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ABSTRACT In chemotaxing ameboid cells, a complex leading-edge signaling circuit forms on the cytoplasmic leaflet of the
plasma membrane and directs both actin and membrane remodeling to propel the leading edge up an attractant gradient. This
leading-edge circuit includes a putative amplificationmodule inwhichCa2þ-protein kinaseC (Ca2þ-PKC) is hypothesized to phos-
phorylate myristoylated alanine-rich C kinase substrate (MARCKS) and release phosphatidylinositol-4,5-bisphosphate (PIP2),
thereby stimulating production of the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3) by the lipid kinase phosphoi-
nositide-3-kinase (PI3K). We investigated this hypothesized Ca2þ-PKC-MARCKS-PIP2-PI3K-PIP3 amplification module and
tested its key predictions using single-molecule fluorescence to measure the surface densities and activities of its protein compo-
nents. Our findings demonstrate that together Ca2þ-PKC and the PIP2-binding peptide of MARCKS modulate the level of free
PIP2, which serves as both a docking target and substrate lipid for PI3K. In the off state of the amplification module, the MARCKS
peptide sequesters PIP2 and thereby inhibits PI3K binding to the membrane. In the on state, Ca2þ-PKC phosphorylation of the
MARCKSpeptide reverses thePIP2 sequestration, thereby releasingmultiplePIP2molecules that recruitmultiple activePI3Kmol-
ecules to the membrane surface. These findings 1) show that the Ca2þ-PKC-MARCKS-PIP2-PI3K-PIP3 system functions as an
activationmodule in vitro, 2) reveal themolecularmechanismof activation, 3) are consistentwith available in vivo data, and4) yield
additional predictions that are testable in live cells. More broadly, the Ca2þ-PKC-stimulated release of free PIP2maywell regulate
themembrane association of other PIP2-binding proteins, and the findings illustrate the power of single-molecule analysis to eluci-
date key dynamic and mechanistic features of multiprotein signaling pathways on membrane surfaces.
INTRODUCTION
At the leading edge of chemotaxing ameboid cells, an
exquisitely sensitive, robust signaling circuit composed of
dozens of signaling proteins forms on the cytoplasmic
leaflet of the plasma membrane (1–5). This leading-edge
circuit receives inputs from chemoreceptors that detect
chemical attractants and uses this information to direct the
net growth of the leading edge up the attractant concentra-
tion gradient. To achieve this directed movement, both the
local actin mesh and the plasma membrane must be remod-
eled by the circuit outputs.

Extensive evidence indicates that in professional chemo-
taxing cells, including macrophages and neutrophils that
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follow chemical trails to sites of infection and tissue dam-
age, the leading-edge circuit includes a positive-feedback
loop (1,2,5–9). In this feedback loop, it is observed that
stimulation (or inhibition) of any single component activates
(or inhibits) all other components. The positive feedback
is proposed to maintain the stability and sensitivity of the
leading-edge circuit even in the absence of attractant,
ensuring a rapid response to a new or rapidly changing
attractant gradient. Moreover, positive feedback may play
a central role in the compass that determines the direction of
movement. Components of the positive-feedback loop iden-
tified thus far include phosphoinositide-3-kinase (PI3K) and
its product signaling lipid phosphatidylinositol-3,4,5-tri-
sphosphate (PIP3), filamentous actin (F-actin), and Rho/
Rac GTPases.

In addition to PI3K-PIP3, F-actin, and Rho/Rac, studies
of the macrophage leading edge have implicated both lead-
ing-edge Ca2þ and a conventional protein kinase C (PKC)
isoform (specifically, PKCa) as essential players in the
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positive-feedback loop (2,7). Thus, in RAW 264.7 mouse
macrophages, stimulation of the Ca2þ signal triggers
increased PIP3 production at the leading edge, whereas
blockage of the Ca2þ signal yields decreased PIP3 produc-
tion at the leading edge. In other cell types, the link between
Ca2þ, PKC, and positive feedback has not yet been estab-
lished, but leading-edge Ca2þ signals have been detected
in multiple cell types (9–13).

To explain the mechanistic roles of Ca2þ and PKC in
positive feedback, it has been hypothesized that Ca2þ-acti-
vated PKC activates PI3K by increasing the availability of
phosphatidylinositol-4,5-bisphosphate (PIP2), which serves
as both a docking target and substrate lipid for PI3K (2,7).
In cells, the myristoylated alanine-rich C kinase substrate
(MARCKS) protein is known to sequester a significant
fraction of plasma membrane PIP2 via the tight association
of its disordered, basic PIP2-binding region with up to
four PIP2 molecules (14–18). The working hypothesis
(2,7) predicts that such sequestration of PIP2 by MARCKS
will inhibit the net lipid kinase activity of PI3K either by
slowing its PIP2-specific membrane targeting reaction,
thereby reducing the density of PI3K molecules on the
membrane surface, or by reducing the lipid kinase activity
of membrane-bound PI3K molecules due to the decreased
availability of PIP2 substrate lipid. The resulting PI3K in-
hibition by PIP2 sequestration is predicted to be reversed
by the action of PKC, which is known to phosphorylate
the MARCKS PIP2-binding region at up to three sites,
thereby reducing its PIP2 binding capacity (14,15,19–23).
Fig. 1 illustrates the flow of information through the hy-
pothesized Ca2þ-PKC-MARCKS-PIP2-PI3K-PIP3 amplifi-
cation module.

Here, we test the prediction (2,7) that the upstream Ca2þ-
PKC-MARCKS-PIP2 section of the putative amplification
FIGURE 1 Working model for the hypothesized Ca2þ-PKC-MARCKS-PIP2-

taxing macrophage. Shown are PKC and PI3K with their effector lipids and pr

Active PKC is bound via its Ca2þ-occupied C2 domain to PIP2 (specifically PS

active PKC is proposed to phosphorylate the PIP2-binding region of MARCKS

from MARCKS and increasing the local free PIP2 density. The newly released

PIP2 serves as both a target and substrate lipid for PI3K, which phosphorylates

turn, the PIP3 recruits an array of signaling proteins possessing PH domains,

they participate in the signaling network that controls the expansion of the leadin

symbols: red hexagon is PIP3, blue hexagon is PIP2, small blue oval is PS, no h
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module can regulate PI3K activity and PIP3 production on
a target membrane surface. We used single-molecule fluo-
rescence to monitor the surface density, diffusion speed,
and enzyme activity of the key protein and lipid compo-
nents in a reconstituted, four-protein signaling module.
The module employs active full-length PKCa, the isolated
PIP2-binding peptide of MARCKS, the lipid PIP2, active
full-length phosphoinositide-3-kinase isoform a (PI3Ka),
and a pleckstrin homology (PH) domain that is used as a
PIP3 sensor to detect every molecule of PIP3 produced by
PI3Ka.

