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Linear polarizabilities retrieval

The orientation of the dimer structure with respect to the incident field used for the retrieval of linear polarizabilities in Fig. 1(b)
and in simulations presented here is shown in Fig. S1.

Linear polarizabilities shown in Fig. 1(b) are retrieved following the procedure developed in Ref. [S1]. A brief summary
is outlined below. The ”xx” component of electric dipolar (αe

xx), ”yy” component of magnetic dipolar (αm
yy), and the electric

quadrupolar polarizability responsible for inducing the “xz” component of electric quadrupolar tensor (αq,xz) are found by
probing the amplitude A of the scattered far field in the three orthogonal directions as following:

αel
xx =

4π
k2 A| θ=90◦

φ=90◦
, (S1a)

αm
yy =

4π
k2 A| θ=90◦

φ=0◦
, (S1b)

αq,xz =
4π
k2 Aq|θ=0◦ , (S1c)

In the above expressions, A is related to the scattered electric far field Esc
f ar as

Esc
f ar ≡

eikr

r
AE0

=
eikr

r

(
Ael +Am +Aq)E0,

(S2)

where Ael , Am, and Aq denote the amplitudes of the electric dipolar, magnetic dipolar, and the electric quadrupolar partial
waves, respectively (bold font indicates vector quantities), E0 = Ex0 is the amplitude of the incident field, and linear dipolar
polarizabilities relate the incident electric (E0 = (Ex0,0,0)T) and magnetic (H0 = (0,Ex0/η ,0)T) fields to the induced electric

and magnetic dipolar moments as p0 = ε0αelE0 and m0 = αmH0. Note that the normalization for the quadrupolar amplitude
Aq is chosen such that it enters Eq. (S2) as an addition to the magnetic and electric dipolar modes, allowing to factorize the
incident field amplitude (see Ref. [S1] for the details).

The far field scattering amplitude A(r̂0,ω) in a given direction r̂0 (r̂0 being a unit vector) is found numerically by integrat-
ing the scattered electric and magnetic near fields over an arbitrary surface enclosing the dimer structure using the Stratton-Chu
formula [S1,S2]. The angular distributions for the three multipole modes entering Eq. (S2) (assuming the dipolar modes are
along the incident field vectors, p0 = (px0,0,0)T, m0 = (0,my0,0)T) are visualized in Fig. S1(a). As shown in ref. S1 and is
seen from the figure, with Qxz being the only nonzero quadrupolar tensor component and with no higher than the quadrupolar
terms, scattering into the xy plane comes only from the dipolar modes. Due to their orthogonality, the dipolar modes are de-
coupled in the xy plane such that Ael

∣∣
θ=90◦ = Ax|θ=90◦ and Am|θ=90◦ = Az|θ=90◦ . Using the regular relations for the angular

dependence of the far field amplitude of oscillating electric and magnetic dipoles (Ael ∼ r× r×p0/E0, Am ∼ r×m0)/H0),
dipolar amplitudes are found by probing the scattered far field in the two orthogonal directions along the x and y axes according
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Figure S1. Dimer orientation with respect to the Cartesian and Spherical coordinates and with respect to the incident field
used in the linear polarizabilities retrieval.

to:

px0 =
4πε0E0

k2 A| θ=90◦
φ=90◦

, (S3a)

my0 =
4πE0

ηk2 A| θ=90◦
φ=0◦

, (S3b)

from which Eqs. (S1a) and (S1b) follow (note that the use of the total amplitude A, rather than of its x and z components, is
not a mistake in Eq. (S3), due to the orthogonality of the two Cartesian components [S1]). The amplitude Aq of the electric
quadrupolar contribution is subsequently found as the difference between the numerical value of the amplitude scattered in
the forward (θ = 0) direction and the one that would have resulted from the sum of the retrieved dipolar contributions alone,

Aq|θ=0◦ = A|θ=0◦ −
[

A| θ=90◦
φ=90◦

+ A| θ=90◦
φ=0◦

]
.

