

1 [111]  / 4  
 

1 / 2  0 

2 [111]  3 / 4  
 

2 / 2    

3 [111]   3 / 4  
 

3 / 2  / 2  

4 [111]   / 4  
 

4 / 2  / 2  

    5 0 0 

    6   0 

 

  



Little group irreducible representations 

In table S3 we list the symmetry eigenvalues of the different irreducible representations of the 

little group at high symmetry momenta (0,0,0)  , H (2 ,0,0)  and P ( , , )   . The set 

of isolated four bands forming feQBI corresponds to (2 ) (2 )b c    at   and (1 ) (3 )

P P

a a   at 

P. Irreps at other high symmetry momenta are fixed once these are specified. 

 

table S3. Symmetry eigenvalues of the irreducible little group representations at high-

symmetry momenta. We denote 
2 /3ie   . 

 

 (a) (0,0,0)   and (2 ,0,0)H  : (b) P ( , , )   : 

el. 
(2 )a

 (2 )b
 (2 )c

 (1 )

P

a  (1 )

P

b  (1 )

P

c  (3 )

P

a  

(1) {1,1}  {1,1}  {1,1}  1 1 1 {1,1,1}  

(2) { , }i i  { , }i i  { , }i i  -1 -1 -1 { 1,1,1}  

(3) { , }i i  { , }i i  { , }i i  -1 -1 -1 { 1,1,1}  

(4) { , }i i  { , }i i  { , }i i  -1 -1 -1 { 1,1,1}  

(5) 
*{ },    { 1, }   *{ 1, }   -1   *  

*{ 1, , }     

(6) 
*{ },    { 1, }   *{ 1, }   -1   *  

*{ 1, , }     

(7) 
*{ },    { 1, }   *{ 1, }   -1   *  

*{ 1, , }     

(8) 
*{ },    { 1, }   *{ 1, }   -1   *  

*{ 1, , }     

(9) 
*{ , }   

*{1, }  {1, }  1 *    *{1, , }   

(10) 
*{ , }   

*{1, }  {1, }  -1 *    *{ 1, , }     

(11) 
*{ , }   

*{1, }  {1, }  -1 *    *{ 1, , }     

(12) 
*{ , }   

*{1, }  {1, }  -1 *    *{ 1, , }     

 

  



feQBI tight-binding examples 

Model given in Eq. 1 of main text 

One can deduce the transformation of tight-binding (TB) degrees of freedom by assigning 

them to some actual locations in real space. In Eq. 1 of main text, we assume the sites have 

coordinates in 199

b
 at 1/ 8x  , with a single s-orbital on each site. Note that the TB model 

is chosen such that it contains the irreps needed to realize feQBI, but feQBI is possible in any 

TB models that contains the irreps required. 

 

We label the sites (1-6) in the same order as they appear in ITC (5) (left-right). In writing 

their coordinates as lr x r   with x  a lattice vector, lr depends on the choice of the unit 

cell. Here, we take the primitive lattice vectors as 1 (1/ 2,1/ 2,1/ 2)a  , 2 (0,1,0)a   and 

3 (0,0,1)a  , and choose lr  such that lr  are contained inside the parallelepiped defined by 

the three primitive lattice vectors. With this choice of unit cell, the coordinates are given by 

1 (1/ 8,1,1/ 4);r   2 (3 / 8,1,3 / 4);r   

3 (1/ 4,9 / 8,1);r   4 (1/ 4,7 / 8,1/ 2);r   

5 (0,1/ 4,1/ 8);r   6 (0,3 / 4,3 / 8).r   

The transformation of the TB basis is parameterized by writing ( )l l

i ig r n a r


  , where { in } 

is a triplet of integers. While this is readily computable, in table S4 we tabulate the 

transformation of site l as  1 2 3'; , ,l n n n  under the symmetry elements. 

  

(S1) 



table S4. Transformation of tight-binding sites under the symmetry elements (el.). Sites are 

labeled by l and n  denotes n . 