Our findings reveal that, as predicted, the MARCKS
PIP2-binding peptide decreases the net lipid kinase ac-
tivity of PI3Ka, specifically by inhibiting the membrane
targeting of the lipid kinase. Moreover, as predicted, phos-
phorylation of the MARCKS PIP2-binding peptide by
PKCa triggers partial dissociation from the membrane,
thereby releasing sequestered PIP2 and restoring PI3Ka
membrane binding and lipid kinase activity. Overall,
the findings directly demonstrate that the Ca2þ-PKCa-
MARCKS-PIP2 system can regulate the net lipid kinase
activity of PI3Ka in a near-physiological reconstituted
system in vitro, providing a simple molecular explanation
for the Ca2þ-activated stimulation of PIP3 production
that was previously observed at the leading edge of mac-
rophages (6). More broadly, the Ca2þ-PKC-MARCKS-
PIP2-PI3K-PIP3 amplification module may also play
central roles in other signaling pathways wherein the
module components are known to colocalize. This would
include oncogenic pathways, since PKC and PI3K are
master kinases that regulate cell growth and apoptosis,
and their overexpression or superactivation by onco-
genic mutations is linked to an array of human cancers
(24–30).
PI3K-PIP3 amplification circuit at the leading-edge membrane of a chemo-

oteins on the cytoplasmic leaflet of the leading-edge membrane (2,7,115).

and PI(4,5)P2), and via its C1A and C1B domains to PS and DAG. This

(shown here as the isolated peptide, MARCKSp), thereby releasing PIP2
PIP2 molecules are hypothesized to activate the lipid kinase PI3K, since

the PIP2 to generate the signaling lipid PIP3 (specifically PI(3,4,5)P3). In

including PDK1 and PKB/AKT1, to the leading-edge membrane, where

g edge up an attractant gradient. Lipid identities are indicated by headgroup

eadgroup is DAG. To see this figure in color, go online.
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MATERIALS AND METHODS

Reagents

Synthetic dioleolyl phospholipids (phosphatidylcholine (PC); 1,2-dioleoyl-

sn-glycero-3-phosphocholine), phosphatidylserine (PS); 1,2-dioleoyl-sn-

glycero-3-phospho-L-serine), 1,2-dioleoyl-sn-glycero-3-phosphoinositol-

4,5-diphosphate (PIP2)), diacylglycerol (DAG); 1,2-dioleoyl-sn-glycerol),

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (PE)), and 1,2-dioleoyl-

sn-glycero-3-phosphoethanolamine-N-[lissamine rhodamine B sulfonyl]

(LRB-PE)) and natural lipids (cholesterol (Chol, ovine,>98%) and sphingo-

myelin (SPM, porcine brain,>99%)) were obtained fromAvanti Polar Lipids

(Alabaster, AL). Alexa Fluor 555 C2-maleimide (AF555) and CoverWell

perfusion chamberswere obtained from Invitrogen (Carlsbad, CA).Glass sup-

ports were obtained fromTed Pella (Redding, CA). 2-Mercaptoethanol, ultra-

pure (>99%) bovine serum albumin (BSA), ATP magnesium salt, and CoA

trilithiumsaltwere obtained fromSigma (St. Louis,MO).Anti-hemagglutinin

(anti-HA) agarose affinity resin and HA peptide were obtained from Thermo

Scientific (Rockford, IL). Amylose affinity resin was obtained from New

England Biolabs (Ipswich, MA). Glutathione sepharose 4B was obtained

from GE Healthcare Bio-Sciences (Piscataway, NJ). The biphosphorylated

phosphopeptide (pY2) was derived from mouse PDGFR (sequence 735-

ESDGGpY(740)MDMSKDESIDpY(751)VPMLDMKGDIKYADIE-767)

and produced byCambridge Peptides (Birmingham, UK). Ultrapure (R99%)

3-[(3 cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)

was obtained from Anatrace (Maumee, OH). Complete, EDTA-free protease

inhibitor tablets were obtained from Roche (Indianapolis, IN). Human

MARCKSPIP2 binding domain (MARCKS residues151–175)was fabricated

by SynBioSci (Livermore, CA) and includes an N-terminal cysteine residue

added for probe labeling (n-CKKKKKRFSFKKSFKLSGFSFKKNKK-c).
PKCa cloning and expression

As previously described (31), PKCa was generated by tissue culture ex-

pression and purification of a full-length, functional human PKCa construct

possessing an 11-residue recognition sequence (ybbR) for enzymatic label-

ing with a CoA-linked fluorophore (see below) by Sfp phosphopantetheinyl-

transferase (32). The ybbR labeling tag was inserted between the kinase

domain and a C-terminal HA tag. Final PKCa-containing fractions in PKC

storage buffer (20 mM HEPES (pH 7.5), 100 mM NaCl, 0.1 mM EDTA,

25% glycerol, 1 mM dithiothreitol) were collected and concentrated to

12 mM, and then snap-frozen in 100 mL aliquots using liquid nitrogen.
PI3Ka cloning and expression

The PI3Ka construct utilized in this study was generated by cloning the

human PI3K p110a catalytic and PI3K p85a regulatory subunits into the

pFastbacHT vector (Invitrogen), which encodes an N-terminal His6-tag

and a TEV protease cleavage site and the pFastbac1 vector (Invitrogen),

respectively, as previously described (33). Subsequently, an 11-amino acid

ybbR labeling peptide (sequence DSLEFIASKLA) (32) was inserted at the

N-terminus of the Homo sapiens PI3K p85a regulatory subunit, generating

an N-terminal enzymatic labeling tag. This construct was used to express

full-length, functional p85a/p110a heterodimer (PI3Ka) in Spodoptera

frugiperda (Sf9) insect cells and purified as previously described (33). Final

PI3Ka-containing fractions in PI3K storage buffer (20 mM HEPES pH 7.2,

125 mM NaCl, 10% glycerol, 4 mM tris(2-carboxyethyl)phosphine)

(TCEP), 0.05% CHAPS) were collected and concentrated to 11 mM, and

then snap-frozen in 20 mL aliquots using liquid nitrogen.
GRP1 PH domain cloning and expression

A human GRP1 PH domain construct possessing an N-terminal ybbR enzy-

matic labeling tag was created and purified as previously described (34).
Final PH-domain-containing fractions in GRP-PH storage buffer (50 mM

TRIS pH 7.5, 15 mM NaCl, 2.5 mM CaCl2) were collected and concen-

trated to 80 mM, and then snap-frozen in 100 mL aliquots using liquid

nitrogen.
Labeling of PI3K, PKC, GRP, and MARCKS with
fluorophore

Recombinant PKCa, PI3Ka, and GRP1-PH proteins were covalently modi-

fied with the fluorophore AF555 by the Sfp enzyme using a published pro-

tocol (31,34). Specifically, ~2 mM target protein was incubated with 2.5 mM

Alexa Fluor 555-CoA conjugate, 0.5 mM Sfp, and 50 mMMg2þ in the stor-

age buffer of that protein at room temperature for 60 min (except for PI3Ka,

which was incubated for 30 min on ice). Excess fluorophore was removed

by buffer exchange with storage buffer using Vivaspin concentrators (Sarto-

rius Stedim, Göttingen, Germany) until the flow-through was not visibly

colored by AF555 fluorophore, and the final flow-through was checked

for absorbance at 555 nm to ensure complete removal of free label. The la-

beling efficiency and concentration of labeled protein were determined

from the measured absorbances of AF555 and intrinsic tryptophan residues.

Labeled protein was concentrated to 11 mM in its storage buffer and then

aliquoted and snap-frozen in 10 mL aliquots using liquid nitrogen. No per-

turbations due to the Alexa Fluor 555 label were detected, with one excep-

tion: although labeled PI3Ka exhibited native lipid specificity (see Results),

it was found to possess lower enzyme activity than the unlabeled protein,

and thus unlabeled PI3Ka was routinely employed in lipid kinase assays

(see Results).

The MARCKS PIP2-binding domain was labeled by incubating ~1 mM

target peptide and 1.5 mM AF555-maleimide in the presence of 1 mM

TCEP at room temperature for 1 h. Free fluorophore was removed from

each MARCKS labeling reaction via exchange with total internal reflection

fluorescence (TIRF) assay buffer (see below) using Amicon (Millipore,

Billerica, MA) Ultra 3 kDa centrifugal filters.

