Biophysical Journal, Volume 110

Supplemental Information

Regulation of PI3K by PKC and MARCKS: Single-Molecule Analysis of a Reconstituted Signaling Pathway

Brian P. Ziemba, John E. Burke, Glenn Masson, Roger L. Williams, and Joseph J. Falke

Biophysical Journal

Supporting Material

Regulation of PI3K by PKC and MARCKS: Single-Molecule Analysis of a Reconstituted Signaling Pathway

Brian P. Ziemba,^{1,2} John E. Burke,³ Glenn Masson,³ Roger L. Williams,³ and Joseph J. Falke^{1,2,*}

¹Molecular Biophysics Program and ²Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado; and ³Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom

*Correspondence: falke@colorado.edu

(Supporting Material, Figure S1) Control experiments to test effect of CHAPS on fluorescent lipid and protein diffusion and kinase activity. (A) CHAPS has no significant effect on the diffusion of the fluorescent lipid LRB-PE, but causes a small (<15%), reproducible (p < 0.05) diffusional slowing of fluorescent GRP1 PH domain bound to PIP₃. (B) CHAPS detergent has no significant effect on PKC α kinase activity. (C) CHAPS significantly decreases binding of PI3K α to the target membrane (p < 0.05). (D) CHAPS significantly increases PI3K α lipid kinase activity (p < 0.01). Single molecule TIRF was carried out at 21.5 \pm 0.5 °C on PE/PS/DAG/PIP₃ \pm 200 ppb LRB-PE (A) or standard PE/PS/DAG/PIP₂ (B-D) supported bilayers as detailed in Fig. 4.

(Supporting Material, Figure S2) Control experiments testing the effect of MARCKS_p on fluorescent Ca²⁺-PKC α binding and diffusion. (A) MARCKS_p does not significantly affect Ca²⁺-PKC α binding to bilayers consistent with its high affinity for PS even in the absence of PIP₂ (1). (B) MARCKS_p generates a small (<25%), reproducible (p < 0.005) increase in the 2-D diffusion speed of membrane-bound Ca²⁺-PKC α , likely due to PIP₂ ligand sequestration which prevents C2 domain binding to PIP₂ as well as preventing the resulting diffusional slowing (2). Single molecule TIRF assay at 21.5 ± 0.5 °C on standard PE/PS/DAG/PIP₂ supported bilayers as detailed in Fig. 4. In these experiments PKC α was employed at the standard total concentration (Table 1) used in other experiments, but at this concentration the density of membrane bound PKC α is too high to resolve single particles for counting and tracking. Thus, a mixture of fluorescent (0.005%) and dark, unlabeled PKC α (99.995%) was employed yielding the density of bound fluorescent PKC α indicated in (A).

(Supporting Material, Figure S3) Control experiment testing for direct interaction between PKC $\[mu]$ bandth $\[mu]$ Hb Kimbrane surface. PKC α is observed to have no significant effect on (A) the membrane binding or (B) the 2-D diffusion constant of fluorescent PI3K $\[mu]$ between PI3K $\[mu]$ bet

on standard PE/PS/DAG/PIP₂ supported bilayers as detailed in Fig. 4.

REFERENCES

- 1. Manna, D., N. Bhardwaj, M. S. Vora, R. V. Stahelin, H. Lu, and W. Cho. 2008. Differential roles of phosphatidylserine, PtdIns(4,5)P2, and PtdIns(3,4,5)P3 in plasma membrane targeting of C2 domains. Molecular dynamics simulation, membrane binding, and cell translocation studies of the PKCalpha C2 domain. J Biol Chem 283:26047-26058.
- Ziemba, B. P., J. Li, K. E. Landgraf, J. D. Knight, G. A. Voth, and J. J. Falke. 2014. Single-molecule studies reveal a hidden key step in the activation mechanism of membrane-bound protein kinase C-alpha. Biochemistry 53:1697-1713.