 

el. \ l 1 2 3 4 5 6 

(1) (1;0 0 0)  (2;0 0 0)  (3;0 0 0)  (4;0 0 0)  (5;0 0 0)  (6;0 0 0)  

(2) (2;020)  (1;021)  (4;021)  (3;020)  (5;110)  (6;120)  

(3) (2;110)  (1;110)  (3;111)  (4;110)  (6;0 0 0)  (5;0 1 0)  

(4) (1;121)  (2;122)  (4;122)  (3;122)  (6;111)  (5;111)  

(5) (3;010)  (4;110)  (5;210)  (6;110)  (1;010)  (2;010)  

(6) (4;112)  (3;223)  (6;323)  (5;212)  (1;111)  (2;112)  

(7) (4;011)  (3;111)  (5;102)  (6;011)  (2;010)  (1;011)  

(8) (3;101)  (4;210)  (6;210)  (5;110)  (2;100)  (1;100)  

(9) (5;211)  (6;211)  (1;211)  (2;111)  (3;011)  (4;111)  

(10) (6;211)  (5;221)  (2;321)  (1;211)  (3;100)  (4;211)  

(11) (6;322)  (5;322)  (1;332)  (2;222)  (4;111)  (3;222)  

(12) (5;101)  (6;111)  (2;211)  (1;111)  (4;010)  (3;110)  

 

To construct a Hamiltonian H that is fully symmetric under SG , one can start from a 

single (non-symmetric) term H0, like the one given in Eq. 1 of main text, and take the 

summation 
1

0

g

H gH g 



 . For reader's convenience, we give an explicit form of H in the 

momentum space here. To fix notation, we specify a generic term in a periodic Hamiltonian 

for SOC electrons as follows: 

               



where x  is also a lattice vector. In table S5, we specify the Hamiltonian by providing a list 

of all terms in this notation. 

 

table S5. A full list of terms in the feQBI tight-binding example given in the main text. The 

terms are parameterized as in eq. S2. 

 

·k x  l’     l 

0 4 t (0,0, )  1 

0 3 t (0,0, )  2 

0 4 t (0,0, )  2 

zk  3 t (0,0, )  1 

( ) / 2x y zk k k   6 t ( ,0,0)  3 

( ) / 2x y zk k k   5 t ( ,0,0)  4 

0 6 t ( ,0,0)  4 

y zk k  5 t ( ,0,0)  3 

( ) / 2x y zk k k    2 t (0, ,0)  5 

0 1 t (0, ,0)  6 

( ) / 2x y zk k k    2 t (0, ,0)  6 

yk  1 t (0, ,0)  5 

 

An alternative `minimal' model 

Since Band

min 4   for SG No. 199, the `minimal' tight-binding model (corresponding to local 

Hamiltonians) should have at least eight bands. This is indeed possible by considering a pair 

of orbitals on each of the sites furnishing 199

a
. However, to match the representation 

content required for forming a feQBI, the TB degrees of freedom have to transform in a more 

intrigue manner under the SG symmetries. 

 



To this end, note again that each site in 199

a
 is invariant under a three-fold rotation along a 

site-dependent axis, and hence it can pick-up an orbital phase of 1, 2 /3ie    or 2  under 

the three-fold rotations. A spin-1/2 polarized along the three-fold rotation axis will also pick 

up a phase of 2 /6ie   for spin-  and 2 /6ie   for spin- . In particular, we consider a TB 

model formed by the ( , )   and 2( , )   orbitals on each of the symmetry-related sites 

belonging to 199

a
. Note that the two on-site orbitals also interchange under TR. 

 

We again parametrize the TB model in a similar manner as in eq. S2, but here we use an 

unconventional basis for the Pauli matrices (corresponding to indices s and s'), namely we 

write    1† 2† † † ( , )l l l l

x x x x l lf f f f U    , where †l

xf   and †l

xf   are respectively the 

creation operators for the ( , )   and 2( , )   orbitals on the l-th site in the unit cell with 

coordinate x , and ( , )l lU    is the site-dependent unitary transformation relating the 

crystalline z-axis to the SG symmetric spin-texture (table S2), i.e. had we picked the   and 

  states from the same orbital then †ls

xf  would just correspond to the creation operator 

written in the basis of crystalline z-axis. 

 

We consider a TB model with four sites in each unit cell starting with 1 (0,0,0)r  . Similar 

to the previous example the coordinates lr  for 1, ,4l    can then be determined from the 

SG symmetries (same choice of unit cell as before), with the sites labeled in the same order as 

in ITC. The terms in the eight-band TB Hamiltonian are tabulated in table S6. In particular, 

TR invariance of the Hamiltonian still requires  ,   to be real, although the   term is no 

longer spin-independent in this choice of basis. One can check that the system forms a feQBI 

when, say, 2 1'/ '   2t t  . The corresponding electronic and entanglement bands are plotted in 

fig. S2. 



table S6. Terms in an alternative eight-band feQBI tight-binding example. 

