
Web Appendix 1: Some technical remarks

The concept of a weighted median is one that goes back to the 19th century [Edge-

worth, 1887, 1888]. However, there is no universally agreed method for calculating

a weighted median (or an arbitrary percentile from a finite sample; see https://

en.wikipedia.org/w/index.php?title=Percentile\&oldid=668900109 for a non-

technical overview). We have settled with the weighted percentile definition in this

paper after examining the performance of a number of different methods. An alter-

native approach would be to define a weighted empirical distribution and take the

median from this distribution. The cumulative distribution function F (p), 0 ≤ p ≤ 1

for the empirical distribution would be defined as:

F (p) = β̂j, for j such that sj−1 < p < sj (1)

where sj =
∑j

k=1wk is the cumulative sum of weights up to the jth genetic variant.

The weighted median estimate according to the empirical distribution method would

be F (0.5). Code for the empirical distribution implementation of a weighted median

method (as well as code for the weighted percentile method used in this paper) is

given in Web Appendix 2. For the simple median estimator, this difference is moot.

The advantage of the empirical distribution method is that it is always consistent if

over 50% of the weight in the analysis comes from valid IVs. In the weighted percentile

method advocated in this paper, there are corner cases that can be constructed in

which this is not true. For instance, if w1 = 0.3, w2 = 0.15, w3 = 0.08, and w4 = 0.47,

and the only first three variants are valid IVs, then the weighted percentile method will

not be consistent, as it will extrapolate between the third and fourth ratio estimates.

However, provided that there are a moderately large number of variants (as will

normally be the case in applied practice) and provided that a large proportion of

the weight is not concentrated in one single variant, this is unlikely to be a serious

issue. If the greatest weight is 10%, consistency in the weighted percentile method

is guaranteed provided that 55% of the weight comes from valid IVs. There are
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several advantages of using the weighted percentile approach, which in our opinion

outweigh this technical deficiency. By extrapolating, the weighted median estimate

is not constrained to take the value of one of the ratio estimates. This gives greater

stability to the point estimate. Bootstrap confidence intervals are also more reliable,

as the distribution of estimates from each iteration of the bootstrap will be more

continuous.

In any event, the aim of this paper is not to advocate a single weighted median

method as superior to other weighted median methods (in the same way as we would

not argue for reliance on any single sensitivity analysis for a Mendelian randomiza-

tion investigation). We look forward to further technical developments in finding an

optimal weighted median method.
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Web Appendix 2: Software code

We provide R code for implementing the weighted median approach using the weighted
percentile function (as performed in the simulations and example of the paper).

weighted.median <- function(betaIV.in, weights.in) {

betaIV.order = betaIV.in[order(betaIV.in)]

weights.order = weights.in[order(betaIV.in)]

weights.sum = cumsum(weights.order)-0.5*weights.order

weights.sum = weights.sum/sum(weights.order)

below = max(which(weights.sum<0.5))

weighted.est = betaIV.order[below] + (betaIV.order[below+1]-betaIV.order[below])*

(0.5-weights.sum[below])/(weights.sum[below+1]-weights.sum[below])

return(weighted.est) }

weighted.median.boot = function(betaXG.in, betaYG.in, sebetaXG.in, sebetaYG.in, weights.in){

med = NULL

for(i in 1:1000){

betaXG.boot = rnorm(length(betaXG.in), mean=betaXG.in, sd=sebetaXG.in)

betaYG.boot = rnorm(length(betaYG.in), mean=betaYG.in, sd=sebetaYG.in)

betaIV.boot = betaYG.boot/betaXG.boot

med[i] = weighted.median(betaIV.boot, weights.in)

}

return(sd(med)) }

betaIV = betaYG/betaXG # ratio estimates

weights = (sebetaYG/betaXG)^-2 # inverse-variance weights

betaIVW = sum(betaYG*betaXG*sebetaYG^-2)/sum(betaXG^2*sebetaYG^-2)

# IVW estimate

penalty = pchisq(weights*(betaIV-betaIVW)^2, df=1, lower.tail=FALSE)

pen.weights = weights*pmin(1, penalty*20) # penalized weights

betaWM = weighted.median(betaIV, weights) # weighted median estimate

sebetaWM = weighted.median.boot(betaXG, betaYG, sebetaXG, sebetaYG, weights)