Before activity or TIRF measurements were obtained, labeled or unla-

beled proteins were diluted into buffer containing stabilizers as needed and

a low level of BSA to block sticky surfaces that could absorb the dilute pro-

teins (35). Aliquots of PKCwere thawed on ice and diluted into PKC storage

buffer containing 100 mg mL�1 BSA. Ice-thawed aliquots of PI3K were

diluted into a buffer that maximizes its stability (20 mM HEPES pH 7.2,

125 mM NaCl, 10% glycerol, 4 mM TCEP, 0.05% CHAPS, 100 mg mL�1

BSA). Ice-thawed aliquots of GRP1-PH and MARCKS were diluted into

TIRF assay buffer (see below) containing 100 mg mL�1 BSA.
Supported lipid bilayer preparation

Supported lipid bilayers were prepared from sonicated unilamellar vesicles

as described previously (34,36). CHAPS (0.05%) was included in all exper-

iments as it was found to stabilize PI3K activity and did not increase mem-

brane-binding or lipid kinase activity in the absence of pY2.
TIRF microscopy measurements

TIRF microscopy (TIRFM) experiments were carried out at 21.5 5 0.5�C
on an objective-based TIRFM instrument as described previously (34,36).

Supported bilayers were first washed with TIRF assay buffer (100 mM

KCl, 20 mM HEPES pH 6.9, 15 mM NaCl, 5 mM glutathione, 2.0 mM

EGTA, 1.9 mM Ca2þ, 0.5 mM Mg2þ; this Ca2þ/Mg2þ buffering system

yields 10 mM free Ca2þ and 0.5 mM free Mg2þ), and then a concentrated

mixture of BSA and CHAPS was added to yield final concentrations of

100 mg/mL and 0.05%, respectively. These final concentrations were main-

tained throughout the protein experiments. BSAwas employed because it is

a standard component in single-molecule supported bilayer studies, where

it is known to block hydrophobic surface defects on the bilayer and chamber
Biophysical Journal 110, 1811–1825, April 26, 2016 1813
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surfaces, thereby preventing immobilization of hydrophobic fluorescent

proteins at those defects without perturbing the lipids or proteins on normal

bilayer surfaces (31,35). CHAPS was employed because it is known to

significantly enhance the specific lipid kinase activity of PI3K and is one

of the mild detergents that are routinely used in PI3K activity assays

(33,37–39). Control experiments were carried out to examine the effect of

CHAPS on the system described here. CHAPS had minimal effects on lipid

diffusion in the bilayer, yielding only a small (<15%) but reproducible slow-

ing of a fluorescent headgroup lipid or fluorescentGRP1PHdomain bound to

a PIP3 lipid headgroup (Fig. S1 A in the Supporting Material). Similarly,

PKC protein kinase activity was not significantly altered by CHAPS

(Fig. S1 B). In contrast, CHAPS decreased the surface density of mem-

brane-bound PI3K by twofold (Fig. S1 C) and increased the total PI3K lipid

kinase activity by twofold (Fig. S1D), yielding an ~4-fold overall increase in

the specific PI3K lipid kinase activity per membrane-bound molecule.

After BSA and CHAPS addition, the membranes were imaged by

TIRFM. Typically, only a few dim, rapidly dissociating fluorescent contam-

inants were observed on the bilayer before protein addition and were easily

eliminated from the data as described below. Occasionally, the contaminant

level was excessive and the membranes (the usual source of contamination)

were remade.

After minimal contamination was confirmed, proteins and ATP (1 mM)

were added as needed and equilibrated for 5 min. To minimize contributions

from small numbers of immobile unfolded proteins, a bleach pulse with

~30-fold higher power than that used for imaging was applied for ~10 s,

and fluorescence was then allowed to return to a steady state for at least

60 s before data acquisition as previously described (34,36,40). This step

minimizes the contributions of immobilized fluorescent particles perma-

nently bound and membrane defects coated with BSA and fluorescent pro-

teins. Bleaching has no effect on the new proteins that subsequently bind

and exhibit all ranges of diffusion speed. For each sample, a set of two to

four movie streams were acquired at a frame rate of 20 frames/s and a

spatial resolution of 4.2 pixels/mm on an in-house-built instrument using

NIS Elements Basic Research (Nikon, Melville, NY).
Single-particle tracking

As in our previous studies (34,36,40), we tracked and quantitated the diffu-

sion trajectories of single protein molecules using the Particle Tracker plu-

gin for ImageJ (41), yielding a per-frame quantitation of particle position

and brightness. The resulting data were then imported into Mathematica

for further analysis. Only particles that possessed fluorescence intensities

within a defined range were included in the analysis, thereby eliminating

bright fluorescent contaminants/protein aggregates and dim, nonprotein

contaminants. Additional displacement-based exclusions removed immo-

bile particles, rapidly dissociating particles, and overlapping tracks for

which particle identity was lost. All exclusions were described and vali-

dated previously (34,36,40).
Determination of diffusion coefficients from
single-molecule data

Each data set was analyzed with a one-component fit (MARCKS) or a

two-component Rayleigh fit (PI3K), and the results were used to deter-

mine the population-weighted average diffusion coefficient as described

previously (34).
Membrane binding assays

To quantify the average density of a given protein on the membrane surface

in a given TIRF movie, the number of single particle tracks (defined as

described above) in a given field of view was determined for each movie

frame and then averaged over all frames.
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Kinase assays

As described previously (31), bulk PKC kinase assays were performed with

the PepTag Non-Radioactive Protein Kinase C system (Promega, Madison,

WI) using the same sonicated unilamellar vesicle preparations employed

for supported bilayers.

A new, to our knowledge, single-molecule kinase assay was developed

to quantify the specific activity of PI3Ka. To maintain constant levels of

free ATP (1 mM), Mg2þ (0.5 mM) and Ca2þ (10 mM) in all assays, both

the TIRF assay buffer (see above) and the ATP stock (TIRF assay buffer

containing 100 mM ATP and 82.5 mM Mg2þ) were buffered with EGTA

as defined by MaxChelator (42). To determine the PI3Ka specific activ-

ity, first the average density of PI3Ka was determined via the binding

assay described above (with appropriate correction for the PI3K fluores-

cence labeling efficiency). Second, to count all single molecules of

product PIP3 produced by the PI3K lipid kinase reaction, a saturating

concentration of GRP-PH domain (500 pM) was employed to tag each

PIP3 molecule generated on the membrane surface with a fluorescent

PH domain.
Statistics

Error bars represent standard errors of the mean for n means (where the

number of means is n ¼ 5–15, and each mean is determined from four to

eight movies), except where indicated otherwise. Statistical significance

was examined using the appropriate test; most commonly, the two-tailed

t-test was used to determine whether an event was statistically significant.
RESULTS

Physiological model system employed for single-
molecule studies

To investigate the ability of PKCa andMARCKS to regulate
PI3Ka lipid kinase activity, we developed an in vitro model
system that closely mimics key physiological features of
this signaling network on the target plasmamembrane during
a cytoplasmic Ca2þ signal. Full-length, functional constructs
of the master kinases PKCa and PI3Ka were employed,
and the PIP2-binding region of the intrinsically disordered
MARCKS protein was mimicked by a 26-residue synthetic
peptide as schematically illustrated in Fig. 2. The chosen
free protein concentrations (Table 1) closely approximated
cellular protein levels, with the exception of the free PI3Ka
concentration, which was eightfold lower than physiological
to allow quantitativemeasurement of its lipid kinase activity.
However, the high concentration of diphospho-peptide em-
ployed to activate PI3Ka in these studies is expected to
partially offset this discrepancy by driving a higher fraction
of PI3Ka to the membrane than may occur in the cell. The
ionic and ATP concentrations of the buffer employed were
also near physiological (Table 1).
Three protein constructs for single-molecule
fluorescence studies

