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Fracture energy of the hydrogel measured with the pure-shear test  

A pure-shear test was used to measure the fracture energy of the hydrogel. As illustrated in 

Figure S1, we separately stretched two identical samples with the same thickness 0T , width 0W , 

and initial gauge length 0L , where 000 TLW  . One sample was notched with a crack with 

length of 05.0~ W  and the other was un-notched. The notched sample was stretched to a critical 

distance cL (length at which crack propagation began), while the un-notched sample was 

stretched to measure the force-displacement curve. The fracture energy of the gel can be 

calculated by
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Figure S1. Schematic of the pure-shear test for measuring fracture energy of hydrogels. a, 

notched samples are stretched to a critical distance cL , at which point crack propagation occurs; 

b, un-notched samples are stretched to cL  , with the force  recorded and the fracture energy of 

the hydrogel calculated as )/()( 00
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L , where 0W , 0T  and 0L represents width, thickness 

and initial gauge length of the sample, respectively. 
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Effect of Ca2+ and molecular weight of PEG on fracture energy and hysteresis 

Mechanical properties were measured for PEG-alginate hydrogels with PEG of various molecular 

weights with or without Ca2+. Each molecular weight of PEG (6,000, 10,000, or 20,000 Da, all 

held at 20 wt%) was mixed with the same concentration of alginate (2.5 wt%) and crosslinked 

under 365nm UV for 10 min.  

 

 

 

Figure S2. a, Comparison of fracture energies of PEG-alginate hydrogels without and with Ca2+ 

(50µl of 1M CaSO4·2H2O per 2mL of pre-gel solution) and pure PEG hydrogels as a function of 

molecular weight of PEG. b, stress-strain hysteresis loop of 20 kDa PEG-alginate hydrogel with 

and without Ca2+. c, ultimate tensile strain as a function of PEG molecular weight. 
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 Fracture energy of the hydrogel as a function of PEG concentration 

The effect of PEG concentration on fracture energy of the hydrogel was investigated. Various 

concentrations of PEG-diacrylate (molecular weight 20,000Da) were mixed with a fixed 

concentration of alginate (2.5 wt%) in the pre-gel solutions. As shown in Figure S3, higher 

concentrations of PEG increase the fracture energy of the hydrogel. We chose 20 wt% PEG for 

the pre-gel solutions of PEG-alginate hydrogels in the current study, since the corresponding 

hydrogel readily exhibits fracture energy values surpassing 1,000 Jm-2. As a control study, we 

also measured the fracture energy of hydrogels made from PEG-diacrylate (molecular weight 

20,000Da) without alginate. 

 

 

 

Figure S3.  Fracture energy as a function of PEGDA concentration in the pre-gel solution. 
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Effect of photo initiator density on the fracture energy of PEG-alginate hydrogel 

Various concentrations of photo initiator (I-2959) were mixed in the PEGDA-alginate pre-gel 

solutions. The concentration of 20 kDa PEGDA and alginate was fixed to be 20 wt% and 2.5 

wt%, respectively. The fracture energy of the resultant PEG-alginate hydrogel varies with the 

concentration of I-2959 as shown in Figure S4.  

 

 

 

Figure S4.  The effect of I-2959 concentration on fracture energy of the hydrogel 
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Digital image correlation to measure the strain field of the deformed hydrogel 

 

 

Figure S5. Schematic illustrating the digital image correlation technique. A random speckle 

pattern was spray painted onto the surface of a sample. Images of the speckle patterns at both the 

reference state and deformed state were recorded by a standard video camera throughout sample 

extension. The surface strain was measured by matching the digitalized images before and after 

deformation via VIC-2D software. 

 



     

7 
 

Viscosity of pre-gel solutions with various concentrations of nanoclay  

The viscosity of pre-gel solutions with various concentrations of nanoclay was tested in an AR 

G2, 2° cone and plate viscometer (TA Instruments, New Castle, DE). Each sample was tested in a 

shear ramp test running from 0.01s-1 through 100s-1 shear rate over the course of two minutes. At 

low shear rates, increasing the concentration of clay as well as adding 50µl of 1M Ca2+ per mL of 

pre-gel solution raises the viscosity; this allows the printed pre-gels to maintain their shapes 

before the PEGDA is crosslinked. The hydrogel begins to shear thin at a critical shear rate; this 

results in an inverse relationship between viscosity and shear rate.  

 

Figure S6. Viscosity of the pre-gel solution with various concentrations of nanoclay as a function 

of shear rate.  
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Printed mesh of PEG-alginate-nanoclay hydrogel immersed in collagen 

A printed mesh consisting of the previously described PEG-alginate-nanoclay hydrogel was 

immersed in a cell-laden (HEK cells) collagenous solution. The collagen infiltrates into the mesh 

of the PEG-alginate-nanoclay hydrogel. At 22 °C, the collagen solution gelled over the course of 

20 minutes to form a composite hydrogel composed of collagen gel between the channels of the 

printed PEG-alginate-nanoclay mesh, as shown below in Figure S7. Cell viability in the collagen 

remained approximately 95% throughout a 7 day study, as shown in Figure 4c. 

 

Figure S7. An illustration of a 3D printed PEG-alginate-nanoclay hydrogel mesh (shown above 

in tan) with collagen gel (gold) formed throughout the interconnected pore network. 

 

 

 



     

9 
 

Supplementary Movie 1. This movie shows a direct fabrication of a 3D hydrogel cube without 

the need for support material or post-processing modifications.  

 

Supplementary Movie 2. This movie demonstrates recovery of a printed pyramid of the PEG-

alginate hydrogel from compression test. It could withstand 95% compressive strain and nearly 

recover its original shape when the strain was released. 

 