# standard error

betaPWM = weighted.median(betaIV, pen.weights) # penalized weighted median estimate

sebetaPWM = weighted.median.boot(betaXG, betaYG, sebetaXG, sebetaYG, pen.weights)

# standard error

We found that the bootstrap confidence interval (that is, the 2.5th to the 97.5th

percentile of the bootstrap estimates) gives poor coverage, tending to be too conserva-

tive. However, the bootstrap standard error (the standard deviation of the bootstrap

estimates) gave more reasonable coverage using a normal approximation (estimate
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± 1.96× standard error) to form a 95% confidence interval.
An alternative interpretation of a weighted median estimator based on an empirical

distribution function is discussed in Web Appendix 1.

weighted.median.empirical <- function(betaIV.in, weights.in) {

betaIV.order = betaIV.in[order(betaIV.in)]

weights.order = weights.in[order(betaIV.in)]

weights.sum = cumsum(weights.order)

weights.sum = weights.sum/sum(weights.order)

which.below = max(which(weights.sum<0.5))

return(betaIV.order[which.below+1]) }

betaWME = weighted.median.empirical(betaIV, weights)

# alternative weighted median estimate

An inverse-standard error weighted can be implemented by replacing the inverse-

variance weights with:

weights = (sebetaYG/betaXG)^-1 # inverse-standard error weights

The IVW and MR-Egger regression approaches used in this paper can be obtained

using the following code:

betaIVW = summary(lm(betaYG~betaXG-1, weights=sebetaYG^-2))$coef[1,1]

sebetaIVW = summary(lm(betaYG~betaXG-1, weights=sebetaYG^-2))$coef[1,2]/

min(summary(lm(betaYG~betaXG-1, weights=sebetaYG^-2))$sigma, 1)

betaEGGER = summary(lm(betaYG~betaXG, weights=sebetaYG^-2))$coef[2,1]

sebetaEGGER = summary(lm(betaYG~betaXG, weights=sebetaYG^-2))$coef[2,2]/

min(summary(lm(betaYG~betaXG, weights=sebetaYG^-2))$sigma, 1)

This differs slightly from the code originally given in Bowden et al. [Bowden et al.,

2015] (although it is similar to that used in the simulation study of Bowden et al.), as

it allows for heterogeneity in the causal effects from different IVs via not constraining

the residual standard error to be 1. If the estimate of the residual standard error is

less than 1, then we divide the standard errors of the coefficients by this estimate

to ensure that they are not overly precise. However, if it is greater than 1, then we

do not divide by the residual standard error, as this results in over-precision when

there is true heterogeneity between the causal effects identified by different IVs. In

particular, dividing by the residual standard error in the simulation study resulted
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in substantial under-coverage (as there was substantial heterogeneity in the causal

estimates from each genetic variant due to the invalid IVs). However, if there is

substantial heterogeneity in practice, this would call into question the validity of the

IVW method, and a stricter filtering as to which of the genetic variants to include in

the analysis should be applied.

Coverage for each method was based on a 95% confidence interval (estimate

± 1.96× standard error). This is slightly too narrow in the case of the IVW and

MR-Egger methods, as a t-distribution should be used. With 25 genetic variants, this

would lead to a confidence interval of estimate ± 2.06× standard error for the IVW

method (t-distribution on 24 degrees of freedom), and estimate ± 2.07× standard

error for the MR-Egger method (23 degrees of freedom). We used a normal approxi-

mation for consistency between the methods. Consequently, coverage under the null

in the two-sample setting (Table II) was slightly above the nominal 5% level, but not

greatly so.
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Web Appendix 3: Simulation setup and additional

results

The data-generating model was as follows:

Ui =
J∑

j=1

φjGij + ǫUi

Xi =
J∑

j=1

γjGij + Ui + ǫXi

Yi =
J∑

j=1

αjGij + βXi + Ui + ǫYi .

for participants indexed by i = 1, . . . , N , and genetic variants indexed by j = 1, . . . , J .

The error terms ǫUi , ǫ
X
i , and ǫYi were each drawn independently from standard normal

distributions. The genetic effects on the exposure γj are drawn from a uniform dis-

tribution between 0.03 and 0.1. Pleiotropic effects αj and φj were set to zero if the

genetic variant was a valid instrumental variable. Otherwise (with probability 0.1,

0.2, or 0.3):

1. In Scenario 1 (balanced pleiotropy, InSIDE satisfied), the αj parameter was

drawn from a uniform distribution between −0.2 and 0.2.

