Supplementary Figures and Legends (JIN)

Supplementary Figure 1. miR863-3p is induced by bacterial infection.

- (a) miR863 precursor fold-back structure containing miR863-3p and -5p with 2' overhang.
- (b) miR863-3p levels in mock-, *Pst* (*avrRpm1*)- and *Pst* (*avrRps4*)-infected Col-0 WT plants were detected by Northern blot. Bacterial inoculum concentration: 1 x 10⁷ CFU/ml. *Pst* (*avrRpm1*)- *Pst* (*avrRps4*)-infected leaf tissue was collected at 8 hpi and 24 hpi, respectively. U6 was used as a loading control. Relative abundance (RA) levels are indicated.

b

ARLPK1

Signal peptide Transmembrane domain

MRKSHLVK LILAV SLPTTFLIMIA IIIIFIF CRRTTTETNEVQYD VESPYEKQEFSDNGSETEEEL

IIFNGGEDLTICDILD APGEVIGKSSYGTLYKATLQRSGKVRVLRFLRPLCAVNSDSKEFNGVI
ESLGFVRHDNLVPLLGFYVGNRGEKLMIHPFFGSSGNLSAFIKFLAGGDVDAHKWSNILSITI
GIAKALDHLHTGMQKPIVHGNLKSKNVLLDKSFRPRVSDFGLHLLLNLAAGQEVLEASAA
EGYKAPELIKMKEVSKESDVYSFGVIMLELVSGKEPTNKNPTGSVLDRNRLSDLYRPEIIRR
CLKDGNGVTEECVLEYFQLAMSCCSPSPTLRPSFKQVLRKLEEIRK

Kinase domain

ARLPK2

Signal peptide Transmembrane domain

MRKS_LLTITLIGVSLSAFLIVIFFIIFLRRKESSSTESDQYDVESLDHNKQGFSSETEELVIFQG
GEDLTICDILDAPGEVIGKSSYGTLYKASLQRSGKIRVLRFLRPVCTVRSDSKEFNGIIETLVR
HENLVPLLGFYAGNRGEKLMVHPFFGSGNLSDFIRSGDDESRKWINILRITIGISKALDHLHT
GMQKPIVHGNLKSKNVLLSSSFEPRISDFGLHLLLNLSAGQEILDVSAAEGYKAPELIKMKD
VSKESDVYSLGVIMLELVSGKEPINENATGDDEFYLPDFMRNAVLDHRLSDLYRPEILGSDD
NLSEECVLKYFQLAMSCCSPSPSLRPNVKQVLRKLEEIGKF

Kinase domain

Supplementary Figure 2. ARLPK1 and ARLPK2 are atypical receptor-like kinases lacking extracellular domains.