 

 

 

  

·k x  l’     l 

0 4 1 't  (0,0,0)  1 

0 3 1 't  (0,0,0)  2 

0 2 0 1(0,  ',  0)t  1 

yk  4 0 1(0,  ',  0)t  3 

( ) / 2x y zk k k   3 0 1(0,  0, ')t  1 

( ) / 2x y zk k k    4 0 1(0,  0, ')t  2 

zk  4 0 2(0,  0,  ')t  1 

zk  3 0 2(0,  0,  ')t  2 

yk  2 0 2( ',  0,  0)t  1 

0 4 0 2( ',  0,  0)t  3 

( ) / 2x y zk k k    3 2 't  (0,0,0)  1 

( ) / 2x y zk k k   4 2 't  (0,0,0)  2 



 

fig. S2. Energy and entanglement band structure for an alternative feQBI example for SG No. 

199. Note that the symmetry representation content is identical to the example given in the 

main text. (a) Band structure with 2 1'/ ' 2t t  . The model has an extra `sub-lattice' symmetry 

(i.e. there exists a unitary U such that 
k k

UH U H  ) and hence the bands are symmetric 

about 0
k

E  , but this is purely an artifact of the simple TB model and is not essential. (b) 

Corresponding entanglement band structure. 

 

Hyperkagome lattice and feQBI in the Wyckoff-mismatched space groups No. 214, 220 

and 230 

In this subsection we show that the simple TB model in Eq. 1 of main text can be used to 

establish the existence of feQBIs in all the four Wyckoff-mismatched SGs: No. 199, 214, 220 

and 230. We reproduced in Table 1 of the main text the multiplicities of the Wyckoff positions 

for these four SGs. Note that not all 
w| |  are integer multiples of 

a| |  for these SGs. 

 

To this end, we first focus on SG No. 214. As listed in Table 1, 214

a| | 4 and so AI

min 8   

for SG No. 214. Now we note that the coordinates listed in eq. S1 are chosen to coincide with

214

c
. Recall that with only nearest-neighbour bonds, the system is in a hyperkagome 

structure and each site is four-coordinated. Demanding TR and spatial symmetries of SG No. 

214, the symmetry allowed terms take the form 

 4 † 1

1 2( ( )) h.c. (symmetry-related terms).s z x y s

x s s s s xH f t i f     


            (S3) 



Eq. 1 of main text corresponds to the special case when 2 0  , and so it can just as well be 

regarded as an example of an insulating state in SG No. 214 with filling 4 8   . This 

establishes the existence of feQBI for SG No. 214. For completeness, we also plot in fig. S3 

the phase diagram of the system described by eq. S3 at filling 4  . 

 

 

fig. S3. Plot of band gap E  for the hyperkagome model in eq. S3 at filling 4  . For each 

pixel of the plot, E  is determined by sampling 
330 10  momentum points along the high 

symmetry lines and in the first Billouin zone respectively.  corresponds to the system for 

Fig. 1(e,f) of the main text and   corresponds to that of fig. S4. 

 

Next we consider the centrosymmetric SG No. 230, which can be viewed as SG No. 214 

supplemented with spatial inversion. In particular, 230

c
 is the union of 214

c
 and 214

d
, 

which are inversion-copy of each other. Consequentially, one can simply take the TB model 

in eq. S3 together with its inversion copy to construct a TB model symmetric under SG No. 

230 (defined on two inter-penetrating hyperkagome lattices that are decoupled). Hence one 

can construct a TR symmetric insulator with SG No. 230 at 8  . Since 230

a8 2 | | 16  , 

this is also a feQBI.  

 

Finally, we note that SG No. 220 is a subgroup of No. 230. In particular, 220

a8 2 | | 12 

and so the same model constructed for No. 230 is also a feQBI example for No. 220. 