2. In Scenario 2 (directional pleiotropy, InSIDE satisfied), the αj parameter was

drawn from a uniform distribution between 0 and 0.2.

3. In Scenario 3 (directional pleiotropy, InSIDE not satisfied), the φj parameter

was drawn from a uniform distribution between −0.2 and 0.2.

The causal effect of the exposure on the outcome was either βX = 0 (null causal

effect) or βX = 0.1 (positive causal effect). A total of 10 000 simulated datasets were

generated for sample sizes of N = 10 000 and 20 participants. Only the summary

data, that is genetic associations with the exposure and with the outcome and their

standard errors as estimated by univariate regression on the genetic variants in turn,
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were used by the analysis methods. In the two-sample setting, data were generated

on 2N participants, and genetic associations with the exposure were estimated in

the first N participants, and genetic associations with the outcome in the second N

participants. The Monte Carlo standard error for the mean estimates was 0.002 or

less, and for the power was less than 0.5% in all cases.

The standard errors used in the IVW and MR-Egger methods in this simulation

correspond to those used in the simulations of Bowden et al. [Bowden et al., 2015],

but differ from those previously recommended for use in the IVW [Johnson, 2013;

Burgess et al., 2013] and originally recommended for the MR-Egger regression method

(see Web Appendix 2 above). The reason is that the IVW method corresponds to

a fixed-effect meta-analysis of the ratio estimates from each genetic variant. In the

examples of this paper, there is heterogeneity in the ratio estimates, and so a fixed-

effect analysis is inappropriate, and leads to overly precise confidence intervals and

inflated Type 1 error rates. A conventional random-effects meta-analysis would not

be wise, as the random-effects estimate upweights outlying estimates, inflating the

influence of pleiotropic genetic variants on the analysis. Hence we have reached a

compromise, similar to that suggested by Copas et al. [Henmi and Copas, 2010], that

we take the point estimate from a fixed-effect analysis, but allow confidence intervals

to be inflated by heterogeneity as per a random-effects analysis. This is achieved

by performing a weighted regression as described in the description of MR-Egger

regression, but not setting the residual standard error in the regression to be 1, as

is recommended in meta-analysis to correspond to a fixed-effect analysis (unless the

estimate of the residual standard error is less than 1, in which case we divide the

standard errors of the coefficients by the estimate of the residual standard error to

avoid over-precision). This is equivalent to a multiplicative random-effects model

[Thompson and Sharp, 1999].

Results in a two-sample setting are presented in the main manuscript. In a one-

sample setting, estimates from the two-stage least squares method (individual-level

data) and the IVW method (summary data) are known to be biased in the direction
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of the observational association; this is known as weak instrument bias. In a two-

sample setting, estimates are less biased, and any bias is in the direction of the null

(conservative bias) [Pierce and Burgess, 2013]. Scenario 1 of Table III suggests that

the same is true for the median-based and MR-Egger methods, with some bias in the

direction of the null in a two-sample setting with balanced pleiotropy. When pleiotropy

is unbalanced, bias due to pleiotropy seems to be stronger than any attenuation due

to weak instruments, at least for the parameters considered in this paper.

Web Tables A1 (null causal effect) and A2 (positive causal effect) present results

in a one-sample setting. In a one-sample setting, all of the methods are affected by

weak instrument bias. Estimates under the null are biased in the direction of the

observational confounded association, and Type 1 error rates are inflated. Estimates

from MR-Egger regression are particularly affected, with substantially more bias than

estimates from the other methods. The weighted median methods have better cover-

age properties under the null than those of the IVW method, although not as good

as the MR-Egger method in Scenario 2 (but better in Scenarios 1 and 3). Bias in all

methods reduces as the sample size increases.

Web Table A3 presents results in a two-sample setting for the simple median

method, and for an inverse-standard error weighted median method, for which the

unstandardized weights are:

w′j =
γ̂j

σY j

Results from the (inverse-variance) weighted median method considered above are

reproduced from Tables II and III for comparison. Estimates from the simple median

method are less precise than those from the weighted median methods, but the dif-

ferences are not substantial in this simulation setting. Bias and coverage under the

null in Scenarios 1 and 2 are similar to those from the (inverse-variance) weighted me-

dian method, but in Scenario 3 the bias and coverage properties are much improved.