The retrieved dipolar and quadrupolar amplitudes are then used in the following analytic expressions for the angular
distributions of their various Cartesian components (see Ref. [S1] for the derivation), for comparison with the numerical
results:

Axy
x = A| θ=90◦

φ=90◦
sin2 (φ) , (S4a)

Axy
z = A| θ=90◦

φ=0◦
cos(φ) , (S4b)

Aq,xz
x = Aq|θ=0◦ cos3 (θ) , (S4c)

Aq,xz
z = Aq|θ=0◦ sin(θ)cos2 (θ) . (S4d)

Note that, according to Eqs. (S3), (S4a), and (S4b), the x- and z-components of the scattering amplitude taken in the xy plane
represent purely electric and magnetic dipolar modes, respectively.

Examples of such a comparison for the spectral positions used to produce the DFG response of Fig. 2 are shown in Figs. S2
and S3. An exact agreement is seen for all curves at the “magnetic” resonance position at 1 µm (Fig. S2). The agreement
is also exact for the dipolar modes in all cases considered (Figs. S2(b) and S3(a)), and there is less than 3% discrepancy for
the combined scattering amplitude at 662 nm (Fig. S3(c)). Some discrepancy seen for the norm of the quadrupolar mode
at 662 nm (Fig. S3(b)) is due to the manifestation of higher order multipoles at this frequency range which is noticeably
above the “magnetic” (lowest in frequency) resonance. The qualitative shape of the quadrupolar angular distribution, however,
agrees well for all field components, and noting that the quadrupole mode by itself constitutes a small fraction of the scattering
response at this frequency range, it results in less than the 3% discrepancy in the total scattering response (Fig. S3(c)); we
therefore did not pursue a higher order retrieval. As discussed in Ref. [S1], in addition to demonstrating the accuracy of the
retrieval, the agreement between the analytical and numerical angular distributions validates the assumption of the lack of
dipolar components in the directions other than those along the incident field vectors being induced in the nanoelement (no
optical activity exhibited by the nanoelement), as well as the assumption of no multipoles of an order higher than the electric
quadrupolar mode being significant.
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Figure S2. (a) Schematic illustration of the angular distribution of the far field amplitudes for the dipolar and the electric
quadrupolar multipole components induced via linear response in the dimer geometry with the excitation as in Fig. S1.
(b)-(c): Analytical (solid) versus numerical (dashed) angular distributions of (b) the dipolar, (c) the electric quadrupolar, and
(d) the combined far-filed scattering amplitude at 1 µm (“magnetic” resonance, λ2 in Fig. 1(b)), showing an exact agreement
between the numerical and the analytical results in all cases. (b) Solid blue and solid red lines show numerical values of the
real and the imaginary parts, respectively, of the Ax and Az components of the scattered far field in the xy plane. Dashed
yellow and dashed black show analytical values of the real and the imaginary parts, respectively, of the electric and magnetic
dipolar modes calculated using Eqs. (S4a) and (S4b), which assume the induced dipoles are along the incident field vectors.
The exact agreement between the numerical and the analytical curves validates the proposition that no other multipoles
scattering into the xy plane. Note that in this case the x- and z-components of the scattering amplitude taken in the xy plane
represent purely electric and magnetic dipolar modes, respectively. (c) Solid Purple: the numerical value of the norm of the
quadrupole far field amplitude in the xz plane found as the difference between the numerical distribution of the scattered far
field in the xz plane and the prediction based on the dipolar contributions alone. Dashed green: analytical prediction for that
difference, calculated using Eqs. (S4c) and (S4d). (d) The solid purple: the numerical far-field amplitude scattered into the xz
plane. Dashed green: analytical prediction found by combining the dipolar and the electric quadrupolar modes, in exact
agreement with the numerical result.
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Figure S3. Comparison of numerical (solid) and analytical (dashed) results similar to that in Figs. 2(b)-2(c), but calculated
at 662 nm–the λ1 wavelength used to produce the DFG response in Fig. 2 in the main text. The observed agreement is again
exact for the dipolar terms (panel (a)) and there is a less than 3% discrepancy between the analytical and numerical results in
the total scattering response (panel (c), top). A small discrepancy in the electric quadrupolar response (panel (b)) is due to the
presence of higher order multipoles. Since at that frequency range the quadrupolar mode by itself constitutes a small fraction
of the total response, the difference results in less than 3% discrepancy in the total scattering response (panel (c)).
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A note on variation of linear quadrupole contribution when reversing the direction of the excitation beam
As seen in Figs. 2(b) and as shown in the preceding section, while quadrupole contribution is negligible for the whole range
of wavelengths λ1 used in the present study (blue region in Fig. 2(b)), electric quadrupole contribution constitutes about 20%
of the fundamental scattered field at λ2 (Figs. 2(b) and S2). As a result, both the α(2)

