
Supplemental Material

Addressing inaccuracies in BLOSUM computation improves

homology search performance

Martin Hess 1,2,4, Frank Keul 2,3,4, Michael Goesele 1 & Kay Hamacher 2

1Department of Computer Science, Technische Universität Darmstadt, Graphics, Capture and Massively Paral-
lel Computing, Rundeturmstraße 12, 64283 Darmstadt, Germany.
2Department of Biology, Technische Universität Darmstadt, Computational Biology and Simulation, Schnittspahnstraße
2, 64287 Darmstadt, Germany.
3To whom correspondence should be addressed.
4The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

Error description

In the BLOSUM matrix computation a specific clustering threshold is computed for each sequence block of the BLOCKS
data set via a user specified clustering percentage (defined in Cluster) and the block’s size (defined in Block.width).
Through this, a similarity score (pairs[px].score) can be calculated for every pair of sequences of the respective block
by counting the number of identical residues. This count is then compared to the aforementioned block and cluster-
ing percentage specific threshold to decide whether two sequences should be — as similar sequences — clustered or not.

// Original threshold calculation

680 i n t threshold =

(i n t)(Cluster *(Block.width))/ 1 0 0;

...

// Clustering decision

728 if (pairs[px].score >= threshold){

// Cluster sequences

...

}

// Corrected threshold calculation

680 f l o a t threshold =

(f l o a t)(Cluster *(Block.width))/ 1 0 0 f;

...

// Clustering decision

728 if (pairs[px].score >= threshold){

// Cluster sequences

...

}

Supplementary Listing 1: Threshold calculation and clustering decision adapted from lines 680 and 728 of the
original blosum.c file (available at [1]). Left) The original code lines using an integer based clustering threshold.
Right) The corrected code lines using a floating point based clustering threshold. Differences between both listings
are highlighted in red. The loss of precision caused by the integer based threshold can lead to an inaccurate clustering
decision in line 728.

Supplementary Listing 1 shows the relevant code parts for the calculation of the clustering threshold and the
clustering decision adapted from the original blosum.c file. The left side depicts the original code lines using an
integer based clustering threshold, which effectively truncates the real floating point threshold from line 680 at the
integer position by way of an explicit type cast. This loss in precision can lead to an inaccurate clustering decision in
the main clustering routine. To avoid these inaccuracies, we use a floating point clustering threshold, as depicted on
the right side of Supplementary Listing 1.

In order to quantify the effect of the integer type cast we calculated the relative threshold difference ∆Trel between

the correct clustering threshold (T = K·lblock
100

) and the threshold used in the actual BLOSUM code (T̂ =
⌊

K·lblock
100

⌋
).

1

For increasing block lengths lblock and given integer clustering coefficient K, ∆Trel describes the difference between the

clustering thresholds in relation to the block size found in the BLOCKS 5 database [2] with the equation ∆Trel = T−T̂
lblock

(see Fig. 1 for K = 62). As the BLOCKS 14.3 database consists of two orders of magnitude more sequences than
BLOCKS 5 (6739916 sequence entries to BLOCKS 5’s 27102), more sequences are incorrectly clustered. Hence, for
BLOCKS 14.3 we expect larger differences between the derived BLOSUM and CorBLOSUM matrices.

100

101

102

103

104

105

100

101

102

103

104

105

B
LO

C
K

S
 5

B
LO

C
K

S
 14.3

oc
cu

ra
nc

e

0.00

0.05

0.10

0.15

0.20

5 10 15 20 25 30 35 40 45 50 55 60
Block length

∆T
re

l

Supplementary Figure 1: Theoretical error indicated by the relative threshold difference ∆Trel for the clustering
coefficient K = 62. In the lowest panel, the difference ∆Trel between the floating point threshold T and the truncated
threshold T̂ is shown for increasing block lengths. The number of sequences found in the BLOCKS 5 and BLOCKS
14.3 databases for these block lengths are depicted in the panels above. For smaller blocks this relative difference
is large and vanishes with increasing block length. Note the systematic and therefore biased behavior of ∆Trel as
function of the block length.

Matrix Performance on ASTRAL70

The obtained coverage values for the tested ASTRAL70 versions and substitution matrices are shown in Additional
figure 4. Similar to the ASTRAL40 results, the reported values represent the respective best matrix / gap parameter
combinations with Z-scores shown in Additional figure 7. Again a general performance progression can be identified
which is nearly the same as that observed for the ASTRAL40 subset, i.e the performance drop at ASTRAL 1.69 and
the large increase starting with the introduction of the SCOPe based ASTRAL 2.01. Here again, the highest coverage
was obtained for CorBLOSUM6613+ on ASTRAL 2.06 with a coverage of 0.5445 at a gap open/extension penalty of
12/1. In general, the achieved coverages are higher than those on the ASTRAL40 subset. This is expected, since the

2

average sequence similarity in ASTRAL70 is higher than in ASTRAL40 and all matrices listed here generally favor
conservation over substitution. The latter is represented by larger log-odd scores on the matrix diagonal than those
on off-diagonals.

