Supporting Information for

Extraction of Lanthanide and Actinide lons from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework

Selvan Demir,^{a,c,‡} Nicholas K. Brune,^{a,c,‡} Jeffrey F. Van Humbeck,^{a,1} Jarad A. Mason,^a Tatiana V. Plakhova,^{c,f} Shuao Wang,^{a,c,2} Guoxin Tian,^{c,h} Stefan G. Minasian,^c Tolek Tyliszczak,^e Tsuyoshi Yaita,^g Tohru Kobayashi,^g Stepan N. Kalmykov,^f Hideaki Shiwaku,^g David K. Shuh,^c Jeffrey R. Long^{a,b,d*}

^aDepartments of Chemistry and ^bChemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA

^cChemical Sciences Division, ^dMaterials Sciences Division, and ^eAdvanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA

^fChemistry Department, Lomonosov Moscow State University, Leninskie Gory, Moscow 11991, Russia

^gActinide Chemistry Group, Energy and Environment Science Division, Quantum Beam Science Center, Japan Atomic Energy Agency,1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan

^hRadiochemistry Department, China Institute of Atomic Energy, Beijing 102413, China.

ACS Central Science

Table of Contents

Figure S1. IAST: Amounts Adsorbed from 0.1 and 1 mM Nd ³⁺ /Fe ³⁺ mixture	3
Figure S2. IAST: Amounts Adsorbed from 0.1 and 1 mM Sr ²⁺ /Fe ³⁺ mixture	4
Figure S3. IAST: Amounts Adsorbed from 0.1 and 1 mM Nd ³⁺ /Sr ²⁺ mixture	5
Figure S4.a) K-edge XANES spectrab) Schematic of possible Nd interactions with BPP-7.	6
Figure S5. XAFS Fitting Details	7
Figure S6. Carbon K-edge for Nd-BPP-7	8
Figure S7. Oxygen K-edge for Nd-BPP-7	8
Figure S8. Nd M _{5,4} -edge for Nd-BPP-7	8
Figure S9. Infrared spectrum of the unloaded BPP-7 and the neodymium-loaded combustion product.	9
References	10

Figure S1. Ideal adsorbed solution theory (IAST): Amounts adsorbed from 0.1 mM (top) and 1 mM (bottom) Nd^{3+}/Fe^{3+} mixtures (Nd^{3+} = blue squares; Fe^{3+} = orange triangles).

Figure S2. Ideal adsorbed solution theory (IAST): Amounts Adsorbed from 0.1 mM (top) and 1 mM (bottom) Sr^{2+}/Fe^{3+} mixtures (Sr^{2+} = green circles; Fe^{3+} = orange triangles).

Figure S3. Ideal adsorbed solution theory (IAST): Amounts adsorbed from 0.1 mM (top) and 1 mM (bottom) Nd^{3+}/Sr^{2+} mixtures (Nd^{3+} = blue squares; Sr^{2+} = green circles).

b

Figure S4. (a) Comparison of the K-edge XANES spectra collected from the Nd-BPP-7 and an aqueous neodymium(III) chloride solution (NdCl) that confirms the oxidation state of Nd in the Nd-BPP-7 as trivalent. (top) (b) Schematic of possible Nd interactions with BPP-7. Distances are from Ref.¹⁻⁴ (bottom)

XAFS Fitting Details

The parameters for the back scattering factors and phase shift were calculated Feff8.0 code.⁵ The input file for the Feff calculation was prepared based on the model compound shown in Fig. S5: derived from SRef.⁶ Since the coordination site for Nd is the carboxylate group, the nearest oxygen parameter calculated was utilized for the first shell fitting; and as a result, that the M-O bond distance as 2.48 Å was successfully obtained.

The residual second shell fitting was performed by the parameter of carbon or oxygen located around 3 Å, and then could obtain the bond distance about 3.3 Å and relatively large Debye-Waller factor of about 0.02. During all the fittings, the coordination number (N), Debye-Waller factor (DWF), and damping factor (S₀) were constrained from 6-12, 0.001-0.1 Å², and 0.8-1, respectively.

Figure S5. Model compound for calculation of the EXAFS fitting parameters.⁶

Figure S6. Carbon K-edge for Nd-BPP-7

Energy (eV)

Figure S7. Oxygen K-edge for Nd-BPP-7

Energy (eV)

Figure S8. Nd M5,4-edge for Nd-BPP-7

Figure S9. Top: Infrared spectrum of the unloaded BPP-7 (blue) and the neodymium-loaded BPP-7 (red). Bottom: Neodymium-loaded combustion product (blue).

References

1. Tang, X.; Yue, S.; Li, P.; Wang, N.; Liu, Y. Hydrothermal synthesis and crystal structure study of two novel 3-D mellitates $\{Nd_2[C_6(COO)_6](H_2O)_6\}$ and $\{Ho_2[C_6(COO)_6](H_2O)_6\}$. *J. Rare Earth* **2008**, *26*, 800-803.

2. Huskowska, E.; Legendziewicz, J.; Schleid, T.; Meyer, G. A Special Double Issue Devoted to the Workshop on the Basic and Applied Aspects of Rare Earths do the Lanthanides Form Inner Sphere Complexes with ClO₄⁻ Ions in Competition with H₂O Molecules? *Mater. Chem. Phys.* **1992**, *31*, 117-122.

3. Csoregh, I.; Huskowska, E.; Ertan, A.; Legendziewicz, J.; Kierkegaard, P. Crystal Structure of a Novel Neodymium Hydroxide Perchlorate Hydrate, Nd₂(OH)₃(ClO₄)3.5H₂O. *Acta Chem. Scand.* **1989**, 829-833.

4. Mondry, A.; Starynowicz, P. Crystal Structure and Absorption Spectroscopy of a Neodymium(III) Complex with Triethylenetetraaminehexaacetic Acid,

Na₃[Nd(TTHA)] 2.5NaClO₄·7.617H₂O. Inorg. Chem. 1997, 36, 1176-1180.

5. Ankudinov, A. L.; Rehr, J. J. Theory of solid-state contributions to the X-ray elastic scattering amplitude. *Phys. Rev. B* 2000, *62*, 2437-2445.

6. Schauer, C. K.; Anderson, O. P. Highly polydentate ligands. Part 4. Crystal structures of neodymium(III) and erbium(III) complexes of 3,12-bis(carboxymethyl)-6,9-dioxa-3,12-diazatetradecanedioate(4-). *J. Chem. Soc., Dalton Trans.* **1989**, 185-191.