emm and the α(2)
mem terms in the nonlinearly

induced dipolar modes arise owing to both the magnetic dipolar and the electric quadrupolar partial waves of that fundamental
field. However, as we show below, assuming linearly polarized plane wave excitation considered in the present study, the
phase of the fundamental electric quadrupolar contribution follows the same pattern as that of the magnetic dipolar mode of
the same field, for all four orientations of the fundamental field vectors shown in Fig. 2(a). That allowed us to use a single
effective hyperpolarizability for each of the ”emm” and ”mem” terms, rather than accounting separately for the magnetic
dipolar and quadrupolar contributions into the nonlinearly generated dipolar modes, as explained below.

As shown in ref. 49, the quadrupolar source producing the xz component of the electric quadrupolar response shown in
the previous section can be seen as formed by two x-oriented, closely spaced along z direction, and oscillating out-of-phase
electric dipolar modes, with its electric field given by

Eq = Ẽel (0)e−ik·a + Ẽel (0)eiδ e+ik·a. (S5)

In the above equation, the two dipolar modes are assumed shifted small distances ±a from the origin along the propagation
direction (z), ka ≤ 2π , Ẽel (0) is the amplitude of each dipolar mode when placed at the origin, and δ = π is the relative
phase between the two modes. For the four orientations of the excitation wave shown in sets (i)-(iv) in either Fig. 1(b) or 2(a),
the dot product k · a = kacosθ in the exponent in Eq. S5 transforms as following: (i) ka; (ii) −ka; (iii) ka; (iv) −ka. The
induced phase of oscillations of the dipolar amplitude Ẽel(0), on the other hand, follows that of the inducing electric vector.
Denoting Ẽel(0) as the amplitude induced in set (i), the amplitude and phase in the rest of the arrangements are as following:
(ii) Ẽel(0); (iii) −Ẽel(0); (iv) −Ẽel(0). Using these values in Eq. S5 and following the steps from Ref. 49 for each of the
(i)-(iv) arrangements, one arrives at the following expressions for the field of the quadrupole partial wave scattered linearly by
the dimer structure, with each of the four pump orientations:

(i) Eq =−Ẽel (0)2ikacosθ ; (S6a)

(ii) Eq = Ẽel (0)2ikacosθ ; (S6b)

(iii) Eq = Ẽel (0)2ikacosθ ; (S6c)

(iv) Eq =−Ẽel (0)2ikacosθ ; (S6d)

As seen from Eq. S6, in each of the four arrangements, the phase of the resulting electric quadrupole scattered field pattern
changes in a similar fashion as that of the magnetic vector of the incident wave shown in Fig. 2(b). Since the latter defines the
phase of the induced magnetic dipolar moment, the quadrupolar and the dipolar partial waves change phase in a similar way
when reversing the direction of the linearly polarized incident plane wave using any of the (i)-(iv) scenarios and thus always
contribute in-phase to the nonlinear response.

