Supplementary Note 1: Identification and characterization of -1 PRF motifs from NGS data.

Raw sequencing data can be downloaded from the following web address: https://rabadan.c2b2.columbia.edu/public/PRF/frameshift selection.fastq.gz. The software and resources for the analysis pipeline can be accessed at: https://github.com/szairis/frameshift.

A pipeline was established for processing and analyzing NGS data for motif identification. Step 1 of the pipeline beings by processing the raw sequencing fastq file and generates a file containing every unique sequence and its associated read count. The HiSeq run yielded roughly 56 million sequencing reads after processing, from which >3 million unique sequences were recovered. Abundances (or read counts) of these sequences ranged from 1 read to >800,000 reads. 50% of the total sequencing reads are accounted for by the top 6,752 most abundant unique sequences. We set out to identify -1 PRF motifs from this dataset with a specific focus on RNA pseudoknots (PKs), which are known to promote -1 PRF. To assign a PK structure to each sequence, we chose to assess *compatibility* with PK configurations without accounting for energetic contributions. Because this approach is tailored to our restricted scaffold, it is computationally more efficient than absolute prediction. Notably, this approach often leads to PK assignments that are in agreement with pseudoknot prediction algorithms (such as pKiss). We created a hairpin-type (H-type) PK feature space using the starting library's sequence constraints and our imposed structural constraints. Every H-type PK can be defined by the lengths of its segments: (a) stem 1; (b) loop 1; (c) stem 2; (d) loop 2; and (e) loop 3 (**Supplementary Fig. 3**). To establish the PK position within the library scaffold, we also define the length of the segment of unpaired nucleotides preceding (5' to) the PK, the length of the segment downstream of (3' to) the PK, and fix the total length to 44 nucleotides.

Using the library scaffold's constraints and our imposed constraints, a total of 2,068 PK features were generated. The top 20,000 most abundant sequences from the NGS, as well as every theoretical starting library sequence, were evaluated for their compatibility with the PK feature space (step 2 of the pipeline). A sequence was deemed compatible with a given PK feature if it supported the base pairs present within the PK feature (allowable base pairs include the standard Watson-Crick A-U, U-A, G-C, and C-G, along with the wobble G·U and U·G pairs). Of the PK features supported by a given sequence, the feature with the most base pairs is chosen as the assigned PK feature for that sequence. In the case of a tie, both PK features are assigned to the sequence. From the theoretical starting library, 1,507 PK features were selected by at least 1 sequence.

In step 3 of the pipeline, we determined the enrichment of each PK feature by calculating its pre-selection probability and comparing it to its post-selection probability (**Supplementary Fig. 4**). Explicitly, pre-selection probability was defined as the total number of sequences from the theoretical starting library that were assigned to the PK feature divided by the total starting sequences (2.68 x 10^8). Post-selection probability was defined as the total number of sequencing reads that fit to the PK feature (number of unique sequences in that feature multiplied by the mean read-count of sequences within that PK feature) divided by the total sequencing reads (approximately 5.6 x 10^7). The enrichment factor (EF) is then defined as the ratio of the postselection probability to the pre-selection probability.

$$
EF = \frac{(post_selection \text{ probability})}{(pre_selection \text{ probability})} = \frac{(\# PK \text{ reads } / \text{ total reads})}{(\# PK \text{ initial } / \text{ total initial})}
$$

Each PK feature was ranked according to its EF, and PK features that showed low occupancy (low total read mass) were removed. Then, PK features ranked within the top 10% of EFs were nominated for primary sequencing clustering analysis. Primary sequence clustering was performed using a greedy algorithm, resulting in families of sequences that comprise the motifs. Clusters containing less than 5 sequences were discarded or ignored. From this analysis, 115 clusters were nominated as final -1 PRF motifs (**Supplementary Data 1**).

