Supplementary Information

Plet1 is an epigenetically regulated cell surface protein that provides essential

cues to direct trophoblast stem cell differentiation

Alexander Murray^{1,2}, Arnold R. Sienerth¹ and Myriam Hemberger^{1,2,*}

- 1 Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
- **2** Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- * corresponding author

Dr. Myriam Hemberger Epigenetics Programme The Babraham Institute Babraham Research Campus Cambridge CB22 3AT United Kingdom Tel: +44 (0)1223 496 534 Fax: +44 (0)1223 496 034 Email: myriam.hemberger@babraham.ac.uk

Running head: Plet1 levels modulate TSC fate Keywords: Trophoblast stem cells, lineage gatekeeper, DNA methylation, epigenetics, self-renewal, control of differentiation

Supplementary Figure S1. *Plet1* is a trophoblast-expressed cell surface protein. (a) Expression of lineage marker genes Cdx2, Elf5 and Oct4 (Pou5f1) in ESCs. Dnmt1^{-/-} ESCs and TSCs as shown in Fig. 1c. Data are mean of three replicates displayed ± S.E.M. (**P < 0.005). (b) Flow cytometry analysis to identify Plet1positive cells in *Dnmt1^{-/-}* ESCs grown in ESC conditions or after 4 days of culture in TSC conditions. Wild-type ESCs and TSCs were used as control. The triangles demarcate the gating for Plet1-positive cells (blue pixels) against cell line-specific negative controls (green pixels); the percentage of Plet1-positive cells within the entire cell population is displayed for each group. For each sample, a total of 20,000 cells were analysed. As shown in Fig. 1e, TSCs are homogenously positive for Plet1 whereas ESCs are negative. Consistent with the RT-qPCR data (Fig. 1c), there is only a marginal increase in Plet1-positive cells in *Dnmt1^{-/-}* ESCs; however, this fraction increases as cells undergo trans-differentiation towards trophoblast-like cells upon culture in TSC conditions, confirming again that the *Plet1* mRNA amounts determined by RT-gPCR (Fig. 2b) and the Plet1 surface protein levels are closely correlated.

Murray_Suppl. Figure S2

Plet1 shRNA shRNA1 (targets both isoforms) shRNA2 (targets only long isoform)

b

Supplementary Figure S2. *Plet1* is necessary to induce trophoblast transdifferentiation in ESCs. (a) $Dnmt1^{-/-}$ ESCs readily trans-differentiate into trophoblast cell types on transfer into TSC culture conditions (+Fgf/CM). (b) $Dnmt1^{-/-}$ ESCs were transfected with *Plet1* isoform-specific knockdown constructs: scrambled (scr), targeting both isoforms (shRNA1), or specific to the longer GPI-anchored isoform (shRNA2). $Dnmt1^{-/-}$ ESC clones with stable *Plet1* knockdown were established in ESC media (+Lif), and then induced to trans-differentiate into trophoblast by culture in TSC media alongside untransfected $Dnmt1^{-/-}$ ESCs (s/s). shRNA1-mediated *Plet1* knockdown prevents up-regulation of trophoblast markers, notably *Elf5*, *Cdx2* and *Hand1*, as well as *Rin3* and *Tinagl1* that were previously identified as trophoblast lineage signature genes⁹, suggesting that *Plet1* is required for trophoblast transdifferentiation from ESCs. Data are mean of three replicates ± S.E.M., and representative of two experiments.

Murray_Suppl. Figure S3

Supplementary Figure S3. Plet1 regulation with trophoblast differentiation.

(a) Relative expression levels of stem cell and differentiation marker genes during the 7-day time course of TSC differentiation as shown in Fig. 3c. Data represent the mean of six biological replicates ± S.E.M. (b) Flow cytometry analysis for Plet1 during TSC differentiation. For each sample, a total of 20,000 cells were analysed that are displayed as histogram of staining intensity (x-axis). Surface protein levels recapitulate the down-regulation of Plet1 observed on the mRNA level (Fig. 3c) between TSCs and ~1 day (20 hours)-differentiated TSCs. Upon further differentiation at day 3, the majority of cells re-acquire Plet1 similar to the results observed by RT-qPCR. Quantification of cell fractions that are either negative (or low) for Plet1 or positive for Plet1 at 3d of differentiation was carried out by appropriate gating as shown in the right-hand graph. (c) Confocal images of double-immunofluorescence staining for Plet1 and Cdh3 of TSCs with prior permeabilisation. Nuclear counterstain: DAPI.