While a complete analysis of quadrupolar response with an arbitrary excitation waveform is beyond the present study, one
can arrive at the above result for the linearly polarized plane wave excitation in a more general way noting that the quadrupolar
moment interacts with the symmetric part of the gradient of the excitation field and thus its partial wave can be expressed as:3, 4

Eq ∼ qel ∇E0 +(∇E0)
T

2
, (S7)

where qel formally denotes the quadrupolarizability of the nanoelement. Assuming the linearly polarized plane wave ex-
citation, the amplitude of the incident wave at ω2 is given as following for the four pump orientations of Fig. 2(a): (i)
E0 = E0x̂exp(ikz); (ii) E0 = E0x̂exp(−ikz); (iii) E0 =−E0x̂exp(ikz); (iv) E0 =−E0x̂exp(−ikz). Using these expressions in
Eq. S7, one arrives at the result similar to the one of Eq. S6 where the sign in the sets (ii) and (iii) is opposite of that in (i) and
(iv), thus varying in a similar fashion as that of the induced magnetic dipolar mode. The simultaneous phase change of the
two modes is also confirmed in numerical simulations.

Since both electric quadrupolar and magnetic dipolar partial waves also share the same (odd in electric field) parity, we do
not aim at distinguishing between the contributions of these partial waves into the nonlinearly produced dipolar modes and
use the notation α(2)

emm and α(2)
mem (rather than α(2)

em(m+q) and α(2)
me(m+q), where “q” would stand for the quadrupolar fundamental

partial wave) for the effective hyperpolarizabilities. The retrieved hyperpolarizabilities thus, however, do account for both the
quadrupolar and the dipolar inputs of the fundamental field at λ2 into the nonlinear response.
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Nonlinear polarizabilities retrieval

A similar approach can be used for analyzing the multipolar components in the nonlinearly generated field. Analysis of the
nonlinearly generated far field has shown that the dipolar components similarly de-couple in the xy plane and, for the dimer
orientation shown in Fig. S1, are aligned along the incident field vectors. Comparison of the analytical and numerical angular
distributions for the multipolar components produced by DFG process at λ3 = 1.9 µm with the co-directional excitation
(Fig. S4(a)) is shown in Fig. S5, demonstrating an exact agreement for the dipolar modes and an excellent (less than 0.25%
discrepancy) agreement for the combined scattering amplitude. Eq. (S4) is used for calculating the analytical curves, with
A, in this case, being the amplitude of the nonlinearly generated field. Note that, as expected, the use of the DFG process
allowed to minimize the contribution from higher order modes in the nonlinearly generated field: the dipolar modes shown in
Fig. S5(a) constitute more than 95% of the total nonlinearly generated field (Fig. S5(c)).

As discussed in the main text, the sign with which various terms enter the right hand side of Eqs. (2) and (3) changes when
switching the phase of the fundamental electric or magnetic field inducing the corresponding term. The latter phase change
occurs for magnetic (electric) field when reversing the propagation direction of the incident beam by 180o rotation around the
x (y) axis, as illustrated by sets “(ii)” (“(iv)”) in Fig. 2 in the main text, and for both electric and magnetic fields with the 180o

rotation around the z axis (set “(iii)” in Fig. 2). To retrieve all eight terms of the effective hyperpolarizabilities entering Eqs. (2)
and (3), one can then repeat the retrieval procedure similar to the one used in Fig. S5 for four different pump arrangements,
alternating the direction of each of the fundamental beams between the two opposite excitations–e.g., by choosing the four
sets shown in Fig. S5–and proceeding as described below.