- (a) Diagrams of ARLPK1 and ARLPK2 with important predicted domains indicated. SP (blue box): signal peptide; TM (red box): transmembrane domain; kinase domain (brown box)
- (b) Amino acid sequences of ARLPK1 and ARLPK2 with signal peptide (blue), transmembrane domain (highlighted in yellow), and kinase domain (brown) indicated.

```
Π
ARLPK1 ILDAPGEVIgkssygtlykatlqrsgkvrvlrflrplcavnsdsk-efngvieslg
ARLPK2 ILDAPGEVIgkssygtlykaslqrsgkirvlrflrpvctvrsdsk-efngiietlg
AKIK1 MTNNFQRVVGEGGFGVVCHGTINGSEQVAVKVLSQSSSQGYKHFKAEVDLLL----
            IV
                                           V
ARLPK1 FVRHDNLVPLLGFYVGNRGEKLMIHPFFGSSGNLSAFIKCGDVDAHKWSNILSITI
                                                                 190
ARLPK2 FVRHENLVPLLGFYAGNRGEKLMVHPFFGS-GNLSDFIRSGDDESRKWINILRITI
AKIK1 RVHHTNLVSLVGYCDERDHLALIYEFLPKGDLRQHLSGKSGGSFIN-WGNRLRIAL
             L
                         \mathbf{VI}
ARLPK1 ----GIAKALDHLHTGMQKPIVHGNLKSKNVLLDKSFRPRVSDFGLHLLLNLAAGQ
                                                                 242
ARLPK2 ----GISKALDHLHTGMQKPIVHGMLKSKNVLLSSSFEPRISDFGLHLLLNLSAGQ
                                                                 235
AKIK1 EAALGLEYLHSGCTPPIV----HRDIKTTNILLDEQLKAKLADFGLSRSFPI--GG
                            HRDLKxxN
                                                 DFG
           G--YL
                                      IX
ARLPK1 EVLEAS---AAE-GYKAPELIKMKEVSKESDVYSFGVIMLELVSGKEPTNKNPTG-
                                                                 293
ARLPK2 EILDVS---AAE-GYKAPELIKMKDVSKESDVYSLGVIMLELVSGKEPINENATGD
                                                                 287
AKIK1 ETHI-STVVAGTPGYLDPEYYQTTRLGEKSDVYSFGIVLLEIITNQPVIDQSRSK-
                                                                 795
                       APE
                                     D-YS-G
                                   X
ARLPK1 KEPTNKNPTG-----SVLDRNRLSDLYRPEIIRRCLKDGNG-VTEECVLE
                                                                 328
ARLPK2 KEPINENATGDDEFYLPDFMRNAVLDHRLSDLYRPEILG---SDDN--LSEECVLK
                                                                 327
       -----SHISQWVGFELTRGDITKIMDPNLNGDYESRSVWR
                                                                 830
               XI
ARLPK1 YFOLAMSCCSPSPTLRPSFKOVLRKLEEIRK
                                                                 358
                                                                 359
ARLPK2 YFQLAMSCCSPSPSLRPNVKQVLRKLEEIGKF
AKIK1 VLELAMSCANPSSVNRPNMSQVANELKECLVS
                                                                 880
             M-----R
```

Supplementary Figure 3. Amino acid alignments of ARLPK1, ARLPK2, and AKIK1 kinase domains.

Alignments were made using Clustal Omega (1.2.1)¹. Consensus sequences of active receptor-like kinases are indicated below the alignments²⁻⁶ and include: the glycine rich loop (GxGxxG), the Val-Ala-x-Lys-x-Leu (VA-K-L), glutamate (E), leucine (L), Gly-x-x-Tyr-Leu (GxxYL), His-Arg-Asp-Leu-Lys-x-x-Asn (HRDLKxxN) loop, Asp-Phe-Gly (DFG) motif, Ala-Pro-Glu (APE), Asp-x-Tyr-Ser-x-Gly (DxYSxG), and Met-x-x-x-x-x-x-x-x-x-x-(MxxxxxxxxxR). Features and amino acids that are conserved in ARLPK1, ARLPK2, and AKIK1 are in red, while those that deviate from the consensus are boxed. Subdomains are indicated by Roman numerals.

Supplementary Figure 4. Expression of miR863-3p in MIR863-OE lines after mock- or *Pst (avrRpt2)* treatment.

miR863-3p levels in mock- and *Pst* (*avrRpt2*)-infected Col-0 WT and MIR863-OE plants were detected by Northern blot. Bacterial inoculum concentration: 1 x 10⁷ CFU/ml. Leaf tissue was collected at 14 hpi. U6 was used as a loading control. Relative abundance (RA) levels are indicated.

Supplementary Figure 5. Analysis arlpk1-1 and arlpk2-1 single mutants.

- (a) Gene structure of ARLPK1 and ARLPK2 with *arlpk1-1* (SALK_040744C) and *arlpk2-1* (SALK_144635)

 T-DNA insertion sites indicated, respectively. Black boxes: exons, curved lines: introns, lines: UTRs, triangles:

 T-DNA insertion sites. Nucleotide positions are indicated by the numbers.
- (b) T-DNA insertions in *arlpk1-1* (SALK_144635) and *arlpk2-1* (SALK_040744) were confirmed by real-time RT-PCR. *Actin* was used as control.
- (c) Phenotypes of 4-week-old *arlpk1-1* and *arlpk2-1* mutant plants compared with Col-0 WT plants.
- (d) Bacterial growth in *Pst* (EV)- and *Pst* (*avrRpt2*)-infected Col-0 WT, *arlpk1*-2, and *arlpk2-1* mutants.