However, this is due to an artefact of the simulation, as invalid genetic variants are

stronger on average than valid instruments, as they are additionally associated with

the risk factor through the confounder. Hence, it is not clear that the simple median
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method should be preferred to a weighted median method on the basis of these simu-

lations, but it does provide another valuable sensitivity analysis that gives consistent

estimates under a slightly different assumption (simple median method assumes that

50% of variants are valid instrumental variables, weighted median methods assume

that 50% of the weight comes from valid instrumental variables).

Estimates from the inverse-standard error weighted median method are slightly

more precise than those from the inverse-variance weighted median method. Coverage

of the inverse-standard error method under the null is slightly worse in Scenario 2, but

better in Scenario 3. Power to detect a causal effect is better in Scenario 1. However,

we do not expect these results to be fully generalizable, and hence would not advocate

one implementation of the method over others. In fact, both the simple median and

inverse-standard error method reported a causal effect of HDL-c on CAD risk in the

applied example, suggesting that the inverse-variance weighted median method would

be preferred in this single case.
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Web Table A1: Results from simulation study in one-sample setting with null causal effect

Inverse-variance weighted Weighted median Penalized weighted median MR-Egger regression

Proportion of Mean estimate Mean estimate Mean estimate Mean estimate

N invalid IVs F R2 (mean SE) Power (mean SE) Power (mean SE) Power (mean SE) Power

Scenario 1. Balanced pleiotropy, InSIDE assumption satisfied

10 000 0.1 10.7 2.6% 0.045 (0.114) 8.7 0.066 (0.092) 9.0 0.063 (0.093) 8.4 0.233 (0.284) 18.6

10 000 0.2 10.7 2.6% 0.045 (0.153) 7.6 0.066 (0.097) 9.9 0.061 (0.097) 8.7 0.229 (0.383) 12.4

10 000 0.3 10.7 2.6% 0.042 (0.184) 7.1 0.063 (0.103) 10.3 0.057 (0.103) 8.6 0.224 (0.463) 9.9

20 000 0.1 20.5 2.5% 0.022 (0.106) 6.3 0.036 (0.067) 6.5 0.033 (0.067) 6.0 0.165 (0.300) 13.7

20 000 0.2 20.5 2.5% 0.024 (0.150) 6.3 0.037 (0.070) 8.4 0.033 (0.071) 7.8 0.180 (0.425) 9.7

20 000 0.3 20.5 2.5% 0.020 (0.183) 6.4 0.034 (0.075) 9.2 0.030 (0.076) 8.6 0.165 (0.522) 7.7

Scenario 2. Directional pleiotropy, InSIDE assumption satisfied

10 000 0.1 10.7 2.6% 0.173 (0.110) 30.4 0.099 (0.093) 15.7 0.085 (0.093) 12.4 0.248 (0.275) 19.6

10 000 0.2 10.7 2.6% 0.300 (0.142) 55.4 0.139 (0.100) 25.7 0.121 (0.100) 20.1 0.257 (0.358) 14.2

10 000 0.3 10.7 2.6% 0.430 (0.165) 78.4 0.199 (0.109) 40.1 0.190 (0.112) 35.0 0.280 (0.417) 12.1

20 000 0.1 20.5 2.5% 0.160 (0.104) 24.3 0.063 (0.067) 12.7 0.058 (0.068) 11.5 0.177 (0.295) 13.8

20 000 0.2 20.5 2.5% 0.295 (0.140) 55.3 0.098 (0.072) 24.2 0.106 (0.077) 24.6 0.189 (0.396) 10.0

20 000 0.3 20.5 2.5% 0.431 (0.165) 79.9 0.146 (0.080) 39.2 0.197 (0.095) 44.9 0.194 (0.465) 8.8

Scenario 3. Directional pleiotropy, InSIDE assumption not satisfied

10 000 0.1 13.6 3.3% 0.222 (0.089) 61.3 0.202 (0.094) 45.1 0.118 (0.092) 23.1 0.516 (0.180) 69.5

10 000 0.2 16.3 3.9% 0.347 (0.101) 84.0 0.339 (0.094) 72.7 0.226 (0.094) 48.8 0.650 (0.190) 82.3

10 000 0.3 19.2 4.6% 0.445 (0.106) 94.9 0.458 (0.090) 89.0 0.360 (0.092) 73.9 0.723 (0.191) 90.0