Murray_Suppl. Figure S4

b

Supplementary Figure S4. Plet1 overexpression promotes differentiation of TSCs. (a) Effect of high-level over-expression of Plet1 on TSC differentiation. Wildtype TSCs were transfected with either the short isoform (Plet1-short) or the longer GPI-anchored isoform (Plet1-long). Displayed is the effect of Plet1 isoform expression (upper) on markers of intermediate trophoblast (middle), and more differentiated giant cell markers (lower). Higher over-expression levels were achieved in this experimental series in particular for Plet1-long (Plet1 001) at 4 days, compare to Fig. 4c,d, resulting in more pronounced differentiation into the trophoblast giant cell lineage. Data are mean of three replicates ± S.E.M. (*P<0.05, **P<0.005). (b) Phase contrast (upper row) and fluorescent photomicrographs (lower row) of TSCs transfected with vector, Plet1-short or Plet1-long expression constructs. EGFP fluorescence is indicative of transfected cells as the vector contains an IRES-EGFP sequence. Note the more differentiated appearance of Plet1 over-expressing cells despite continued culture in TSC conditions, in particular for the Plet1-long isoform in which the vast majority of cells have differentiated into trophoblast giant cells obvious by their large cell and nuclear size. Photos were taken at identical exposure settings 4 days post-transfection.

Plet1 KO

vec

Supplementary Figure S5. Plet1 knockout strategy using CRISPR/Cas9.

(a) Schematic diagram displaying the two isoforms of *Plet1* and the location of gRNA binding sites. All gRNA sequences were subjected to nucleotide BLAST searches and only those with high specificity were selected to limit the potential for off-target effects. (b) Wild-type TSCs were transfected with either empty vector Cas9.2A.EGFP construct (left; Cas9 vec ctrl) or Plet1-specific gRNA + Cas9.2A.EGFP construct (right; Cas9 + gRNA) and maintained in TSC media for two days. Cells were then stained for Plet1 and sorted by flow cytometry. For the vector control, the successfully transfected GFP/Plet1 positive population (P4) was collected; whereas in the Cas9 + gRNA samples the GFP-positive but Plet1 negative population (P5), not present in the vector control, was enriched for. Desired populations were singlecell sorted into 96-well plates facilitating the derivation of clonal cell lines. (c) Schematic diagram (generated using Geneious sequence analysis software) showing sequence traces for Cas9 vector control and both alleles of a representative Plet1 KO clone. Displayed is the target locus for gRNA1 (in exon 1 of *Plet1*). Note, indel mutations on both alleles cause frame-shift mutation and a premature stop codon (STOP). P = protospacer adjacent motif (PAM); gRNA = guide RNA. (d) Quantification of cell nuclei that appear as single cells or in syncytia in vector control (vec) and *Plet1^{-/-}* TSCs after 6 days of differentiation. Quantification was performed on 3 independent clones each; the total number of nuclei counted is given.

Supplementary Table S1

Primer name	Sequence (5'-3')		
Ascl2_F	AGCCCGATGGAGCAGGAG		
Ascl2 R	CCGAGCAGAGGTCAGTCAGC		
Cdh1_F	AGTTTACCCAGCCGGTCTTT		
Cdh1 R	CCGGTGTCCCTATTGACAGT		
Cdx2_F	AGTGAGCTGGCTGCCACACT		
Cdx2 R	GCTGCTGCTGCTTCTTCTTGA		
Ctsq_F	AATTGGCTATGGTTATGTGGGA		
Ctsq_R	TCACACAGTAGGGTATTGGG		
D930020E02(SynB)_F	TCCGGAAAGGGACCTGCCCA		
D930020E02(SynB)_R	CAGCAGTAGTGCGGGGTGCC		
Dynein_F	GACCTCAGGCTCAGACGAAGAC		
Dynein_R	AAGACGCTCATGGCATCACA		
Elf5_F	ATTCGCTCGCAAGGTTACTCC		
Elf5_R	GGATGCCACAGTTCTCTTCAGG		
Eomes_F	TCGCTGTGACGGCCTACCAA		
Eomes R	AGGGGAATCCGTGGGAGATGGA		
Esrrb_F	AGTACAAGCGACGGCTGG		
Esrrb R	CCTAGTAGATTCGAGACGATCTTAGTCA		
Ets2 F	GACCAAGTGGCCCCTGTCGC		
Ets2 R	GGCCCGTGGGCACTTCTTGG		
Fgfr2 F	TGCAGCTAGGACGGTAGACA		
Fgfr2 R	GTCCAGTACGGTGCTCTCTG		
Gapdh F	ACATCTCACTCAAGATTGTCAGCA		
Gapdh_R	ATGGCATGGACTGTGGTCAT		
Gata3_F	AGGCAACCACGTCCCGTCCT		
Gata3_R	CGGTGTGGTGGCTGCTCAGG		
Gcm1_F	ACCCCTGAAGCTTATTCCCT		
Gcm1_R	TCGCCTTTGGACTGGAAA		
Gm52-(SynA)_F	CCTCACCTCCCAGGCCCCTC		
Gm52-(SynA)_R	GGCAGGGAGTTTGCCCACGA		
Hand1_F	GAACTCAAAAAGACGGATGGTGG		
Hand1_R	CGCCCAGACTTGCTGAGG		
Hprt1_F	GTCATGCCGACCCGCAGTCC		
Hprt1_R	GGCCACAATGTGATGGCCTCC		
Id2_F	ACTCGCATCCCACTATCGTC		
Id2_R	AATTCAGATGCCTGCAAGGA		
Id3_F	CAGCTGAGCTCACTCCGGAAC		
Id3_R	CCAGAGTCCCAGGGTCCCAA		
Lубе_F	GATGTCTGCCACTTCCAACA		
Ly6e_R	CATCAGGGAATGAACTTGCTC		
Ovol2_F	AACTCCAGAGCTTCACGACG		
Ovol2_R	GCATGTGCCGGTGGTAAACT		
Pcdh12_F	GCTGCTTTTGCGGAACGGAA		
Pcdh12_R	TTTGGGCTGGAATTGGCCCT		
Pgk1 F	CTGACTTTGGACAAGCTGGACG		

