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1 Simulation Studies

Average TP and FP for β2 and β3 explained in simulation studies in the paper.

Average true positive count for β2 Average false positive count for β2

Average true positive count for β3 Average false positive count for β3
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2 Sensitivity Analysis for Prior Parameters on Model Space

The figure below depicts MSE(π̂) for different values of a for n = 200, p = 1000 and β = [4, 5, 6]T .
The output at nominal value of a is indicated by a red square. As shown in this figure, the value
of output does not change dramatically with changes in a.

Sensitivity analysis for parameters of prior on model space

3 Discussion on 1/
√
p Overlap

Our rationale for setting the overlap between the sampling distribution of the MLE and the prior
density to be p−1/2 can be explained as follows. For simplicity, we motivate our criterion in the
context of a scalar-valued parameter θ. Let p(θ) denote the prior density for θ under a nonlocal
prior defining the alternative hypothesis, H1, and let f(θ) =

∏n
i=1 fi(xi|θ) denote the likelihood

function, and let i(θ̂) denote the observed information evaluated at the MLE θ̂, i.e.,

i(θ̂) = − ∂2 log f(θ)

∂θ

∣∣∣∣
θ=θ̂

.

Under the null hypothesis, θ = 0. The marginal likelihood function under the alternative hypothesis
can be approximated using Laplace’s method as

m1(θ̂) ≈
√

2π

i(θ̂)
f(θ̂)p(θ̂),

while under the null model the marginal density of the data is simply

m0 = f(0).

In large samples when the null hypothesis is true,

f(θ̂) ≈ f(0)eη(θ̂)/2,
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where η is a chi-squared random variable, which is bounded in probability. Also, for large n, the
observed information i(θ̂) converges to Fisher’s information, I(0). Define w to be

w =

√
2π

I(0)
.

Now let g(θ̂) denote the sampling distribution of the maximum likelihood estimate under the null
hypothesis. We assume that this sampling density is approximately normally distributed around
0 and let ±x denote the point at which the sampling density of the MLE and the non-local prior
densities overlap. Under our constraint on the overlap between densities, the expected value of m1

satisfies

E0[m1(θ̂)]/w ≈
∫
|θ̂|<x

f(0)eη(θ̂)/2p(θ̂)g(θ̂)dθ̂ +

∫
|θ̂|>x

f(0)eη(θ̂)/2p(θ̂)g(θ̂)dθ̂

≤ max[g(θ̂)]

∫
|θ̂|<x

f(0)eη(θ̂)/2p(θ̂) + max[p(θ̂)]

∫
|θ̂|>x

f(0)eη(θ̂)/2g(θ̂)dθ̂

≤ max[g(θ̂), p(θ̂)]

[∫
|θ̂|<x

f(0)eη(θ̂)/2p(θ̂) +

∫
|θ̂|>x

f(0)eη(θ̂)/2g(θ̂)dθ̂

]
≈ max[g(θ̂), p(θ̂)]f(0)eη

′/2 1
√
p

for some random variable η′ that is bounded in probability. The Bayes factor in favor of the larger
model is thus

BF10 < wmax[g(θ̂), p(θ̂)] exp(η′/2)
1
√
p
.

For large n, the second term on the right hand side of the inequality is determined by the sampling
distribution of the MLE and is Op(n

1/2), while w is O(n−1/2). Thus, the average Bayes factor is
Op(p

−1/2), and combined with the beta-binomial prior on the model space (which imposes a penalty
that is O(1/p) on new variables), this suggests that the number of false positives under the null
model of no effects will decrease to 0 as p increases.
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