The analysis pipeline generates a summary report for all nominated motifs with the following fields: 1) an ID number; 2) the number of sequences supporting the motif; 3) the mean and 4) standard deviation of abundance level for sequences in the motif; 5) the assigned PK secondary structure in dot-bracket notation; 6) agreement with pKiss; 7) the sequence mode; 8) the neighborhood occupancy about the mode; and 9) the normalized entropy of the mode neighborhood. Additionally, for each motif, the analysis pipeline generates a fasta file containing the motif's supporting sequences and a $logo¹$ displaying information content (see **Supplementary Fig. 5** for an example). An additional variant analysis can be performed as step 4 in the pipeline to analyze the sequence neighborhood of a particular sequence of interest. This output provides a plot of single nucleotide variants for any sequence of interest, as well as a heat map describing abundance for variants with two nucleotide (pairwise) differences. Notably, the pairwise output may highlight positions where mutual information is present.

Supplementary Note 2: Thermodynamic calculations for -1 PRF ON-switches.

Calculations were performed using $NUPACK²$ with Turner parameters³ and the temperature set to 30 ˚C. By default, NUPACK does not predict pseudoknots and therefore will predict the lowest energy non-pseudoknotted secondary structure for the RNA. pKiss⁴ was used to predict FS-2 pseudoknot energy at 30 ˚C. **Supplementary Table 1** summarizes the results of the calculations, which are outlined in more detail in **Supplementary Data 2**. RNA segments used for calculations spanned from the start of the FS-2 pseudoknot to the unstructured mid-insulator region. Ligand binding energy contributions were estimated based on the K_d of the ligand aptamer interaction and the concentration of the ligand that was used. We estimated thermodynamic contributions of RNA folding and ligand binding for 4 hypothetical scenarios: (1) ΔG of the system in the OFF state not bound to ligand; (2) ΔG of the system in the ON state not bound to ligand; (3) ΔG of the system in the OFF state when bound to ligand; and (4) ΔG of the system in the ON state when bound to ligand. The ON state is defined by a folded FS-2 pseudoknot structure. The following energies were calculated as contributors to each of the scenarios:

- (1) ΔG of the system in the OFF state not bound to ligand, Σ of:
	- Ensemble ΔG of the unfolded pseudoknot
	- Ensemble ΔG of the switching hairpin
	- Ensemble ΔG of the aptamer region

(Note: Σ of ΔG 's can be estimated by the ensemble ΔG of the entire sequence)

- (2) ΔG of the system in the ON state not bound to ligand, Σ of:
	- ΔG of the folded pseudoknot
	- Ensemble ΔG of the sequence 3' to the pseudoknot
- (3) ΔG of the system in the OFF state when bound to ligand, Σ of:
	- Ensemble ΔG of sequence 5' to the aptamer
	- ΔG of the folded aptamer
	- ΔG of ligand binding
- (4) ΔG of the system in the ON state when bound to ligand, Σ of:
	- ΔG of the folded pseudoknot
	- ΔG of the folded aptamer
	- $-\Delta G$ of ligand binding

The relative calculated energies of the ON and OFF states were used to guide decision for constructing switches, with the desirable property that the OFF state is preferred in the absence of ligand and the ON state is preferred in the presence of ligand (i.e. minimize $\Delta\Delta G$ ON – OFF in the absence of ligand, and maximize $\Delta\Delta G$ ON – OFF in the presence of ligand). When ligand is absent from the system, only scenarios (1) and (2) are considered. However, in the presence of ligand, energies of all 4 scenarios must be considered (ON unbound and ligand bound, OFF unbound and ligand bound). Therefore, for calculating ΔΔG between the ON and OFF states in the presence of ligand, the Helmholtz free energy was used (-kT ln Q) for the ON and OFF states using the two contributing scenarios (unbound and ligand bound).