To prepare constructs for single-molecule TIRF, each pro-
tein was engineered so that it could be labeled with an Alexa
555 fluorophore. PKCa and PI3Ka constructs possessed the
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FIGURE 2 Modular representation of the protein constructs employed in this study. The full-length, heterodimeric construct of PI3Ka possesses an N-ter-

minal 6-His affinity purification tag on the p110a catalytic subunit and an 11-residue, N-terminal enzymatic labeling tag on the p85a regulatory subunit. The

full-length construct of PKCa possesses the regulatory module (N-terminal pseudo substrate peptide and C1A-C1B-C2 domains), followed by the catalytic

kinase domain, and finally an 11-residue enzymatic labeling tag and an HA affinity purification tag. The isolated peptide representing the PIP2-binding region

of MARCKS includes MARCKS residues 151–175, preceded by an N-terminal cysteine as a chemical labeling site.
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ybbR enzymatic labeling tag at or near a protein terminus to
minimize effects on protein function, and this labeling tag
was covalently modified with the fluorescent adduct CoA-
Alexa Fluor 555 via a gentle enzymatic labeling reaction
(32). The synthetic MARCKS peptide possessed a Cys sulf-
hydryl at the N-terminus that was chemically labeled
with Alexa Fluor 555. In all cases, uncoupled fluorophore
was removed by ultrafiltration, and functional tests showed
that each protein bound to supported lipid bilayers with its
characteristic, native lipid specificity (see below).
Supported lipid bilayers

Supported lipid bilayers were assembled on a glass slide
with a thin intervening buffer layer between the glass and
the lower membrane leaflet (43–45), whereas the upper
leaflet was exposed to bulk buffer to which proteins and
other components were added (34,36). The resulting sup-
ported bilayer provided a flat, homogeneous surface for
quantitative single-molecule TIRF studies of protein bind-
ing to the membrane, two-dimensional (2D) diffusion, and
kinase activity.

The supported lipid bilayer utilized in most experiments
was a simple lipid mixture containing the relevant back-
TABLE 1 Comparison of Intracellular Conditions with the

Experimental Conditions Employed in Single-Molecule TIRF

Measurements

In Vivo

Conditions

In Vitro Single-Molecule

Experiment

PKC ~0.3 mM (103–105) 0.3 mM

MARCKS ~10 mM (14,15) 20 mM

PI3K ~16 nMa 2 nM

ATP ~1 mM (106) 1 mM

PIP2 ~1% (107,108) 1%

Naþ 12 mM (109) 15 mM

Kþ 139 mM (109) 100 mM

Free Mg2þ ~0.5 mM (110–112) 0.5 mM

Free, local Ca2þ 1–10 mM (113,114) 10 mM

aN. Tsolakos, P. Hawkins, and L. Stephens (Babraham Institute, Cam-

bridgeshire, UK), personal communication.
ground and signaling lipids of the plasma membrane inner
leaflet at mole densities similar to their cellular levels.
This mixture was PE/PS/DAG/PIP2 73:24:2:1 (mole
percent). PE and PS are the single most prevalent back-
ground and anionic lipids of the inner leaflet, respectively
(34,36), DAG is a signaling lipid that activates PKCa
(31,46–49), and PI(4,5)P2 (or PIP2) is involved in many
signaling reactions (50) and is both a target and substrate
lipid for PI3Ka (31,33). The resulting homogeneous lipid
bilayer possessed the minimal set of lipids needed to test
the hypothesis that PKCa and/or MARCKS can modulate
the lipid kinase activity of PI3Ka during a physiological
Ca2þ signal.
Quantifying the membrane-targeting lipid
specificities of PKCa, MARCKS peptide, and
PI3Ka

To quantitate membrane binding, a known total concentra-
tion of a given labeled protein was added to the bulk buffer
phase above the supported bilayer, and single-molecule
TIRF was employed to image the membrane-bound
fluorescent proteins diffusing on the bilayer surface. Parti-
cle-tracking software was employed to analyze the 2D
diffusion of each membrane-bound fluorescent protein
molecule (see Materials and Methods), enabling quantita-
tion of the density of particles that possessed the character-
istic diffusion speed of that protein. As in our previous
studies, this approach enabled a quantitative particle count
of the native, membrane-bound protein of interest, as well
as accurate exclusion of fluorescent contaminants and
immobile, improperly folded proteins from the analysis
(34,36). Notably, the imaging method detects only mem-
brane-bound proteins that are diffusing orders of magnitude
more slowly than free proteins in the aqueous phase owing
to the high viscosity and frictional drag of the bilayer; free
proteins diffuse much too fast to be detected by the imag-
ing system and thus are ignored (34,36). Fig. 3 illustrates
representative single-particle tracks for each fluorescent
protein construct.
Biophysical Journal 110, 1811–1825, April 26, 2016 1815



TABLE 2 Lipid Compositions of the Supported Bilayers

Employed in This Study

Lipid Mixture Lipid Mole %

PC/PS 75:25

PC/PS/PIP2 74:25:1

PE 100

PE/PS 75:25

PE/PS/PIP2 74:25:1

PE/PS/DAG/PIP2 73:24:2:1

PE/PS/DAG/PIP3 73:24:2:1

PE/PC/PS/Chol/SPM/DAG/PIP2 (PM) 28:12:23:26:8:2:1

PE:PS:DAG:PIP2 (þ) LRB-PE 73:24:2:1 (þ) 200 ppb

Lipid abbreviations are defined in the ‘‘Reagents’’ section of Materials and

Methods.
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To test the three fluorescent proteins for proper folding
and membrane targeting, their lipid binding specificities
were determined and compared with the known specificities
of the native proteins. Membrane binding densities were
quantified on standard PE/PS/DAG/PIP2 supported bilayers
and on simpler mixtures lacking specific lipids as summa-
rized in Table 2 and Fig. 4. As previously observed (31),
optimal membrane docking of PKCa required both its
recognition lipids PS and PIP2 and its activating lipid diac-
ylglycerol, but was relatively insensitive to the type of back-
ground lipid, such that PC and PE yielded nearly equivalent
binding (Fig. 4 A). Optimal docking of MARCKS peptide to
the membrane required its known target lipids PS and PIP2
(16) (Fig. 4 B). Optimal docking of PI3Ka required its
known target lipid PIP2 and an activating di-phosphoTyr-
peptide (pY2) (Fig. 4 C) possessing two phospho-Tyr resi-
dues. The pY2 peptide efficiently mimics a native PI3Ka
activation mechanism in which PI3Ka binds to diphos-
phorylated Tyr kinase receptors at the leading edge of
chemotaxing cells (29,51,52), where this peptide associa-
tion triggers exposure of membrane docking surfaces
(33,52,53). Finally, optimal membrane binding of both
MARCKS and pY2-PI3Ka required PE rather than PC as
the predominant background lipid, as expected for these
plasma membrane-targeting proteins (33).