Pgk1_R	GCAGCCTTGATCCTTTGGTTG	
Plet1_F	CACTATGGCTAACGTCTCTGG	
Plet1_R	CTGTCGTCCTCCTTCACTG	
Plet1-001_F	GTCCTCATCGTCGTCAATC	
Plet1-001_R	TCGTGTTTATGGTCTGGC	
Plet1-002_F	CCGTGAAAATGGAACAAG	
Plet1-002_R	CAGAGTTGACCAGAGTGAGTG	
Prl2c-(Plf)_F	AACGCAGTCCGGAACGGGG	
Prl2c-(Plf)_R	TGTCTAGGCAGCTGATCATGCCA	
Prl3b1-(Pl2)_F	GCACTCGGGGAACAGCAGCC	
Prl3b1-(Pl2)_R	ACTGCCAGCAACAGGAGTGCC	
Prl3d1/2/3-(Pl1)_F	TTATCTTGGCCGCAGATGTGT	
Prl3d1/2/3-(Pl1)_R	GGAGTATGGATGGAAGCAGTATGAC	
Prl8a9_F	AAGAGAAAACTCCTGGAAGACC	
Prl8a9_R	AACAATTTATAATGTTTGCCCTGTG	
Rin3_F	ATTGGTGCTGTGTGTCCACT	
Rin3_R	GCCTTCCAGGTACAGTATAGCC	
Sdha_F	TGGTGAGAACAAGAAGGCATCA	
Sdha_R	CGCCTACAACCACAGCATCA	
Sox2_F	GAGTGGAAACTTTTGTCCGAGA	
Sox2_R	GAAGCGTGTACTTATCCTTCTTCAT	
Spry4_F	TCCTCAAAGACCCCTAGAAGC	
Spry4_R	CATGACTGAGCTGGGATTCA	
Tbp_F	GAGCTCTGGAATTGTACCGC	
Tbp_R	GTTGTCCGTGGCTCTCTTATTC	
Tead4_F	TCTAATGCCTTCTTCCTTGTGA	
Tead4_R	GAGCAGACCTTCGTAGAGCA	
Tfap2c_F	GCCGGACGCCATGTTGTGGA	
Tfap2c_R	ACCCCGGTGTGCGAGAGAGG	
Tfeb_F	TCAGAAGCGAGAGCTAACAG	
Tfeb_R	TGCGTCTTCTCTCAATTAGGT	
Tinagl1_F	TGATTCCAACGACATCTACCA	
Tinagl1_R	CTTCCATGAGTGCTTGAACAG	
Tpbpa_F	ACTGGAGTGCCCAGCACAGC	
Tpbpa_R	GCAGTTCAGCATCCAACTGCG	
Zic3_F	ACACTGGCGAGAAACCCTTC	
Zic3_R	ACCGTCTGTCACAGCCTTC	

Bisulphite sequencing primers	
Plet1 bis -1293F	GGTAAAATTTGTTTAGTTTTTAGGA
Plet1 bis -783R	CCAATACACTCCATACTTACCTTA
Plet1 bis -1270F	GAAGTTTTGGATTTAGTTATTAGTG
Plet1 bis -803R	TTACCTTAAATTAATTCTCTATACATTC
Plet1 bis -417F	TGAGATAAAAAGGGTATTTAAGTTTG
Plet1 bis -89R	CCTCCTAAAAACATTACCTTCTAAA
Plet1 bis -395F	TTTGAGTTTTTGATAGAGGAAAGTA
Plet1 bis -131R	ACCTAAATAAATCACCCAACCT
Plet1 bis -41F	GTTTTAGAGTATATAAATAGGAGTTTGTT

Plet1 bis 456R	CTTAACACAACCTTATATTACCAAAAT
Plet1 bis -1F	TATTATTGTTAGGTTTTGTAATTTAAATAG
Plet1 bis 420R	CTAAAACTCAATTTACCCCA

Plet1 CRISPR gRNAs					
Name	Strand	Exon	target oligo (5'-3')	complementary oligo (5'-3')	
gRNA1	-	1st	CACCGATGTTATCAAGGACCACGC	AAACGCGTGGTCCTTGATAACATC	
gRNA2	+	1st	CACCGACTATGGCTAACGTCTCTGG	AAACCCAGAGACGTTAGCCATAGTC	
gRNA3	-	2nd	CACCGACTGACTGAATCGTTCACG	AAACCGTGAACGATTCAGTCAGTC	