 Bacterial inoculum concentration: 5 x 10⁵ CFU/ml. Bacterial growth was measured 3 dpi. Error bars represent standard deviation for at least 15 leaf discs.

Supplementary Figure 6. ARLPK1 and ARLPK2 localize in the endoplasmic reticulum.

Subcellular localization of ARLPK1-YFP and ARLPK2-YFP in *N. benthamiana* was observed at 48 hpi with confocal microscopy. For the plasmolysis treatment, tissue was treated with 5% NaCl for 5-10 min before visualization (+ NaCl), or with water (– NaCl) as a control. GFP empty vector was used as control. RLK-CFP, a known plasma membrane (PM)-localized RLK (At4g23740) was fused to CFP at the C-terminus, was used as a PM-localization control. Arrows indicate Hechtian strands on the bottom panel. Fluorescent images were taken of the middle of the cell. Scale bars: 20 μm.

b AKIK1

Signal peptide

MDSPCWLLLLLLGAFAIIGCVQAQDQQEFISLDCGLPMTEPSSYTESVTGLRFSSDAEFIQTGESGKIQAS
MENDYLKPYTRLRYFPEERRNCYSLSVDKNRKYLIRARFIYGNYDGRNSNPIFELHLGPNLWATIDLQKF
VNGTMEEILHTPTSNSLNVCLVKTGTTTPLISALELRPLGNNSYLTDGSLNLFVRIYLNKKTDGFLRYPDD
IYDRRWHNYFMVDDWTQIFTTLEVTNDNNYEPPKKALAAAATPSNASAPLTISWPPDNPGDQYYLYSHF
SEIQDLQTNDTREFDILWDGAVVEEGFIPPKLGVTTIHNLSPVTCKGENCIYQLIKTSRSTLPSLLNALEIY
TVIQFPRNQLHLLILTSLSSTSVVAVKNIEAAYKLSRIRWQGDPCVPQKYAWDGLNCSNNTDVSKPPRVLS
LNLSSSGLTGIIAAAIQNLTHLEKLDLSNNTLTGVVPEFLAQMKSLVIINLSGNNLSGPLPQGLRREGLELL
VQGNPRLCLSGSCTEKNSKKKFPVVIVASVASVAIIVAVLVIIFVLSKKKSSTVGALQPPLSMPMVHDNSP
EPSIETKKRRFTYSEVIKMTNNFQRVVGEGGFGVVCHGTINGSEQVAVKVLSQSSSQGYKHFKAEVDLL
LRVHHTNLVSLVGYCDERDHLALIYEFLPKGDLRQHLSGKSGGSFINWGNRLRIALEAALGLEYLHSGC
TPPIVHRDIKTTNILLDEQLKAKLADFGLSRSFPIGGETHISTVVAGTPGYLDPEYYQTTRLGEKSDVYSF
GIVLLEIITNQPVIDQSRSKSHISQWVGFELTRGDITKIMDPNLNGDYESRSVWRVLELAMSCANPSSVNR
PNMSQVANELKECLVSENLRENMNMDSQNSLKVSMSFDTELFPRAR

Malectin_like

LRR

Transmembrane domain

Kinase domain

Supplementary Figure 7. AKIK1 is a receptor-like kinase.

- (a) Diagram of AKIK1 with important predicted domains indicated. SP (blue box): signal peptide; malectin-like (peach box); LRR (pink box): Leucine-rich repeat; TM (red box): transmembrane domain; kinase domain (brown box).
- (b) Amino acid sequence of AKIK1 with signal peptide (blue), malectin-like domain (peach); LRR domains (pink), transmembrane domain (red), and kinase domains (brown) indicated.