20 000 0.1 26.0 3.1% 0.206 (0.082) 60.2 0.157 (0.071) 42.6 0.084 (0.069) 20.6 0.509 (0.173) 69.2

20 000 0.2 31.7 3.8% 0.343 (0.097) 85.2 0.311 (0.073) 72.6 0.193 (0.075) 48.1 0.673 (0.189) 83.4

20 000 0.3 37.1 4.4% 0.442 (0.103) 95.3 0.441 (0.071) 89.0 0.332 (0.076) 74.3 0.744 (0.191) 90.3

Mean estimates, mean standard errors, and power of 95% confidence interval to reject null hypothesis of inverse-variance

weighted, weighted median, and MR-Egger regression methods in simulation study for one-sample Mendelian randomization

with a null (β = 0) causal effect.

0Abbreviation: SE, standard error
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Web Table A2: Results from simulation study in one-sample setting with positive causal effect

Inverse-variance weighted Weighted median Penalized weighted median MR-Egger regression

Proportion of Mean estimate Mean estimate Mean estimate Mean estimate

N invalid IVs F R2 (mean SE) Power (mean SE) Power (mean SE) Power (mean SE) Power

Scenario 1. Balanced pleiotropy, InSIDE assumption satisfied

10 000 0.1 10.7 2.6% 0.145 (0.114) 33.4 0.166 (0.097) 40.9 0.164 (0.097) 39.6 0.333 (0.284) 29.6

10 000 0.2 10.7 2.6% 0.146 (0.153) 20.8 0.166 (0.102) 37.7 0.161 (0.102) 36.0 0.329 (0.383) 18.1

10 000 0.3 10.7 2.6% 0.143 (0.184) 14.6 0.163 (0.108) 35.1 0.158 (0.108) 32.7 0.324 (0.463) 13.7

20 000 0.1 20.5 2.5% 0.122 (0.106) 33.4 0.136 (0.070) 50.9 0.133 (0.070) 49.3 0.265 (0.300) 23.8

20 000 0.2 20.5 2.5% 0.124 (0.150) 18.5 0.137 (0.074) 47.7 0.133 (0.074) 46.2 0.280 (0.425) 13.9

20 000 0.3 20.5 2.5% 0.120 (0.183) 13.1 0.134 (0.078) 43.2 0.130 (0.080) 40.9 0.266 (0.521) 10.2

Scenario 2. Directional pleiotropy, InSIDE assumption satisfied

10 000 0.1 10.7 2.6% 0.273 (0.110) 75.5 0.199 (0.098) 54.4 0.183 (0.098) 47.4 0.348 (0.275) 31.5

10 000 0.2 10.7 2.6% 0.400 (0.142) 87.2 0.240 (0.106) 64.0 0.217 (0.105) 54.7 0.357 (0.358) 21.2

10 000 0.3 10.7 2.6% 0.530 (0.165) 95.6 0.299 (0.116) 74.8 0.282 (0.117) 67.7 0.380 (0.417) 17.5

20 000 0.1 20.5 2.5% 0.260 (0.104) 79.5 0.163 (0.071) 66.0 0.156 (0.071) 60.6 0.277 (0.295) 24.1

20 000 0.2 20.5 2.5% 0.395 (0.140) 90.7 0.198 (0.076) 77.0 0.200 (0.080) 73.0 0.289 (0.396) 14.8

20 000 0.3 20.5 2.5% 0.531 (0.164) 96.9 0.246 (0.085) 84.3 0.286 (0.098) 83.0 0.294 (0.465) 11.9

Scenario 3. Directional pleiotropy, InSIDE assumption not satisfied

10 000 0.1 13.6 3.3% 0.322 (0.089) 87.9 0.302 (0.100) 74.0 0.218 (0.097) 56.5 0.617 (0.180) 78.9

10 000 0.2 16.3 3.9% 0.447 (0.101) 95.6 0.439 (0.100) 89.6 0.326 (0.099) 75.1 0.751 (0.190) 87.8

10 000 0.3 19.2 4.6% 0.545 (0.106) 98.8 0.558 (0.096) 96.0 0.461 (0.097) 88.3 0.823 (0.191) 93.4

20 000 0.1 26.0 3.1% 0.306 (0.082) 89.9 0.258 (0.075) 81.8 0.181 (0.072) 68.7 0.609 (0.173) 77.7

20 000 0.2 31.7 3.8% 0.443 (0.097) 96.7 0.411 (0.078) 93.0 0.289 (0.078) 83.3 0.774 (0.189) 87.6