Denoting by “+E0” and “+H0” the incident fields for fundamental beams at both ω1 and ω2 in Fig. S4(a) (configuration
“+,+”), the incident fundamental fields in the rest of the arrangements in Fig. S4, written in terms of E0 and H0, appear as
following: +E0(ω1), +H0(ω1), +E0(ω2), −H0(ω2) for configuration “+,–”; +E0(ω1), −H0(ω1), +E0(ω2), +H0(ω2) for
configuration “–,+”; and +E0(ω1), −H0(ω1), +E0(ω2), −H0(ω2) for configuration “–,–”. Using this notation in Eqs. (2)
and (3) for each of the four arrangements shown in Fig. S4, one arrives at the following sets of equations for the electric and
magnetic dipolar modes:

p+,+
3 = ε0√

I

[
α(2)

eee : E01E02 +η2α(2)
emm : H01H02 +ηα(2)

eem : E01H02 +ηα(2)
eme : H01E02

]
, (S8a)

p+,−
3 = ε0√

I

[
α(2)

eee : E01E02 −η2α(2)
emm : H01H02 −ηα(2)

eem : E01H02 +ηα(2)
eme : H01E02

]
, (S8b)

p−,+
3 = ε0√

I

[
α(2)

eee : E01E02 −η2α(2)
emm : H01H02 +ηα(2)

eem : E01H02 −ηα(2)
eme : H01E02

]
, (S8c)

p−,−
3 = ε0√

I

[
α(2)

eee : E01E02 +η2α(2)
emm : H01H02 −ηα(2)

eem : E01H02 −ηα(2)
eme : H01E02

]
; (S8d)

m+,+
3 = 1√

I

[
1
η α(2)

mee : E01E02 +ηα(2)
mmm : H01H02 +α(2)

mem : E01H02 +α(2)
mme : H01E02

]
, (S9a)

m+,−
3 = 1√

I

[
1
η α(2)

mee : E01E02 −ηα(2)
mmm : H01H02 −α(2)

mem : E01H02 +α(2)
mme : H01E02

]
, (S9b)

m−,+
3 = 1√

I

[
1
η α(2)

mee : E01E02 −ηα(2)
mmm : H01H02 +α(2)

mem : E01H02 −α(2)
mme : H01E02

]
, (S9c)

m−,−
3 = 1√

I

[
1
η α(2)

mee : E01E02 +ηα(2)
mmm : H01H02 −α(2)

mem : E01H02 −α(2)
mme : H01E02

]
, (S9d)

where each of the p+,+
3 , p+,−

3 and so on (m+,+
3 , m+,−

3 , and so on) terms denote the electric (magnetic) dipolar modes induced
at frequency ω3 by the DFG process when using the “+,+”, “+,–”, etc. pump arrangements. The “1”,“2”, and “3” subscripts
denote corresponding vectors at ω1, ω2, and ω3, respectively (i.e., H01 ≡ H0 (ω1), etc.), and the frequency dependence in each
of the hyperpolarizabilities has been omitted for compactness. Note that due to the proper nature of the rotation around the x
axis used to arrive at various sets in Fig. S4, neither the polar nor the axial effective hyperpolarizability tensors are expected
to change sign in any of the set-ups shown in Fig. S4. Hence, the sign before each of the terms in right hand sides in Eqs. (S8)
and (S9) follows entirely the sign of the product of the corresponding inducing fundamental fields written in terms of E0 and
H0. The effective hyperpolarizabilities can be then expressed as following from Eqs. (S8) and (S9) in terms of the electric and
magnetic dipolar amplitudes:
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Figure S4. The four pump arrangements used for the effective hyperpolarizabilities retrieval. The “+” (“-”) sign denotes the
fundamental beam incident in the positive (negative) “z” direction, with the first and second signs denoting the direction of
the fundamental waves at ω1 and ω2, respectively.

α(2)
eee,xxx =

0.25
ε0
√

I

(
p+,+

3x + p+,−
3x + p−,+

3x + p−,−
3x

)
, (S10a)

α(2)
emm,xyy =

0.25
ε0
√

I

(
p+,+

3x − p+,−
3x − p−,+

3x + p−,−
3x

)
, (S10b)

α(2)
eem,xxy =

0.25
ε0
√

I

(
p+,+

3x − p+,−
3x + p−,+

3x − p−,−
3x

)
, (S10c)

α(2)
eme,xyx =

0.25
ε0
√

I

(
p+,+

3x + p+,−
3x − p−,+

3x − p−,−
3x

)
, (S10d)