Overall, these findings confirmed that Alexa Fluor 555-
labeled versions of PKCa, MARCKS peptide, and PI3Ka
retained native target membrane binding, and that the PE/
PS/DAG/PIP2 supported bilayer is a useful model system
A B

C D

FIGURE 3 (A–D) Representative TIRFM single-particle tracks of freely

diffusing fluorescent proteins: (A) PKCa, (B) MARCKS PIP2-binding pep-

tide (MARCKSp), (C) PI3Ka, and (D) GRP1 PH domain. Shown are trajec-

tories composed of 20 ms single steps, captured with a 50 s�1 frame rate on

standard PE/PS/DAG/PIP2 supported bilayers at 21.5�C.
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for single-molecule binding studies of the three fluorescent
proteins.
Quantifying the specific kinase activities of
membrane-bound PKCa and PI3Ka

To carry out quantitative studies of kinase regulation, assays
were developed to measure the specific kinase activities of
both PKCa and PI3Ka. The specific protein kinase activity
of PKCa was determined using single-molecule TIRF to
quantify the surface density of membrane-bound PKCa
(Fig. 4) together with a bulk assay of total, membrane-
bound PKCa kinase activity (31). Division of the total ki-
nase activity by the number of membrane-bound kinase
molecules yielded the specific kinase activity per molecule.
The specific kinase activity of PKCa was unaltered, within
error, when the background lipid was changed from PE to
PC, or when the simple lipid mixture PE/PS/DAG/PIP2
was replaced with a more complex mixture containing all
the major headgroup components of the plasma membrane
inner leaflet (PE/PC/Chol/SM/PIP2/DAG), as shown in
Fig. 5. These findings show that the simple lipid mixture re-
tains all of the molecular features that are essential for
native PKCa target membrane recognition and for the native
protein kinase activity of the membrane-bound enzyme.

To quantify the specific activity of the pY2-PI3Ka com-
plex, we developed a new, to our knowledge, single-mole-
cule lipid kinase activity assay. The bound kinase density
on the supported bilayer surface was again determined
directly by single-molecule TIRF measurements, and the
lipid kinase activity was also monitored by single-molecule
TIRF (Fig. 5, B and C). To detect each individual PI(3,4,5)
P3 (henceforth termed PIP3) product molecule generated by
the lipid kinase on the supported bilayer surface, a saturating
concentration of fluorescent GRP1 PH domain was included
in the buffer. This PH domain binds specifically with high
affinity to the product lipid PIP3 (36,54–57); thus, when
the lipid kinase converted a PIP2 molecule to PIP3 the latter
product lipid was targeted by the labeled PH domain,
yielding a fluorescent, membrane-bound sensor protein
that was detected via single-molecule TIRF analysis of its
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FIGURE 4 Single-molecule analysis of the effect of lipid composition on

the membrane binding of PKCa, PI3Ka, and MARCKSp. Single-molecule

TIRF quantitation of fluorescent protein/peptide binding to supported lipid

bilayers (see Materials and Methods). (A–C) Average total numbers of (A)

PKCa, (B) PI3Ka, and (C) MARCKSp molecules bound per TIRF field for

the indicated lipid compositions (Table 2). Each average was determined

from at least 340 temporally isolated frames extracted from at least four

separate movies in at least five separate experiments. Error bars are standard

errors of the mean (nR 20). All measurements were obtained at 21.5�C5

0.5�C on supported bilayers of the indicated lipid composition (see Table 2)

in 100 mM KCl, 20 mM HEPES pH 6.9 (optimal pH for PI3Ka activity),

15 mM NaCl, 5 mM glutathione, 2.0 mM EGTA, 1.9 mM Ca2þ, 1.9 mM

Mg2þ, 1.0 mM ATP, 100 mg mL�1 BSA, and 0.05% CHAPS. Under these

conditions, the EGTA-ATP-Ca2þ-Mg buffering system yields 10 mM free

Ca2þ and 0.5 mM free Mg2þ (42).

SM Analysis of Membrane Signaling
2D diffusion tracks and characteristic diffusion constant.
Fig. 5 shows the detection of increasing numbers of single
PIP3 product molecules as the PI3Ka reaction proceeded,
and the requirement for the receptor tyrosine kinase-derived
pY2 peptide to activate the lipid kinase. A comparison of the
effects of different background lipids (PE and PC) revealed
that the specific kinase activity of pY2-PI3Ka was much
more sensitive to background lipid than its membrane bind-
ing reaction, such that the specific lipid kinase activity drop-
ped by more than sixfold when the background lipid in the
PE/PS/DAG/PIP2 mixture was changed from PE to PC. This
agrees with previous reports that showed a strong sensitivity
of PI3K activation to the PC concentration in bulk kinase as-
says (58), and reveals that the mechanism of this sensitivity
arises not from altered membrane binding but rather from
a loss of PI3Ka specific kinase activity on PC background
lipids.

Notably, although pY2-PI3Ka membrane binding was
slightly enhanced when the simple lipid mixture PE/PS/
DAG/PIP2 was replaced with the plasma membrane mimic
PE/PC/Chol/SM/PIP2, the specific lipid kinase activity per
membrane-bound kinase molecule was unaltered, within
error (Fig. 5 C). Moreover, for this characteristically
rather slow enzyme, the observed turnover rate of approx-
imately five molecules PIP3 per molecule enzyme per
minute was the same, within error, as the value measured
in bulk kinase assays (33). Similarly, a comparison of sim-
ple lipid mixtures with varying PS levels (Fig. 5 C) shows
that an increase in the mole density of PS enhanced the
membrane binding of the active pY2-PI3Ka kinase (not
shown), but the specific kinase activity of per mem-
brane-bound PI3Ka molecule was the same, within error,
at all PS levels. These findings emphasize that the mem-
brane binding of pY2-PI3Ka is sensitive to the lipid
composition, but its specific lipid kinase activity is consid-
erably less sensitive.

Together, these activity studies show that PKCa and
PI3Ka were both fully functional master kinases on sup-
ported bilayers composed of the PE/PS/DAG/PIP2 lipid
mixture, demonstrating that this simple supported bilayer
possesses the key molecular features that are essential for
native membrane targeting and kinase activity.
Inhibition of PI3Ka lipid kinase activity by the
MARCKS peptide

In further studies, we employed single-molecule TIRF to
investigate regulation in the Ca2þ-PKC-MARCKS-PIP2-
PI3K-PIP3 system on the PE/PS/DAG/PIP2 bilayer. First,
MARCKS regulation of pY2-PI3Ka lipid kinase activity
was analyzed. Fig. 6 reveals that the addition of MARCKS
peptide to the single-molecule pY2-PI3Ka lipid kinase
reaction slowed the rate of production of PIP3 by more
than fourfold, indicating that the MARCKS peptide can
significantly downregulate PI3Ka lipid kinase activity.
Since the MARCKS peptide is known to bind and
sequester up to four PIP2 molecules with high affinity,
two hypotheses could explain the observed MARCKS
Biophysical Journal 110, 1811–1825, April 26, 2016 1817
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FIGURE 5 Single-molecule and bulk studies of

the effect of lipid composition on the kinase activ-

ities of membrane-bound PI3Ka and PKCa. (A–C)

Representative data from a new, to our knowledge,

single-molecule TIRF assay of PI3K lipid kinase

activity at 21.5�C 5 0.5�C on standard PE/PS/

DAG/PIP2 supported bilayers, where the fluores-

cent high-affinity PIP3-sensor GRP1 PH protein

was used to tag and detect each molecule of prod-

uct PIP3 lipid (Materials and Methods). (A) Raw

TIRF images show accumulation of the PIP3
sensor on the supported bilayer as the reaction pro-

ceeds in the absence or presence of a PI3K acti-

vator (pY2 peptide). (B) Increase in the number

of total PIP3 product molecules with time as the

PI3K lipid kinase reaction proceeds on supported

bilayers of different lipid compositions (Table 2).