 

  



Strong and weak indices of feQBI examples 

The strong and weak indices were found by computing the 2  indices for the six TR-

symmetric planes spanned by two of the reciprocal lattice vectors in the Brillouin zone 

containing either   or / 2iG  (where iG  is the remaining reciprocal lattice vector not 

spanning the plane). The strong index was found to be 0 1   and 0 respectively for the SG 

No. 199 feQBI models in Eq. 1 of main text and the one specified in table S6, while both of 

them have weak indices characterized by the vector
1

ˆ2
2

i iG G x    . As such, these models 

actually feature surface states (on the appropriate surfaces), even though they are not required 

by the filling-enforced nature emphasized in this work. 

 

We note that, however, it is not necessary for a feQBI to simultaneously possess nontrivial 

2  indices. For instance, consider the inter-penetrating hyperkagome model mentioned as 

feQBI of SGs No. 220 and 230. The various 2  indices are simply given by twice of the 

corresponding indices of the model in Eq. 1 of main text, and therefore must be trivial. 

 

As another example, observe that fig. S3 features two `islands' of insulating phases, separated 

by a gapless region. This is not a coincidence. The island marked by  corresponds to the 

strong TI model given in the main text, and the one marked by   is in fact neither a strong 

nor weak TI. As such the mentioned gapless phase between the two islands should actually 

feature a nodal semi-metal. We plot in fig. S4 the surface band structures of   on various 

surfaces, all of which are gapped. 

 

  



 

 

fig. S4. Plot of surface band structure against the surface crystal momentum ||k  for the model 

in eq. S3. We take 1 1/ 0.5 / 0.5t t    and 2 / 0.15t  . FE  denotes the bulk Fermi 

energy. Slabs with thickness of 20 surface-adapted unit cells are used and results for different 

surfaces, corresponding to different surface normal n̂ , are shown. Note that with open 

boundary conditions, there are surface states but they do not traverse the bulk gap. (a) 

Periodic boundary condition for ˆ ˆn z . (b) Open boundary condition for ˆ ˆn z . (c) Open 

boundary condition for ˆ ˆ ˆ~n y z . (d) Open boundary condition for ˆ ˆ ˆ ˆ~n x y z  . 

  



Hypothetical structure for spin-orbit-coupled 

hyperkagome material Na3Ir3O8 

In this appendix we point out the observation that the experimentally synthesized 

hyperkagome material Na3Ir3O8 (Na-338) is in close proximity to a feQBI phase, and can 

point to promising avenues for the experimental realization of feQBIs. 

 

Na-338 can be regarded as a hole-doped version of Na-438, a Mott-insulating hyperkagome 

material well-known as a spin-liquid candidate (17). In reality Na-338 crystallizes in SG No. 

213 (19), which is a primitive version of SG No. 214. The structure of the atoms are listed in 

table (S7) (adapted from Ref. (19)). 

 

table S7. Measured structure of Na3Ir3O8 by Takayama et al. (19). The structure is in SG No. 

213 and we use the notation in ITC (5). 

 

Atom Wyckoff Free Parameter Representative 

Ir 12d y=0.113 (0.613, 0.863, 5/8) 

O1 8c x=0.114 (0.114, 0.114, 0.114) 

O2 24e (x, y, z) (0.136, 0.907, 0.919) 

Na1 4b - (7/8, 7/8, 7/8) 

Na2 8c x=0.257 (0.257, 0.257, 0.257) 

 

Due to the strong SOC of Iridium and crystal field splitting coming from the local 

environment, the relevant states near the Fermi level can be (roughly) modeled after an 

effective eff 1/ 2J   Kramers pair centered at the Ir sites (18). This gives rise to 24 relevant 

energy bands around the Fermi level with an electron filling of 8  . (Note that in this 

picture, we are regarding the other 48 bands arising from the eff 3 / 2J   states of Ir as 

separated in energy and fully filled, contributing to `core electron states'.) 

 

While Na-338 is semi-metallic in reality (19), here we consider a hypothetical structure of it 

in which the atom positions are modified to `enrich' the spatial symmetries from SG~No. 213 

(simple cubic) to No.~214 (body-centered cubic). In particular, we change the free parameter 

associated with Ir in table S7 from 0.113y    to 0y  , putting the Iridium atoms in 214

c
. 

A possible assignment of the other atoms are provided in table S8. 



 

table S8. `Symmetry-enriched' hypothetical structure of Na3Ir3O8 in SG No. 214. 