Sequence	$\Sigma \Delta G$ (kcal/mol) Unbound OFF	$\Sigma \Delta G$ (kcal/mol) Unbound ON	$\Sigma \Delta G$ (kcal/mol) Ligand OFF	$\Sigma \Delta G$ (kcal/mol) Ligand ON	$\Delta\Delta G$ (kcal/mol) OFF-ON Unbound	$\Delta\Delta G$ (kcal/mol) OFF-ON Ligand
Theo-ON-1	-32.44	-33.58	-33.16	-36.75	$+1.14$	$+3.43$
Theo-ON-2	-34.14	-33.75	-34.86	-36.75	-0.39	$+1.73$
Theo-ON-3	-35.87	-33.65	-36.59	-36.75	-2.22	$+0.00$
Theo-ON-4	-35.69	-35.04	-37.35	-38.58	-0.65	$+1.19$
Theo-ON-5	-36.69	-35.95	-36.77	-39.99	-0.74	$+2.84$
Theo-ON-6	-36.45	-39.00	-38.18	-43.27	$+2.55$	$+5.05$
$Neo-ON-1$	-25.70	-28.65	-25.71	-32.64	$+2.95$	$+6.51$
$Neo-ON-2$	-27.46	-28.62	-27.55	-32.64	$+1.19$	$+4.73$
Neo-ON-3	-31.15	-29.82	-31.02	-32.64	-1.33	$+1.14$
$Neo-ON-4$	-29.11	-29.16	-29.02	-32.64	$+0.05$	$+3.16$

Supplementary Table 1. Summary of thermodynamic calculations for -1 PRF ON-switches.

Supplementary Table 2. Sequences of -1 PRF OFF-switches.

Sequences begin with the slippery site and end with the insulating sequence. The pseudoknot sequence is underlined and the aptamer sequence bolded.

Supplementary Table 3. Sequences of -1 PRF ON-switches.

Sequences begin with the slippery site and end with the insulating sequence. The pseudoknot sequence is underlined, the switching hairpin is italicized, and the aptamer sequence bolded.

Supplementary Table 4. Sequences of logic gates and the apoptosis module.

GACTTGACCTCTCAATTGCATATCACTCCAGGTACTGCTTACCAATCCTT CGAACAAGTTGTTAACGAATTGTTCAGAGACGGTGTTAACTGGGGTAG AATTGTCGCTTTTTTCTCTTTCGGTGGTGCCTTATGTGTTGAATCTGTTG ACAAGGAAATGCAAGTCTTGGTTTCCAGAATTGCTGCTTGGATGGCTAC CTACTTGAATGACCACTTGGAACCATGGATTCAAGAAAACGGTGGTTGG GATACTTTCGTCGAGTTGTACGGTAATAACGCTGCCGCTGAATCTAGAA AGGGTCAAGAAAGATTCAATCGTTGGTTCTTGACTGGTATGACTGTCGC TGGTGTTGTCTTGTTGGGTTCCTTATTCTCCAGAAAGTGA

-1 PRF switches are bolded and underlined. * indicates position of 2A peptide cleavage.

Supplementary Table 5. Sequences of oligonucleotides used in this work.

Supplementary Table 6. Colony counts^a for viability assay of apoptosis module.

^aCultures were diluted to a standard cell density based on OD_{600} and so that approximately 10³ cells were plated on SC(gluc) L- selection. Colony counts are reported as number of colonies per $10³$ cells plated.

 b Ligand concentrations. T-0: No theophylline; T-1: 1 mM theophylline; T-2: 5 mM theophylline; T-3: 20 mM theophylline. N-0: No neomycin; N-1: 40 μ g/mL neomycin; N-2: 150 μ g/mL neomycin; N-3: 650 μ g/mL neomycin.

neomycin; N-3: 650 μ g/mL neomycin.

^cCultures were diluted 10-fold less in this case so that 10⁴ cells were plated.

^dCultures in which Bax expression was not induced with galactose, grown with raffinose as the sole carbon source.

References:

- 1. Schneider, T. D. & Stephens, R. M. Sequence logos: a new way to display consensus sequences. *Nucleic Acids Res.* **18,** 6097–6100 (1990).
- 2. Zadeh, J. N. *et al.* NUPACK: Analysis and design of nucleic acid systems. *J. Comput. Chem.* **32,** 170–173 (2011).
- 3. Serra, M. J. & Turner, D. H. Predicting thermodynamic properties of RNA. *Methods Enzymol.* **259,** 242–261 (1995).
- 4. Janssen, S. & Giegerich, R. The RNA shapes studio. *Bioinformatics* **31,** 423–425 (2015).
- 5. Yu, C.-H., Luo, J., Iwata-Reuyl, D. & Olsthoorn, R. C. L. Exploiting preQ1 Riboswitches To Regulate Ribosomal Frameshifting. *ACS Chem. Biol.* **8,** 733–740 (2013).