Again, the negative control lacking the pY2 peptide

activator shows minimal activity. (C) Specific lipid

kinase activity per PI3Ka molecule for each

bilayer composition, determined from the ratio of

total lipid kinase activity to the density of bound

kinase on the membrane surface (Fig. 4 C). (D)

Relative specific kinase activity of PKCa for

each bilayer composition, determined from the ra-

tio of total bulk PKC kinase activity (Materials and

Methods) to the density of bound kinase on the

membrane surface (Fig. 4 A). Single-molecule

TIRF conditions as detailed in the Fig. 4 legend.
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peptide sensitivity: sequestration of PIP2 could inhibit pY2-
PI3Ka binding to the membrane, since PIP2 is its primary
docking target, or it could limit the availability of substrate
for membrane-bound pY2-PI3Ka, since PIP2 is its substrate
lipid (or both).

Quantitation of the single-molecule binding density of
fluorescent pY2-PI3Ka revealed that addition of the
MARCKS peptide reduced the surface density of bound
kinase by ninefold, as shown in Fig. 7 A, to a level similar
to that observed when PIP2 was omitted from the bilayer
(Fig. 4). This MARCKS peptide-triggered loss of pY2-
PI3Ka binding is due to sequestration of its PIP2 target
lipid rather than to steric occlusion of the membrane sur-
face, since it is known that pY2-PI3Ka requires PIP2 for
high-affinity membrane docking (52,59), whereas calcula-
tions based on the PIP2 density and the footprint size of
PIP2-bound MARCKS peptide (18,60) show that the
MARCKS peptide covers only ~10% of the membrane sur-
face under the conditions used here. (A similar result
would be expected for full-length MARCKS, since this
disordered protein associates with the bilayer only via its
lipidation site and its PIP2-binding region). Overall, the
MARCKS peptide-triggered inhibition of pY2-PI3Ka
membrane binding fully accounts for the inhibitory effect
of MARCKS peptide on the PIP3 synthesis reaction.
Once pY2-PI3Ka binds to the membrane, its lipid kinase
activity is similar (within ~2-fold) whether the MARCKS
peptide is present or not, providing further evidence that
the mechanism of MARCKS inhibition is sequestration
1818 Biophysical Journal 110, 1811–1825, April 26, 2016
of free PIP2 and prevention of pY2-PI3Ka binding to the
target membrane.

In contrast to its large effect on pY2-PI3Ka binding, the
MARKCS peptide had little or no effect on Ca2þ-PKCa
binding to the target membrane (Fig. S2 A). This minimal
effect of MARCKS peptide on Ca2þ-PKCamembrane bind-
ing was expected because the membrane docking reaction
typically begins with binding of the PKCa C2 domain to
two PS molecules with high affinity, followed by substitu-
tion of one PS by a PIP2 molecule, which only modestly in-
creases the membrane affinity (61–66). The latter PIP2
binding event is known to slightly slow the 2D diffusion
of Ca2þ-PKCa (31,67); thus, when PIP2 was sequestered
by MARCKS, a small but reproducible increase in the diffu-
sion speed of Ca2þ-PKCa was observed (Fig. S2 B). Over-
all, the sequestration of PIP2 by the MARCKS peptide
greatly inhibited the interaction of the lipid kinase with
the target membrane but had comparatively minor effects
on the protein kinase.
Reversal of MARCKS-associated PI3Ka inhibition
by PKCa protein kinase activity

In a single-molecule experiment monitoring the surface
density of fluorescent MARCKS peptide, the addition of
active Ca2þ-PKCa kinase to MARCKS peptide-occupied
membranes triggered an approximately exponential decay
in the density of total membrane-bound MARCKS pep-
tide molecules toward a lower level, ~51% of the starting
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FIGURE 6 Effects of MARCKS and PKCa on PI3Ka lipid kinase activ-

ity. Regulation of PI3Ka activity was quantified using the single-molecule

TIRF assay at 21.5�C5 0.5�C on standard PE/PS/DAG/PIP2 supported bi-

layers. (A) Time course of PIP3 production by PI3Ka, illustrating the effects

of PKCa and MARCKS peptide (MARCKSp, the isolated PIP2-binding

domain of MARCKS) on the net production of product PIP3 molecules

per TIRF field. (B) Slopes of the time courses in (A), showing that PKCa

largely restores the PI3Ka lipid kinase activity that is lost in the presence

of MARCKSp, but PKCa has little or no effect on PI3Ka activity in the

absence of MARCKSp. Single-molecule TIRF conditions as detailed in

the Fig. 4 legend.
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level, as shown in Fig. 7 B. This Ca2þ-PKCa-triggered
loss of membrane-bound MARCKS peptide required
ATP and is consistent with the known ability of Ca2þ-
PKCa to phosphorylate the MARCKS peptide at one
to three sites (Ser152, Ser156, and Ser163), which dramat-
ically reduces its PIP2 binding and membrane affinity
(14,15,19–23). In addition to triggering the dissociation
of bound MARCKS peptide from the membrane, the
addition of Ca2þ-PKCa also yielded increased heteroge-
neity in the diffusion kinetics of the remaining bound
MARCKS peptide, generating at least two diffusional
populations as illustrated in Fig. 7 C. The membrane-
bound, unphosphorylated MARCKS peptide population
decreased with time but retained its characteristic narrow
range of diffusion constant (Fig. 7 C). The membrane-
bound, phosphorylated population increased with time
and exhibited faster, more heterogeneous diffusion, as
expected for MARCKS peptide modified by Ca2þ-PKCa
in a variable fashion at one, two, or three phosphorylation
sites, thereby dissociating one, two, or three bound PIP2
molecules. A peptide with fewer bound lipids experiences
less friction due to its bound lipids dragging against the
bilayer and thus diffuses faster (68,69).

Single-molecule TIRF also enabled detection and count-
ing of membrane-bound fluorescent PI3Ka molecules after
Ca2þ-PKCa addition. In the presence of MARCKS pep-
tide, little PI3Ka was bound to the membrane until addi-
tion of Ca2þ-PKCa yielded an approximately exponential
increase in the surface density of membrane-bound pY2-
PI3Ka with time, providing direct evidence that Ca2þ-
PKCa phosphorylation of MARCKS peptide enables
increased pY2-PI3Ka binding to its target membrane
(Figs. 7, A and C). This exponential rise in pY2-PI3K sur-
face density triggered by Ca2þ-PKCa addition was in good
qualitative agreement with the increasing fraction of phos-
pho-MARCKS peptide perturbed by phosphorylation
(Fig. 7 D). The total fraction of the starting MARCKS pop-
ulation that was perturbed was calculated by adding the
fractions of MARCKS peptide that were dissociated by
phosphorylation and those that remained membrane bound
but with faster diffusion.

The increasing membrane binding of pY2-PI3Ka trig-
gered by addition of Ca2þ-PKCa in the presence of
MARCKS peptide yielded a threefold increase in the net
rate of PIP3 production on the membrane surface, due to
the increasing population of bound lipid kinase molecules
(Fig. 6, A and B). By contrast, in the absence of MARCKS
peptide, addition of Ca2þ-PKCa had little or no effect on
the surface density of membrane-bound pY2-PI3Ka
(Fig. 7 A), its 2D diffusion speed (Fig. S3), or its lipid ki-
nase activity (Fig. 6 A). These findings indicate that there
was no direct association of the two master kinases in a sta-
ble complex, since such a complex would exhibit more sta-
ble membrane binding and higher surface density, as well
as increased frictional drag and diffusional slowing
(40,67). It was previously proposed that some PKC family
members are able to directly phosphorylate p85 or p110 in
cells, but the PKC isoforms implicated in such phosphory-
lations do not include PKCa (70,71). The findings pre-
sented here indicate that either direct Ca2þ-PKCa
phosphorylation of pY2-PI3Ka does not occur under the
conditions used here, or these phosphorylations have no
detectable effect on pY2-PI3Ka membrane binding, diffu-
sion, and kinase activity.