 

Atom Wyckoff Free Parameter Representative 

Ir 12c - (0, 1/4, 1/8) 

O1 8a - (1/8, 1/8, 1/8) 

O2 24h y = 1/4 (0, 1/8, 1/4) 

Na 12d - (0, 1/4, 5/8) 

 

In promoting the bravais lattice from simple cubic in SG No. 213 to body-centered cubic in 

No. 214, the electron filling per primitive unit cell is halved. Retaining only nearest-

neighbour bonds, the system can now be effectively described by eq. S3 with 4   and 

serves as a feQBI example if the parameters 1  and 2  lie in the insulating phase indicated 

in fig. S3. 

 

Note that in this discussion we only intend to give experimental context to feQBIs, instead of 

proposing realistic material candidates. In particular, the `oxygen cage' is significantly 

distorted from the ideal octahedron form in the structure tabulated in table S8, and hence 

whether the effective spin-1/2 picture still holds or not deserves scrutiny. Nonetheless, we 

also note that the site-symmetry group for 214

c
 is the crystallographic point-group 2D , 

which has only one 2-dimensional spinful representation. As such, as long as one can identify 

a Kramers doublet living on the sites of 214

c
 and well isolated in energy from other states, 

the system is described by eq. S3 when restricted to nearest-neighbour bonds. 

  



Discussions on the SE cut 

General discussion on time-reversal symmetry 

Consider an electronic system with particle number conservation. Let the total number of 

particles N be even and |  be a TR symmetric many-body state. We fix the phase 

ambiguity such that ˆ | |T    .Consider a basis {| }i  for sub-system   and {| }i   for . 

In this basis, the ground state can be expanded as  

                           | | |
ij

ij

M i j                                (S4) 

Generally, M is a rectangular matrix. Since TR exchanges   and  , however, M here is in 

particular square. Singular-value-decomposition simply gives †M W V , where W and V 

are unitary, and   is diagonal and positive semi-definite. The Schmidt states in this basis are 

given by

 

and in the same basis the reduced density matrices are 
2 † †W W MM 


   and 

* 2 *T TV V M M 

  . Applying TR operator T̂ ,  

              ˆ ˆ
ˆ ˆ| | | | |

T T
T T 

 

     
   

                     (S6) 

one sees that the two Schmidt states |

  and ˆ|

T



  are degenerate in the entanglement 

spectrum. Note that while T̂  itself is anti-unitary, the map relating the ‘ ' Schmidt states 

with the ‘ ' Schmidt state is also anti-unitary. Altogether, TR becomes a unitary symmetry 

on the entanglement Hamiltonian.  

 

To see this more explicitly, let TR transform the basis by 

                        
ˆ ˆˆ ˆ| | ;    | |T T

ii ii
T i i U T i i U                              (S7) 

where the unitary matrices 
T̂U  and 

T̂U  satisfy 

                             
ˆ ˆ ˆ* ( 1)T T NU U                                (S8) 

as required by
ˆ2ˆ ( 1)NT   . TR invariance of ˆ | |T     implies 



 

One can bring 

 back to 


 using a `spectral flattened' version of M : †M WV . See that 

 

 

so altogether 

                        
ˆ ˆ† †( ) ( )T TU M MU 

 
                         (S11) 

i.e. TR is realized as a unitary symmetry on the entanglement Hamiltonian, as claimed. 

In particular, since ˆ ˆ[ , ] 0N T  , we also have 

                     ˆ ˆ
ˆ ˆ ˆ| | ( ) |

T T
N TN N N


  

   
                       (S12) 

and hence the charges of the paired states are symmetric about / 2N , i.e. TR is manifested in 

a `particle-hole' manner. Note that since TR is now realized unitarily, a state with charge 

/ 2N  can be paired with itself under TR. 

 

To illustrate the ideas discussed above, we provide here a simple illustrative example. 

Consider a two-site system with a particular TR symmetric state 

 

 

 

and under TR, 
† †

l l
f f
 
 and 

† †

l l
f f
 
  . Hence 

 

Choosing the global phase such that ˆ | |T    , we take , ,    . 

