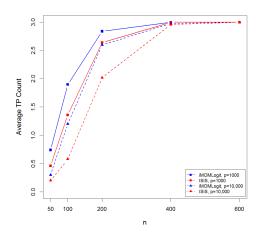
Bayesian Variable Selection for Binary Outcomes in High Dimensional Genomic Studies Using Non-Local Priors

Supplementary Data

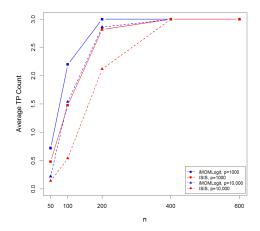
Amir Nikooienejad, Wenyi Wang and Valen E. Johnson

1 Simulation Studies

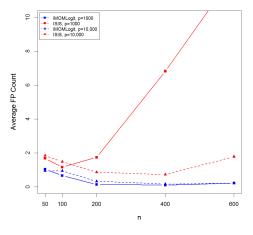
Average TP and FP for β_2 and β_3 explained in simulation studies in the paper.



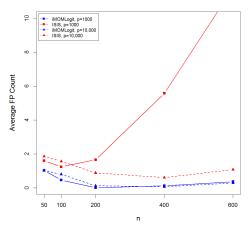
Average true positive count for β_2



Average true positive count for β_3



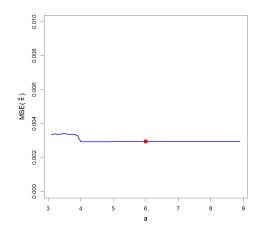
Average false positive count for β_2



Average false positive count for β_3

2 Sensitivity Analysis for Prior Parameters on Model Space

The figure below depicts $MSE(\hat{\pi})$ for different values of a for n = 200, p = 1000 and $\beta = [4, 5, 6]^T$. The output at nominal value of a is indicated by a red square. As shown in this figure, the value of output does not change dramatically with changes in a.



Sensitivity analysis for parameters of prior on model space

3 Discussion on $1/\sqrt{p}$ Overlap

Our rationale for setting the overlap between the sampling distribution of the MLE and the prior density to be $p^{-1/2}$ can be explained as follows. For simplicity, we motivate our criterion in the context of a scalar-valued parameter θ . Let $p(\theta)$ denote the prior density for θ under a nonlocal prior defining the alternative hypothesis, H_1 , and let $f(\theta) = \prod_{i=1}^n f_i(x_i|\theta)$ denote the likelihood function, and let $i(\hat{\theta})$ denote the observed information evaluated at the MLE $\hat{\theta}$, i.e.,

$$i(\hat{\theta}) = -\left. \frac{\partial^2 \log f(\theta)}{\partial \theta} \right|_{\theta = \hat{\theta}}$$

Under the null hypothesis, $\theta = 0$. The marginal likelihood function under the alternative hypothesis can be approximated using Laplace's method as

$$m_1(\hat{\theta})\approx \sqrt{\frac{2\pi}{i(\hat{\theta})}}f(\hat{\theta})p(\hat{\theta}),$$

while under the null model the marginal density of the data is simply

$$m_0 = f(0).$$

In large samples when the null hypothesis is true,

$$f(\hat{\theta}) \approx f(0)e^{\eta(\theta)/2},$$

where η is a chi-squared random variable, which is bounded in probability. Also, for large n, the observed information $i(\hat{\theta})$ converges to Fisher's information, I(0). Define w to be

$$w = \sqrt{\frac{2\pi}{I(0)}}.$$

Now let $g(\hat{\theta})$ denote the sampling distribution of the maximum likelihood estimate under the null hypothesis. We assume that this sampling density is approximately normally distributed around 0 and let $\pm x$ denote the point at which the sampling density of the MLE and the non-local prior densities overlap. Under our constraint on the overlap between densities, the expected value of m_1 satisfies

$$\begin{split} E_0[m_1(\hat{\theta})]/w &\approx \int_{|\hat{\theta}| < x} f(0)e^{\eta(\hat{\theta})/2} p(\hat{\theta})g(\hat{\theta})d\hat{\theta} + \int_{|\hat{\theta}| > x} f(0)e^{\eta(\hat{\theta})/2} p(\hat{\theta})g(\hat{\theta})d\hat{\theta} \\ &\leq \max[g(\hat{\theta})] \int_{|\hat{\theta}| < x} f(0)e^{\eta(\hat{\theta})/2} p(\hat{\theta}) + \max[p(\hat{\theta})] \int_{|\hat{\theta}| > x} f(0)e^{\eta(\hat{\theta})/2} g(\hat{\theta})d\hat{\theta} \\ &\leq \max[g(\hat{\theta}), p(\hat{\theta})] \left[\int_{|\hat{\theta}| < x} f(0)e^{\eta(\hat{\theta})/2} p(\hat{\theta}) + \int_{|\hat{\theta}| > x} f(0)e^{\eta(\hat{\theta})/2} g(\hat{\theta})d\hat{\theta} \right] \\ &\approx \max[g(\hat{\theta}), p(\hat{\theta})] f(0)e^{\eta'/2} \frac{1}{\sqrt{p}} \end{split}$$

for some random variable η' that is bounded in probability. The Bayes factor in favor of the larger model is thus

$$BF_{10} < w \max[g(\hat{\theta}), p(\hat{\theta})] \exp(\eta'/2) \frac{1}{\sqrt{p}}.$$

For large n, the second term on the right hand side of the inequality is determined by the sampling distribution of the MLE and is $O_p(n^{1/2})$, while w is $O(n^{-1/2})$. Thus, the average Bayes factor is $O_p(p^{-1/2})$, and combined with the beta-binomial prior on the model space (which imposes a penalty that is O(1/p) on new variables), this suggests that the number of false positives under the null model of no effects will decrease to 0 as p increases.