Overall, our findings support a simple model in which
Ca2þ-PKCa has no direct stable association with pY2-
PI3Ka, but instead regulates pY2-PI3Ka indirectly by phos-
phorylating MARCKS peptide and releasing sequestered
PIP2. The resulting free PIP2, in turn, recruits pY2-PI3Ka
to the membrane to yield a larger population of active, mem-
brane-bound lipid kinase. The rising surface density of
Biophysical Journal 110, 1811–1825, April 26, 2016 1819
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FIGURE 7 Kinetic binding analysis of indi-

vidual master kinase circuit components during

PKCa-MARCKSp regulation of PI3Ka. Shown

are single-molecule TIRF data analyzing fluores-

cent protein populations on standard PE/PS/DAG/

PIP2 supported lipid bilayers at 21.5
�C in reactions

triggered by adding PKCa to samples containing

all other components, including Ca2þ. (A) Surface
density of membrane-bound fluorescent PI3Ka in

reactions containing or lacking MARCKSp, where

PKCa is added at time zero. In the presence of

MARCKSp, the binding of PI3Ka to the supported

bilayer is minimal until Ca2þ-PKCa phosphory-

lates MARCKSp and releases sequestered PIP2.

(B) Surface density of membrane-bound fluores-

cent MARCKSp after PKCa addition at time

zero in the presence and absence of ATP. In the

presence of ATP, Ca2þ-PKCa phosphorylates

MARCKS and drives its dissociation from the sup-

ported bilayer. (C) Frequency distributions for

2D diffusion of the membrane-bound fluorescent

MARCKSp population in the absence and presence

of Ca2þ-PKCa. Before Ca2þ-PKCa treatment

diffusion, the MARCKSp population (open circles)

is homogenous. After Ca2þ-PKCa treatment, two

subpopulations are observed: a smaller group of

the same slowly diffusing, homogeneous, unphosphorylated species and a new group of more heterogeneous, faster-diffusing, phosphorylated species.

The heterogeneous diffusion of the phosphorylated subpopulation arises from statistical phosphorylation of the three phosphorylation sites, which in turn

yields the loss of different numbers of bound PIP2 molecules and different frictional drag reductions. (D) Fraction of the fluorescent MARCKSp population

that is unphosphorylated or phosphorylated at one or more sites after Ca2þ-PKCa treatment for the indicated time, as defined by the two subpopulations in

(C). Single-molecule TIRF assay conditions as detailed in the Fig. 4 legend.
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active pY2-PI3Ka fully accounts for the observed increased
PIP3 production.
DISCUSSION

Regulation of PI3K lipid kinase activity by PKC
and MARCKS: molecular mechanisms

Our results provide direct evidence that Ca2þ-PKCa and
MARCKS peptide together, or MARCKS peptide alone,
can regulate pY2-PI3Ka lipid kinase activity and PIP3 pro-
duction. In cells and in vitro, each MARCKS molecule is
known to bind and sequester up to four PIP2 molecules
(17,72). Here, we find that the resulting PIP2 sequestration
can inhibit the membrane docking reaction of pY2-PI3Ka,
thereby yielding a lower surface density of membrane-
bound pY2-PI3Ka and reducing the net lipid kinase activity
by approximately the same factor.

These findings also reveal that Ca2þ-PKCa phosphory-
lates MARCKS peptide and thus decreases its capacity to
sequester PIP2, yielding free PIP2 that recruits active pY2-
PI3Ka to the membrane and thereby restores its lipid kinase
activity. Addition of Ca2þ-PKCa stimulates these mem-
brane-binding and kinase reactions only when pY2-PI3Ka
is suppressed by MARCKS peptide. In contrast, in the
absence of MARCKS peptide, pY2-PI3Ka exhibits unsup-
pressed, high levels of membrane binding and kinase activ-
1820 Biophysical Journal 110, 1811–1825, April 26, 2016
ity, and the addition of Ca2þ-PKCa does not significantly
alter the surface density, the specific kinase activity, or the
2D diffusion speed of membrane-bound pY2-PI3Ka mole-
cules. It follows that the observed Ca2þ-PKCa stimulation
of pY2-PI3Ka lipid kinase activity does not involve a direct
interaction between the two kinases, but instead arises indi-
rectly via phosphorylation of MARCKS peptide and release
of sequestered PIP2.

Ca2þ-PKCa-catalyzed phosphorylation of MARCKS
peptide and the release of PIP2 is a complex reaction that
generates multiple intermediates and products, but grouping
these diverse outcomes into two general categories yields a
simple scheme that qualitatively explains the observed ki-
netics. Each unphosphorylated MARCKS peptide binds
and sequesters up to four PIP2 molecules and possesses
three PKC phosphorylation sites (17,20,72). Ca2þ-PKCa
phosphorylation fully dissociates one subset of MARCKS
peptides from the membrane and releases their bound PIP2
molecules, while a second subset of partially phosphory-
lated MARCKS peptides remain membrane bound and
diffuse more rapidly on the membrane surface, indicating
they have less frictional drag against the bilayer due to the
loss of one or more bound PIP2 molecules. After addition
of active Ca2þ-PKCa to the MARCKS-PI3K system, the
net fraction of the MARCKS population that was perturbed
by Ca2þ-PKCa phosphorylation (i.e., the sum of the disso-
ciated and fast diffusing components) increased with a time
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dependence qualitatively similar to that of pY2-PI3Ka bind-
ing to the membrane. Together, these observations reveal
that Ca2þ-PKCa restoration of pY2-PI3Ka lipid kinase ac-
tivity inhibited by the MARCKS peptide arises simply via
phosphorylation of the MARCKS peptide and the release
of sequestered PIP2, which restores the docking of active
pY2-PI3Ka to the membrane.
Regulation of PI3K lipid kinase activity by
Ca2D-PKC and MARCKS: biological implications

Previous studies have established the importance of PKC-
catalyzed phosphorylation of MARCKS and the release of
sequestered PIP2 in stimulating diverse cellular pathways
(73–76). The mechanism of this regulation involves the
recruitment of PIP2-binding proteins to the membrane via
the increased surface density of free PIP2. To our knowl-
edge, this is the first study to show that a PI3K isoform is
recruited to the membrane by PKC-triggered MARCKS
phosphorylation and the release of sequestered PIP2.
In the cell, full-length MARCKS and PI3K can both be
anchored to the membrane via myristoylation and receptor
binding, respectively, and therefore both will exhibit
enhanced PIP2 affinities. The relative cellular PIP2 affinities
are predicted to be MARCKS> PI3K> (other PIP2-binding
proteins) to ensure that MARCKS effectively sequesters
PIP2 and prevents the membrane targeting of the other com-
ponents until the MARCKS sequestration is released. Then
PI3K must compete with the other PIP2-binding proteins for
the limited free PIP2 population, and the receptor-bound
PI3K molecules will be especially good competitors due
to their membrane-anchored status. Since a single mem-
brane-bound PKC molecule will generally phosphorylate
multiple MARCKS proteins during its membrane-bound
lifetime, it will catalytically release many PIP2 molecules,
each of which may bind a PI3K molecule that is capable
of synthesizing multiple PIP3 molecules, making the
Ca2þ-PKC-MARCKS-PIP2-PI3K-PIP3 system a cascading
amplification module.