20 000 0.3 37.1 4.4% 0.542 (0.103) 99.0 0.541 (0.075) 97.9 0.429 (0.079) 92.9 0.844 (0.191) 93.3

Mean estimates, mean standard errors, and power of 95% confidence interval to reject null hypothesis of inverse-variance

weighted, weighted median, and MR-Egger regression methods in simulation study for one-sample Mendelian randomization

with a positive (β = 0.1) causal effect.
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Web Table A3: Results from simulation study in two-sample setting for addi-

tional methods

Inverse-variance Inverse-standard error
weighted median Simple median weighted median

Proportion of Mean estimate Mean estimate Mean estimate
N invalid IVs (mean SE) Power (mean SE) Power (mean SE) Power

Null causal effect (β = 0)

S
ce
n
ar
io

1

10 000 0.1 -0.001 (0.093) 3.2 0.000 (0.106) 2.5 0.000 (0.091) 3.1
10 000 0.2 0.001 (0.098) 4.5 0.001 (0.113) 2.8 0.001 (0.096) 4.4
10 000 0.3 0.001 (0.103) 6.2 0.001 (0.122) 4.1 0.001 (0.101) 5.6
20 000 0.1 0.000 (0.067) 3.4 -0.001 (0.074) 2.9 0.000 (0.065) 3.4
20 000 0.2 0.001 (0.071) 4.4 0.000 (0.078) 3.4 0.001 (0.069) 4.1
20 000 0.3 -0.001 (0.075) 6.4 0.001 (0.085) 4.8 -0.001 (0.074) 6.2

S
ce
n
ar
io

2

10 000 0.1 0.033 (0.093) 4.9 0.042 (0.106) 3.8 0.036 (0.091) 4.9
10 000 0.2 0.078 (0.100) 10.7 0.098 (0.117) 9.3 0.084 (0.098) 11.6
10 000 0.3 0.139 (0.109) 21.8 0.179 (0.134) 22.0 0.149 (0.108) 24.2
20 000 0.1 0.026 (0.067) 4.9 0.033 (0.074) 4.5 0.028 (0.066) 5.0
20 000 0.2 0.061 (0.072) 11.9 0.075 (0.082) 11.9 0.066 (0.071) 13.2
20 000 0.3 0.115 (0.080) 25.4 0.137 (0.095) 24.6 0.120 (0.080) 27.9

S
ce
n
ar
io

3

10 000 0.1 0.145 (0.095) 29.9 0.033 (0.106) 3.6 0.063 (0.092) 11.1
10 000 0.2 0.303 (0.097) 61.3 0.074 (0.114) 8.0 0.148 (0.096) 31.9
10 000 0.3 0.435 (0.092) 82.5 0.129 (0.121) 17.7 0.258 (0.096) 58.7
20 000 0.1 0.131 (0.072) 32.4 0.023 (0.074) 3.4 0.049 (0.067) 11.1
20 000 0.2 0.290 (0.075) 63.8 0.054 (0.081) 7.8 0.120 (0.073) 31.9
20 000 0.3 0.428 (0.072) 83.9 0.095 (0.089) 16.7 0.218 (0.076) 58.1

Positive causal effect (β = 0.1)

S
ce
n
ar
io

1

10 000 0.1 0.085 (0.098) 12.3 0.099 (0.112) 11.1 0.091 (0.096) 13.2
10 000 0.2 0.088 (0.103) 13.5 0.100 (0.119) 10.7 0.093 (0.101) 14.5
10 000 0.3 0.088 (0.109) 13.4 0.101 (0.128) 11.3 0.092 (0.107) 14.5
20 000 0.1 0.092 (0.071) 24.0 0.099 (0.078) 22.6 0.095 (0.069) 26.3
20 000 0.2 0.093 (0.075) 24.4 0.101 (0.083) 21.8 0.096 (0.073) 25.9
20 000 0.3 0.091 (0.079) 22.6 0.101 (0.089) 20.7 0.094 (0.078) 24.2

