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1 Simulation Studies

Average TP and FP for 35 and B3 explained in simulation studies in the paper.
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2 Sensitivity Analysis for Prior Parameters on Model Space

The figure below depicts MSE(#) for different values of a for n = 200, p = 1000 and 3 = [4,5,6]".
The output at nominal value of a is indicated by a red square. As shown in this figure, the value
of output does not change dramatically with changes in a.
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Sensitivity analysis for parameters of prior on model space

3 Discussion on 1/,/p Overlap

Our rationale for setting the overlap between the sampling distribution of the MLE and the prior
density to be p~ /2 can be explained as follows. For simplicity, we motivate our criterion in the
context of a scalar-valued parameter 6. Let p(6) denote the prior density for § under a nonlocal
prior defining the alternative hypothesis, Hy, and let f(6) = [[;, fi(z;|¢) denote the likelihood

~

function, and let i(f) denote the observed information evaluated at the MLE 0, i.e.,

i(6) = 0? loagef(ﬁ)

=0

Under the null hypothesis, § = 0. The marginal likelihood function under the alternative hypothesis
can be approximated using Laplace’s method as

mi (é) ~

= £ (O)pd),
i(@)f( )p(0)

while under the null model the marginal density of the data is simply

mo = f(0).

In large samples when the null hypothesis is true,

£(0) ~ f(0)e"®/?,



where 7 is a chi-squared random variable, which is bounded in probability. Also, for large n, the

observed information () converges to Fisher’s information, 1(0). Define w to be

Now let g(f) denote the sampling distribution of the maximum likelihood estimate under the null
hypothesis. We assume that this sampling density is approximately normally distributed around
0 and let +z denote the point at which the sampling density of the MLE and the non-local prior
densities overlap. Under our constraint on the overlap between densities, the expected value of mq
satisfies

Bl (@) fw [ 5O p@)g(@)dd+ [ 0) D p(6)g(6)dd

1)<z |0]>a

<waxlg®)] [ FO2p(0) + maxip(d) / £(0)en®)/2g(6)dd

|0] <z

for some random variable 1’ that is bounded in probability. The Bayes factor in favor of the larger

model is thus 1
BFio < wmax[g(0), p(6)] exp(n'/2)—.

VP
For large n, the second term on the right hand side of the inequality is determined by the sampling
distribution of the MLE and is O,(n'/2), while w is O(n~/2). Thus, the average Bayes factor is
O, (p_l/ 2), and combined with the beta-binomial prior on the model space (which imposes a penalty
that is O(1/p) on new variables), this suggests that the number of false positives under the null
model of no effects will decrease to 0 as p increases.