The reduced density matrix obtained by tracing out occupancy states with label   has two 

degenerate eigenvalues of 
2 2| |  . These two Schmidt states, having charge 0 and 2 

respectively, form a TR pair. The remaining 2-dimensional block is (in the basis of 
†

1
| 0f

 
  



and †

2
| 0f

 
 ): 

                    
2 2 2

2 2 * 2 2

| |
( )

| |

   


  





 
  
 

                    (S15) 

The corresponding Schmidt weights are 

                    
2 2

2 2 2 2 2| | | |
2 4

 
                             (S16) 

which are generally non-degenerate, and each state is paired with itself under TR. This is 

allowed since they have charge 1=2/2. 

 

General discussion on space group symmetries 

The SE cut is defined to partition degrees of freedom by their spin-label ,  , which are 

picked with respect to some quantization axes. In the presence of SOC, the spin states on 

different sites are also related by SG symmetries. Therefore, to ensure the SE cut is SG 

symmetric we must carefully choose the spin quantization axes in a site-dependent fashion. 

A sufficient condition for the SE cut to respect all SG symmetries is the existence of SG-

symmetric spin-texture, i.e. the spins can be polarized in a site-dependent fashion while 

preserving all the SG symmetries. Equivalently, we demand the existence of site-dependent 

spin-quantization axes for which any spatial symmetries either rotates the spin about the axis, 

or takes the site to some other site. 

Generally speaking, such SG-symmetric spin-textures may not exist for a given lattice 

realization of a space group: whether or not they can be defined depends on the site-

symmetry groups of the sites in the lattice. Since a generic point in space, belonging to the 

general Wyckoff position, is never taken back to itself under any SG element, the only 

possible obstruction comes from high-symmetry points (corresponding to high-symmetry 

Wyckoff positions) where any choice of spin-polarization breaks some site symmetries. 

Nonetheless, as long as one is concerned about the space-group symmetries, but not the 

specific lattice realization of the system, any obstruction to defining an SG symmetric spin 

texture is largely technical. Intuitively, in the continuum it should be possible to adiabatically 

`punch-out' the high-symmetry points without changing the phase. More concretely, one can 

always `split up' a high-symmetry orbital into a small set of orbitals in the vicinity of the 



high-symmetry point in order to avoid any obstruction. In other words, one can approximate 

any desired orbitals on a lattice site by effective `molecular orbitals' on sites belonging to the 

lower-symmetry Wyckoff positions. 

We also note that if the site-symmetry group is one of the 27 non-cubic crystallographic point 

groups, then all SG symmetries can be regarded as symmetries of the entanglement 

Hamiltonian (even when SG-symmetric spin-texture cannot be defined). This is due to the 

existence of a `primary rotation axis' on the sites: for these 27 point groups, a spin polarized 

along the primary rotation axis is either flipped or left invariant (up to a phase) by any 

symmetry operations. An SG symmetry is then realized as an anti-unitary or unitary 

symmetry on the entanglement Hamiltonain depending on whether it flips the spin or not. In 

particular, we note that this is true for all the Wyckoff positions for the four Wyckoff-

mismatched space groups. 

Single-particle entanglement Hamiltonian 

In the following subsections we specialize our discussion to free electron problems. 

Due to Wick's theorem, the ground state entanglement spectrum of a free fermion system 

partitioned into A and A  is completely captured by the single-particle correlation matrix 

†| |ij i jC f f   , where |  is the many-body ground state and , ,i j A  (8-11). Since 

the spin-orbital entanglement cut preserves spatial symmetries, and in particular translation 

invariance, we can focus on correlation functions evaluated at a fixed momentum k . This is 

related to the filled-band projector 
k

 by 
;

( )T

k k
C 

 , where ,   are now collective 

indeces for basis, orbitals and spin degrees of freedom, and run from 1, ,2m . In a proper 

choice of basis, the first m entries of 
k

 correspond to the spin `up' sector in the SE cut, and 

the m m  restricted correlation matrix is simply  

                        
1

1 0
0

m mT

m m m mk k
m m

C


 



 
  

 
                       (S17) 

k
C

is similarly defined. The definition is, of course, basis independent - a basis 

transformation of 
k

 is always accompanied by a corresponding transformation of the 



rectangular matrix projector. Since SE ( )h k  is completely determined by 
k

C , we focus on the 

properties of 
k

C  in the following. 

As 
k

C  is a product of projectors, we have eig( ) [0,1]
k

C  . A (many-body) Schmidt state 

|   with charge N  is formed by populating N  single particle eigenstates | ic   of the full 

‘correlation Hamiltonian’ 
k

k

C C  . The eigenvalues of the reduced density matrix of such 

a state is a product over the eigenvalues of the occupied (occ.) and unoccupied (unocc.) states 

(8-11): 

                           2

occ. unocc.