Supplementary Figure 8. Analysis of akik1-1 and akik1-2 mutants.

- (a) Gene structure of AKIK1 with *akik1-1* (SALK_022711C) and *akik1-2* (CS848612) T-DNA insertion sites indicated. Black boxes: exons, curved lines: introns, lines: UTRs, triangles: T-DNA insertion sites. Nucleotide positions are indicated by the numbers.
- (b) T-DNA insertions in *akik1-1* and *akik1-2* were confirmed by real-time RT-PCR. Actin was used as control.
- (c) Phenotypes of 4-week-old *akik1-1* and *akik1-2* mutants compared with Col-0 WT plants.

Supplementary Figure 9. Expression levels of miR393 and miR319 and ARLPK1, ARLPK2, and SE in Col-0 WT plants infected with various strains of Pst.

- (a) Time course of miR393 and mR319 levels in Pst (avrRpt2)-infected Col-0 WT plants were detected by Northern blot analysis. U6 was used as loading control. Relative abundance (RA) levels are indicated. Bacterial inoculum concentration: 5×10^6 CFU/ml.
- (b) Top: Time course of relative expression levels of ARLPK1 and ARLPK2 transcripts in Pst (EV)-infected Col-0 WT plants were detected by real-time RT-PCR. Bacterial inoculum concentration: 5×10^6 CFU/ml. Error bars indicate standard deviation from three technical replicates. Bottom: Time course of miR863-3p levels in Pst (EV)-infected Col-0 WT plants were detected by Northern blot. U6 was used as loading control. SE protein levels in Pst (EV)-inoculated Col-0 WT plants were detected by Western blot using an anti-SE antibody. α -Tubulin was used as a loading control. Relative abundance (RA) levels are indicated. Bacterial inoculum concentration: 5×10^6 CFU/ml.

Supplementary Figure 10. Uncropped images of each gel and blot presented in the manuscript with corresponding Figure numbers indicated.

For Figure 1a-c

For Figure 2c,e,f

For Figure 3a-b

For Figure 4c,f

For Figure 6a,c,e,f

For Figure 7d,f,h

For Figure 8b,c

For Supplementary Figure 1b

For Supplementary Figure 4

For Supplementary Figure 9a,b

Supplementary Figure 11. Results for biological replicates conducted in this study with corresponding figure numbers indicated.

Figure 1a-c

Replicate 2

Figure 2b

Figure 2c, 2e

Figure 2f

Figure 3a

Figure 3c

Figure 3d

Figure 3e

Figure 4b

Figure 4c

Figure 4d

Figure 4e

Figure 4f

Figure 6a

Figure 6b

Figure 6c

Figure 6d

Figure 6e

Replicate 2

Replicate 3

Figure 6f

Figure 7c

Figure 7d

Figure 7e

Replicate 2

Replicate 3

Figure 7f

Figure 7h

Figure 7i

Figure 8a

Replicate 2

Replicate 3

Figure 8b

Replicate

Figure 8c

Supplementary Table 1. Primers used in this study.