α(2)
mee,yxx =

η
4
√

I

(
m+,+

3y +m+,−
3y +m−,+

3y +m−,−
3y

)
, (S11a)

α(2)
mmm,yyy =

η
4
√

I

(
m+,+

3y −m+,−
3y −m−,+

3y +m−,−
3y

)
, (S11b)

α(2)
mem,yxy =

η
4
√

I

(
m+,+

3y −m+,−
3y +m−,+

3y −m−,−
3y

)
, (S11c)

α(2)
mme,yyx =

η
4
√

I

(
m+,+

3y +m+,−
3y −m−,+

3y −m−,−
3y

)
, (S11d)

The amplitude of each of the dipolar modes entering the right hand sides of Eqs. (S10) and (S11)) can be retrieved using
Eq. (S3), with A, in this case, being the amplitude of the nonlinearly produced field at ω3 and E0 being effectively taken
as

√
I. Note that this factor cancels with the 1√

I
factor in Eqs. (S10) and (S11), so that there is no dependence on I in

the retrieved hyperpolarizabilities. Rewritten explicitly in terms of numerical values of the far-field amplitude, the effective
hyperpolarizabilities are given by

α(2)
eee,xxx =

π
k2

(
A+,+

3 +A+,−
3 +A−,+

3 +A−,−
3

)∣∣∣ θ=90◦
φ=90◦

,

α(2)
emm,xyy =

π
k2

(
A+,+

3 −A+,−
3 −A−,+

3 +A−,−
3

)∣∣∣ θ=90◦
φ=90◦

,

α(2)
eem,xxy =

π
k2

(
A+,+

3 −A+,−
3 +A−,+

3 −A−,−
3

)∣∣∣ θ=90◦
φ=90◦

,

α(2)
eme,xyx =

π
k2

(
A+,+

3 +A+,−
3 −A−,+

3 −A−,−
3

)∣∣∣ θ=90◦
φ=90◦

,

(S12)

α(2)
mee,yxx =

π
k2

(
A+,+

3 +A+,−
3 +A−,+

3 +A−,−
3

)∣∣∣ θ=90◦
φ=0◦

,

α(2)
mmm,yyy =

π
k2

(
A+,+

3 −A+,−
3 −A−,+

3 +A−,−
3

)∣∣∣ θ=90◦
φ=0◦

,

α(2)
mem,yxy =

π
k2

(
A+,+

3 −A+,−
3 +A−,+

3 −A−,−
3

)∣∣∣ θ=90◦
φ=0◦

,

α(2)
mme,yyx =

π
k2

(
A+,+

3 +A+,−
3 −A−,+

3 −A−,−
3

)∣∣∣ θ=90◦
φ=0◦

,

(S13)
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Figure S5. Comparison of numerical (solid) and analytical (dashed) results similar to that in Figs. 2(b)-2(c), retrieved for
the multipolar components in the nonlinearly generated field at 1.9 µm, with the excitation as in Fig. S4(a). The approach
similar to that in Figs. S2 and S3 has been used.

where A+,+
3 , etc. are the far-field amplitudes generated at frequency ω3 using the corresponding arrangement of fundamental

waves from Fig. S4.
The angular dependence comparison shown in Fig. S5(a) thus correspond to the p+,+ and m+,+ modes. Equation (S12)

and (S13) are used in obtaining Fig. 1(c) results.
Note that, alternatively, effective polarizabilities can be retrieved by varying the fundamental beam directions between any

other two sets out of the four arrangements shown in Fig. 1(a) that include propagation in the positive and negative z direction:
e.g., sets (i) and (iv), (iii) and (ii), or (iii) and (iv). Each combination will produce its own systems of equations equivalent
to Eqs. (S4) and (S8), resulting, however, in the same quantitative values for the eight polarizabilities. A similar procedure
can be used for nonlinear polarizabilities retrieval for higher order nonlinear responses, only with larger number of equations
involved in each of the sets similar to those in Eqs. (S8-S11).
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