In this study, we focused on PKCa and found no direct
effect of PKCa on pY2-PI3Ka membrane binding or kinase
activity; however, previous studies indicated that other PKC
isoforms can activate certain PI3K isoforms directly. For
example, PKCb activates PI3Kg through direct phosphory-
lation of the p110g catalytic subunit (71), and PKCm (PKD)
is able to phosphorylate an SH2 domain of the p85a subunit
and thereby block PI3K activation by receptor-associated
phospho-Tyr sequences (70). Thus, it appears that different
PKC isoforms can modify PI3K-catalyzed PIP3 production
through distinct mechanisms.

Fig. 1 presents a hypothesized information flow through a
postulated Ca2þ-PKC-MARCKS-PIP2-PI3K-PIP3 amplifi-
cation module at the leading-edge membrane of a chemo-
taxing leukocyte (2,7). The findings presented here
strongly support this scheme by showing that, as predicted,
Ca2þ-PKCa does amplify pY2-PI3Ka lipid kinase activity
in vitro when MARCKS peptide is present to sequester
PIP2 and act as an indirect activity coupler between the
two master kinases. This model is supported by in vivo find-
ings in chemotaxing RAW 264.7 cells, a macrophage model
system, wherein 1) Ca2þ-PKCa and PIP3 both accumulate
at the leading-edge membrane and 2) a cytoplasmic Ca2þ

signal dramatically stimulates PIP3 production at the lead-
ing edge. The model further predicts that the local density
of MARCKS bound to PIP2 will be lower at the leading
edge than in other regions of the plasma membrane, and
that this density will be sensitive to leading-edge signals.

In leading-edge signaling, the Ca2þ-PKC-MARCKS-
PIP2-PI3K-PIP3 amplification module is proposed to be
part of a larger positive-feedback loop in which stimulation
or inhibition of any one component triggers the activation or
inactivation, respectively, of all feedback loop components
(1,2,5–9). In a simple working model, one mechanism of
positive feedback could involve PIP3-triggered recruitment
of the protein kinase PDK1 to the membrane, where it is
phospho-activated (77,78). Active phospho-PDK1 plays
an important role in phospho-activating and stabilizing
PKC (79–82); thus, the downstream output PIP3 signal
of the Ca2þ-PKC-MARCKS-PIP2-PI3K-PIP3 module could
increase the level of active and stable PKC, thereby upregu-
lating the input Ca2þ-PKC signal of the module and
completing the cycle of the positive-feedback loop.

PKC activity in the positive-feedback loop requires a
source of its activating lipid diacylglycerol. Rac/Rho
GTPases have been implicated as essential components of
the positive-feedback loop, and Rac has been proposed to
activate phospholipase Cb2 (PLCb2) (83,84), which hydro-
lyzes PIP2 and thereby generates diacylglycerol, which
can activate PKC (85,86), as well as IP3, which can trigger
local intracellular Ca2þ signals (87). To maintain the activ-
ity of the Ca2þ-PKC-MARCKS-PIP2-PI3K-PIP3 module,
PLCb2 need only hydrolyze a small fraction of the lead-
ing-edge PIP2 molecules, since the molecular density of
PIP2 is orders of magnitude larger than the density of mem-
brane-bound PKC.

Proposed downstream effects of the positive-feedback
loop include events that regulate actin polymerization and
other events during expansion of the leading edge up an
attractant gradient. PKC-triggered MARCKS dissociation
and release of sequestered PIP2 is hypothesized to recruit
N-WASP to the membrane, which forms active, mem-
brane-bound dimers bound to PIP2 and assembles the other
components of the actin nucleation complex that forms be-
tween N-WASP and Arp2/3, initiating the growth of new
actin filaments (88,89). PIP3-activated PDK1 directly phos-
pho-activates p21-activated kinase 1 (PAK1) (90) and pro-
tein kinase B (PKB/AKT1) (80,91–93), and both of these
phosphorylation reactions are essential for cell migration.
Downstream targets of phospho-activated AKT1 include
palladin (94), girdin (95), and the Raf component of the
Biophysical Journal 110, 1811–1825, April 26, 2016 1821
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Ras/Raf/MEK/ERK signaling pathway (96,97). Each of
these PDK1-triggered, phospho-signaling reactions has
been linked to actin remodeling during migration.

Beyond its role in chemotaxis, PKC-MARCKS modula-
tion of PI3K-catalyzed PIP3 production may regulate other
crucial pathways in normal cells, including oncogenesis in
cancer cells. Nonchemotactic pathways in which PIP3
signals play a central role, and thus might involve PKC-
MARCKS regulation, include cell survival, apoptosis,
growth, and metabolism (98). Dozens of oncogenic muta-
tions have been described in PI3K, many of which stimulate
PIP3 production and thereby stimulate cell growth and/or
inhibit apoptosis (28,33,99,100). Alternatively, certain
PIP3 signaling pathways may employ other regulatory
mechanisms that do not involve PKC-MARCKS to modu-
late PI3K activity. For example, in some pathways, Gaq in-
hibits PI3K and is a potent activator of PLCb2 (84,101,102).

Further single-molecule studies are needed to test and
quantify the proposed pathway connections between the
protein components of the reconstituted Ca2þ-PKC-
MARCKS-PIP2-PI3K-PIP3 amplification circuit. This study
shows the power of the single-molecule approach to analyze
reconstituted functional pathways on membrane surfaces,
enabling careful hypothesis testing and quantitation of in-
formation flow between multiple pathway elements, and
providing unexpected new insights into pathway connec-
tions and regulatory mechanisms. The resulting quantitative
data will be useful for developing mathematical models of
the signaling network and will yield predictions suitable
for rigorous testing in live cells.
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(Supporting Material, Figure S1)  Control experiments to test effect of CHAPS on fluorescent lipid and protein diffusion and 
kinase activity.  (A) CHAPS has no significant effect on the diffusion of the fluorescent lipid LRB-PE, but causes a small (<15%), 
reproducible (p < 0.05) diffusional slowing of fluorescent GRP1 PH domain bound to PIP3.  (B) CHAPS detergent has no 
significant effect on PKCα kinase activity. (C) CHAPS significantly decreases binding of PI3Kα to the target membrane (p < 
0.05).  (D) CHAPS significantly increases PI3Kα lipid kinase activity (p < 0.01).  Single molecule TIRF was carried out at 21.5 + 
0.5 ºC on PE/PS/DAG/PIP3 ± 200 ppb LRB-PE (A) or standard PE/PS/DAG/PIP2 (B-D) supported bilayers as detailed in Fig. 4. 
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(Supporting Material, Figure S2)  Control experiments testing the effect of MARCKSp on fluorescent Ca2+-PKCα binding and 
diffusion.  (A) MARCKSp does not significantly affect Ca2+-PKCα binding to bilayers consistent with its high affinity for PS even 
in the absence of PIP2 (1).  (B) MARCKSp generates a small (<25%), reproducible (p < 0.005) increase in the 2-D diffusion speed 
of membrane-bound Ca2+-PKCα, likely due to PIP2 ligand sequestration which prevents C2 domain binding to PIP2 as well as 
preventing the resulting diffusional slowing (2).  Single molecule TIRF assay at 21.5 + 0.5 ºC on standard PE/PS/DAG/PIP2 
supported bilayers as detailed in Fig. 4.  In these experiments PKCα was employed at the standard total concentration (Table 1) 
used in other experiments, but at this concentration the density of membrane bound PKCα is too high to resolve single particles for 
counting and tracking.  Thus, a mixture of fluorescent (0.005%) and dark, unlabeled PKCα (99.995%) was employed yielding the 
density of bound fluorescent PKCα indicated in (A).  
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