Primer Name	Sequence
mARLPK1-F	5'-CTTTCAGCTTGCAATGAGCTGCTGTAGCCCTTCGCCTACTCTTAGG-3'
mARLPK1-R	5'-GAG TAGGCGAAGGGCTACAGCAGCTCATTGCAAGCTGAAAGTACTCG-3'
mARLPK2-F	5'-TTTTCAGCTTGCAATGAGCTGCTGTAGCCCTTCGCCTTCTCTTAGG-3'
mARLPK2-R	5'-GAGAAGGCGAAGGCTACAGCAGCTCATTGCAAGCTGAAAATACTT-3'
mSE-3'UTR-F	5'-CTTTTGATGTCTGCGGGACTTCCCATACACCTTTTCACTCAC
mSE-3'UTR-R	5'-AAGTATTGATAACAAACAATGTGGATAAAACGCATTATTCAATACAAG-3'
ARLPK1-R 5'RACE	5' TCATTTCCTGATCTCTTCAAGCTTCC 3'
ARLPK2-R 5'RACE	5' CTAAAATTTCCCAATCTCTTCAAG 3'
ACTIN2-F	5'-AGTGGTCGTACAACCGGTATTGT-3'
ACTIN2-R	5'-CTTGCCCATCGGGTAATTCATAG-3'
ARLPK1_OE-F	5'-CACCATGAGAAAATCCCATTTGGTAAA-3'
ARLPK1_OE-R	5'- TCATTTCCTGATCTCTTCAAGCTTC-3'
ARLPK2-OE-F	5'-CACCATGAGAAAATCTCTACTTCTAAC-3'
ARLPK2_OE-R	5'-CTAAAATTTCCCAATCTCTTCAAGTTT-3'
ARLPK1-qPCR-F	`5'-TTATTAGGAGATGTCTGAAGGAT-3'
ARLPK1-qPCR-R	5'-TCATTTCCTGATCTCTTCAAGCT-3'
ARLPK2-qPCR-F	5'-TGAGGAATGCTGTTCTTGATC-3'
ARLPK2-qPCR-R	5'-CTAAAATTTCCCAATCTCTTCAA-3'
AT5G59650-OE-F	5'-CACCATGGATAGTCCTTGTTGGCTTTTGCTG-3'
AT5G59650-OE-R	5'-CTACCTTGCCCTCGGAAACAA-3'
FRK1-F	5'-TGCACTTACCCTCCTTCG-3'
FRK1-R	5'-GACAGTAGAAGCCGGTTGGT-3'
LBb1.3	5'-ATTTTGCCGATTTCGGAAC-3'
SALK_022711-LP	5'-TTTGTTCCACATAGGTACCCG-3'
SALK_022711-RP	5'-GGAAGGGGACCACTAAGATTG-3'
CS848612-LP	5'-ACCTCCACTGAGTATGCCAATG-3'
CS848612-RP	5'-ATCCAGGAGTACCAGCAACCAC-3'
MIR863-3P-OE-F	5'-CACCAGAACCCGATGGAGACCAACA-3'
MIR863-3P-OE-R	5'-CAAACCCGTCAGCTTCCAGA-3'
MIR863-3P-probe	5'-ATTATGTCTTGTTGCTCTCAA-3'
MIR863-5P-probe	5'-TATTGAGATCAACAAGACATA-3'
SALK_144635-LP	5'-CCCTTACAAGGCCAAGAAATC-3'
SALK_144635-RP	5'-AGCTGTGTGGTTCTCTTTTGG-3'

SALK_040744C-LP	5'-TTTTGGGAGGTGATTTCGTAC-3'
SALK_040744C-RP	5'-AATCTTTTCAGCTTCCTCGC-3'
SERRATE-qPCR-F	5'-ATGATCCTAATGCTCCAGGAG-3'
SERRATE-qPCR-R	5'-CGTCTAGGATCTTGTCTAAAG-3'

Supplementary References

- 1. Sievers, F. *et al.* Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol Syst Biol***7**, 539 (2011).
- 2. Kornev, A.P. & Taylor, S.S. Defining the conserved internal architecture of a protein kinase. *Biochim. Biophys. Acta***1804**, 440-4 (2010).
- 3. Endicott, J.A., Noble, M.E. & Johnson, L.N. The structural basis for control of eukaryotic protein kinases. *Annu. Rev. Biochem.***81**, 587-613 (2012).
- 4. Hanks, S.K., Quinn, A.M. & Hunter, T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. *Science***241**, 42-52 (1988).
- 5. Hanks, S.K. & Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. *FASEB J.***9**, 576-96 (1995).
- 6. Boudeau, J., Miranda-Saavedra, D., Barton, G.J. & Alessi, D.R. Emerging roles of pseudokinases. *Trends Cell Biol.* **16**, 443-52 (2006).