For an entropy level comparable to BLOSUM50 matrices, their corresponding CorBLOSUM counterparts performed
at least as good in ∼ 96% of all test cases. In particular, the CorBLOSUM coverage for BLOCKS 5 and BLOCKS
13+ was equal or higher in all and for BLOCKS 14.3 in ∼ 88% of the tested databases when compared to their
corresponding BLOSUM50 matrix.

In comparison to the three different BLOSUM62 matrices, CorBLOSUM matrices achieved equal or higher coverage
values in ∼ 71% of all tested databases. In particular, CorBLOSUM6613+ and CorBLOSUM6714.3 performed at
least as good as the corresponding BLOSUM62 matrices in ∼ 82% and ∼ 71% of all test cases. The BLOCKS 5
derived CorBLOSUM615.0 was still able to achieve a similar or higher rating than BLOSUM625.0 in ∼ 59% of the
test databases. Nevertheless, CorBLOSUM615.0 showed here the same performance as the BLOSUM625.0 when
considering only SCOPe derived ASTRAL datasets. On these CorBLOSUM matrices outperformed their BLOSUM
counterparts in ∼ 92% of the time over all BLOCKS versions and entropy levels. When comparing CorBLOSUM-
and RBLOSUM-type matrices no clear statement of performance advantages can be made since both matrix types
delivered a similar performance altogether.

Matrix Performance on ASTRAL20

Additional figure 5 shows the coverage values reported for the tested ASTRAL20 versions. The overall coverage
progression is different for these databases compared to ASTRAL40 or ASTRAL70 datasets. Nevertheless, an
increment in coverage is also observable for SCOPe based ASTRAL versions but starting here at ASTRAL 2.04. The
corresponding Z-scores are shown in Additional figure 7. In general, the reported coverage is substantially lower
than those observed for ASTRAL40 and ASTRAL70. This indicates that all tested substitution matrices do not
perform well on datasets containing only diverse sequences. Here, the highest coverage of only 0.1634 at a gap open
and extension penalty of 12/2 was achieved by the RBLOSUM6913+ on the oldest ASTRAL release, ASTRAL 1.55.
The highest coverage for the newest ASTRAL version was found for the RBLOSUM525.0 with a coverage of 0.1544 at
a gap open/extension penalty of 16/1.

At the BLOSUM50 entropy levels the tested CorBLOSUM matrices performed at least as good as their BLOSUM
counterparts in ∼ 80% of all scenarios. In detail, the CorBLOSUM coverage for BLOCKS 5 was equal or higher in
∼ 71%, in ∼ 94% for BLOCKS 13+ and in ∼ 76% for BLOCKS 14.3 of the tests. On SCOPe derived ASTRAL
versions CorBLOSUM variants achieved a rating of ∼ 94% in comparison to BLOSUM.

When compared to the BLOSUM62 variants, CorBLOSUM6613+, CorBLOSUM6714.3 and CorBLOSUM615.0

performed at least as good only in ∼ 59%, ∼ 76% and ∼ 24% of all test cases. For the latter, BLOSUM625.0 performed
best over all but the newest three ASTRAL releases. For these ASTRAL datasets the CorBLOSUM615.0 outperformed
the BLOSUM625.0 significantly. When comparing CorBLOSUM- and RBLOSUM-type matrices it is remarkable
that for older ASTRAL releases RBLOSUM often performs significantly better than its CorBLOSUM counterpart.
Nevertheless, over all BLOCKS versions and entropy levels, CorBLOSUM matrices perform at least as good as
RBLOSUM-type matrices in ∼ 63% of all databases. For SCOPe derived ASTRAL sets this percentage increases to
∼ 92%.

References

[1] BLOSUM source code. Accessed 18 Sept 2015. ftp://ftp.ncbi.nih.gov/repository/blocks/unix/blosum/

blosum.tar.Z

[2] Henikoff, S., Henikoff, J.G.: Automated assembly of protein blocks for database searching. Nucleic Acids Research
19(23), 6565–6572 (1991)

3

ftp://ftp.ncbi.nih.gov/repository/blocks/unix/blosum/blosum.tar.Z
ftp://ftp.ncbi.nih.gov/repository/blocks/unix/blosum/blosum.tar.Z