S
ce
n
a
ri
o
2

10 000 0.1 0.121 (0.099) 20.9 0.143 (0.113) 20.3 0.130 (0.097) 24.0
10 000 0.2 0.168 (0.107) 32.5 0.203 (0.125) 32.8 0.180 (0.105) 37.8
10 000 0.3 0.232 (0.116) 47.6 0.287 (0.143) 49.3 0.248 (0.116) 54.7
20 000 0.1 0.120 (0.071) 37.2 0.135 (0.079) 38.8 0.125 (0.070) 42.0
20 000 0.2 0.157 (0.077) 52.5 0.179 (0.088) 53.4 0.165 (0.076) 58.4
20 000 0.3 0.213 (0.086) 66.3 0.245 (0.102) 67.6 0.223 (0.086) 72.7

S
ce
n
ar
io

3

10 000 0.1 0.238 (0.101) 48.5 0.134 (0.112) 18.5 0.157 (0.097) 33.5
10 000 0.2 0.400 (0.103) 75.8 0.178 (0.121) 28.2 0.247 (0.102) 57.9
10 000 0.3 0.533 (0.099) 90.5 0.235 (0.129) 42.5 0.359 (0.101) 77.9
20 000 0.1 0.229 (0.076) 63.8 0.124 (0.079) 32.9 0.147 (0.071) 52.7
20 000 0.2 0.391 (0.079) 85.0 0.158 (0.086) 43.5 0.221 (0.078) 72.5
20 000 0.3 0.529 (0.076) 94.7 0.200 (0.095) 54.7 0.323 (0.080) 86.0

Mean estimates, mean standard errors, and power of 95% confidence interval to reject null

hypothesis of inverse-variance weighted median (as in main body of paper), simple median,

and inverse-standard error weighted median methods in simulation study for two-sample

Mendelian randomization with null (β = 0) and positive (β = 0.1) causal effects.
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Web Appendix 4: Example setup and additional in-

formation

Data from Do et al. is available in the supplementary material of their paper [Do et al.,

2013], and can be downloaded from http://dx.doi.org/10.6084/m9.figshare.

1116328. These data are displayed in an interactive graphical format at http:

//www.phpc.cam.ac.uk/charttest3.html. The number of genetic variants used in

each analysis is: 1) all variants: 73 (LDL-c), 85 (HDL-c), 47 (triglycerides); 2) primary

association with target exposure: 61 (LDL-c), 69 (HDL-c), 31 (triglycerides).

Scatter plots for the associations of each pair of lipid fractions are given in Web

Figure A1. Funnel plots for each of the exposures in turn are given in Web Figure A2.

There is some visual evidence of asymmetry in the funnel plots for HDL-c, a sign that

may suggest directional pleiotropy (pleiotropic effects are not balanced on average).

There may be some overlap between participants used in the GLGC and CAR-

DIoGRAM datasets. The studies ADVANCE (505 participants in GLGC; 278 cases,

312 controls, 590 participants in CARDIoGRAM), deCODE (15 612 participants in

GLGC; 6640 cases, 27 611 controls, 34 251 participants in CARDIoGRAM), and LURIC

(1506 participants in GLGC; 1138 cases, 509 controls, 1647 participants), appear in

both papers: total 17 623 participants in GLGC, 36 488 participants in CARDIo-

GRAM [Global Lipids Genetics Consortium, 2013; CARDIoGRAMplusC4D Consor-

tium, 2013]. These studies comprise 9.3% of the 188,577 participants in GLGC, and

41.9% of the 86 995 participants (22 233 cases and 64 762 controls) in CARIDoGRAM.

Correlation between the genetic association estimates depends on the smaller of these

percentages. Hence, there is some possibility for bias in the direction of the observa-

tional association due to weak instrument bias in the analysis, although this is unlikely

materially affect results as bias is unlikely to be substantial with such limited overlap

[Pierce and Burgess, 2013].
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Web Figure A1: Scatter plots of genetic associations for each pair of lipid fractions
(low-density lipoprotein cholesterol, LDL-c; high-density lipoprotein cholesterol, HDL-
c; triglycerides) in turn. Left side: all genetic variants, right side: genetic variants
having primary association with the target exposure.
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Web Figure A2: Funnel plots of instrument strength (defined as genetic association

with exposure divided by standard error of genetic association with outcome:
γ̂j
σY j

)

against ratio estimates (defined as genetic association with outcome divided by genetic

association with exposure:
Γ̂j

γ̂j
) for each genetic variant, and each exposure (low-

density lipoprotein cholesterol, LDL-c; high-density lipoprotein cholesterol, HDL-c;
triglycerides) in turn. Left side: all genetic variants, right side: genetic variants
having primary association with the target exposure.
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