Biophysical Journal, Volume 110

Supplemental Information

Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive

Optical Coherence Tomography

Richard L. Blackmon, Rupninder Sandhu, Brian S. Chapman, Patricia Casbas-Hernandez, Joseph B. Tracy, Melissa A. Troester, and Amy L. Oldenburg **Biophysical Journal**

Supporting Material

Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography

Richard L. Blackmon,¹ Rupninder Sandhu,² Brian S. Chapman,³ Patricia Casbas-Hernandez,⁴ Joseph B. Tracy,³ Melissa A. Troester,⁵ and Amy L. Oldenburg^{1,5,6,*}

¹Physics and Astronomy and ²Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; ³Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina; ⁴Epidemiology and Biochemistry, Ponce Health Sciences University, Ponce, Puerto Rico; and ⁵Department of Epidemiology and ⁶Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

*Correspondence: aold@physics.unc.edu

Figure S1 – Histogram of the ratio of isotropic (τ_{ISO}) and cross-polarized (τ_{HV}) decay times in artificial ECM (no cells) and collagen (2 mg/mL) with and without GNRs. With GNRs, the two OCT output signal decorrelation rates are different, owing to faster GNR rotational diffusion dominating the HV channel, yielding $\tau_{ISO}/\tau_{HV} > 5$ (Eqn. 3). However, in matrices without GNRs, the two output signals fluctuate at the same rate, yielding $\tau_{ISO}/\tau_{HV} \approx 1$. This property was used to identify regions containing GNRs in all samples, providing contrast against GNR-void cells in RMF cultures.

Figure S2 – Representative histogram of pixel intensities from SEM images of collagen showing the method for determining the location of the segmentation threshold to separate in-focus fibers from pores.

Figure S3 – Normalized averages of pixel values across each row of HV- and DS-OCT images shown in Fig. 1 for 2, 5, and 8 mg/mL collagen. These plots demonstrate the stability of the DS-OCT signal for the entire depth of each image, despite the intensity values at those depths reaching the noise floor.

Figure S4 - Histology of cultures with the same conditions as those reported in Fig. 5. Red arrows: locations of RMF cells within tissue. Dotted box: The size of a DS-OCT imaging window on this size scale.

Figure S5 – Repeated experiments showing the consistency in DS-OCT measurements in artificial ECM heterogeneity. A: Data presented in manuscript (Figure 5) for 0, 50, and 100 cell/ μ L seed densities at 11 days of incubation. B: A replicate of A, with the same seed densities and incubation time. C: A comparison to A, with the same seed densities but only 7 days of incubation.