(1 )i j

i j

c c
 

                           (S18) 

and hence the highest-weight Schmidt states are formed by filling all states of C  with 

0.5ic  , i.e. in this language one should think of filling the bands of C  from above, not 

below, and the effective `chemical potential' is 0.5. Note that the single-particle entanglement 

energies are related to ic  here by 1log( 1)i ic   . In particular, if there are states with 

0.5ic  , they contribute to   in the same way whether they are filled or not, and 

corresponds to degeneracy in the entanglement ground state. Note also that due to particle-

hole character of the TR symmetry on the entanglement spectrum, the highest weight 

Schmidt state, if unique, must have a charge corresponding to half of the total physical 

charge. 

Symmetry properties of the single-particle entanglement Hamiltonian 

Recall that a single-particle Hamiltonian symmetric under a spatial symmetry g satisfies 

                           1

†

( )

g g

k k k g k
U H U H                             (S19) 

where 
g

k
U  is a unitary. The notion of a spatially symmetric spin-texture implies that on each 

site, one can specify a spin quantization axis such that the two spin eigenstates are decoupled 

under all spatial symmetries. This implies there exists a k -independent unitary matrix S  

such that  



                         †
0

0

g

g k

S Sk g

k

U
U

U





 
 
 
 

                        (S20) 

For simplicity, in the following we assume we work with such a basis in mind such that we 

already have g g g

k k k
U U U   . Since the band projector satisfies 

                            1

†

( )

g g

k k kg k
U U                            (S21) 

the restricted correlation matrix transforms as 

                           1

*

( )

T
g g

k k kg k
C U C U

                            (S22) 

i.e. it transforms as a spin-polarized system with the same SG symmetries. 

 

It remains to show how the original TR symmetry is manifested in 
k

C . Note that for the 

original Hamiltonian, TR symmetry implies * †

T Tk k
H U H U


 , and therefore * *T

T Tk k
U U


 . 

In the basis of eq. S17, one simply has 1y

T m mU i    , and therefore  
*

k k
C C  . Using 

the properties of the projectors and the duality discussed in Ref. (10), one sees that if 

(0,1)i

k
c   is an eigenvalue of 

C

k
H 

, then 1 i

k
c  is an eigenvalue of 

k
C


, i.e. TR is now 

manifested as a `particle-hole' symmetry between SE ( )h k  and SE ( )h k  (Fig. 1B of main text 

and fig. S2b). More explicitly, suppose 
k k

C c   , and let 

                            0 1
0

T

k




 
  

 
                           (S23) 

One can then verify (1 )
k k

C c    . Hence, as long as 0  , it is an eigenvector of 
C

k
H 

 

with eigenvalue 1
k

c . In addition, one can check that 0   implies 0
k

c   or 1, so any 

(0,1)
k

c   is paired with a 1
k k

c c

  , i.e. translating this relation into the spectrum of 

SE ( )h k , TR is reflected as a particle-hole like symmetry with SE SE( ) ( )k k    . 



 

Proof of gaplessness of entanglement Hamiltonian for 4   feQBI symmetric under 

time-reversal and space group No. 199 

We argue by contradiction. Assume the many-body entanglement Hamiltonian is gapped with 

a unique ground state. Because TR acts as a particle-hole symmetry, the filling of the 

entanglement ground state must be half the physical filling, 
SE / 2 2   , implying bands 1, 

2 lie isolated below the entanglement Fermi level F 0   

 

 

 

However, we find that at P ( , , )k      the four bands must transform under a 1D and 3D 

irreps. It follows from the fact that the collection of irreps at P carried by the   

entanglement bands must be the same as those of the   physical bands. This is because 
SEh  

is unitarily related to C, the occupied band projector further projected onto the   space; the 

latter projection respects the SG symmetries and so leaves irreps unchanged. 

The feQBI at P has one 1D irrep and one 3D irrep, and this is a robust property of the system: 

the counting 4 = 1+3 cannot be altered without closing the gap, and is independent of any 

particular tight-binding model used. This forces (2) (3)(P) (P)  , which is incompatible with 

an entanglement gap and hence a contradiction. 




