
Appendix S1: Mathematical details on quasi-potential analysis

In example 1, we briefly described a stochastic differential equation model for lake

eutrophication. In this section of the appendix, we provide background information about

stochastic differential equations. A random variable X is a variable whose value is subject

to chance. When a specific outcome X = x is observed, it is called a realization. A

stochastic process X(t) is a family of random variables indexed by the parameter t, which

usually represents time. Time can be measured discretely or continuously; this latter case

falls in the realm of stochastic differential equations. A realization, X(t) = x(t), is obtained

when the stochastic process is observed at each time t. Note that a realization x(t) is a

deterministic function of time.

A continuous-time stochastic process of particular importance is the Wiener process,

also known as Brownian motion, and denoted by W (t). This process can be visualized as

the limit of a discrete time random walk, which changes by an amount ∆W per each time

step ∆t. Each increment ∆W is selected from a normal distribution with mean 0 and

variance ∆t. The Wiener process is the limit of this random walk as ∆t→ 0. It turns out

that the Wiener process is completely characterized by three properties:

1. W (0) = 0

2. W (t) is almost surely continuous everywhere. This means that, with 100%

probability, a realization will be continuous (aside from possibly a few bad points,

which have measure zero).

3. If 0 ≤ s1 < t1 ≤ s2 < t2, then W (t1)−W (s1) is normally distributed with mean zero

and variance t1 − s1, W (t2)−W (s2) is normally distributed with mean zero and

variance t2 − s2, and W (t1)−W (s1) and W (t2)−W (s2) are independent.

The Reimann-Stieljes integrals of elementary calculus are defined as the limits of finite

sums. Integration with respect to a Wiener process can be defined in a similar way. The Itô
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integral of the function h of a stochastic process X(t) over the interval [0, T ] is defined as∫ T

0

h(X(t)) dW = lim
n→∞

n−1∑
i=0

h(X(ti)) (W (ti+1)−W (ti)), ( 1)

where {[ti, ti+1)}ni=0 is a partition of [0, T ]. Note that this integral is a stochastic process

itself; each realization of X and W leads to a different realization of the integral. In the Itô

integral, h(X(t)) is evaluated at the left end points of the intervals of the partition. If a

trapezoidal rule is used instead, then the result is the Stratonovich integral. In this paper,

we use the Itô integral, because of the way it discriminates between the past and the

future. A process X(t) is called “non-anticipating” if its value at t is independent of values

of W (s), for s > t. If X(t) is non-anticipating, then the Itô integral defined above is, too.

The Stratonovich integral is not, because calculating the integral at time s, ti ≤ s < ti+1

requires knowledge of X(ti+1). Basically, the Itô integral cannot “see into the future”,

while the Stratonovich integral can.

Having defined integration with respect to a Wiener process, we can now define a

stochastic differential equation. Consider a deterministic autonomous differential equation,

dx

dt
= f(x). ( 2)

In a small time period ∆t, the variable x changes by an amount of approximately

∆x = f(x) ∆t. Now suppose that the variable x(t) is subject to random disturbances, and

hence is a stochastic process X(t). To approximate the value of this stochastic process at

time T , we discretize time into m small intervals, each of length ∆t. Let Xi = X (i∆t), and

∆Xi = Xi+1 −Xi. During a time period of length ∆t, there are probably many small

perturbations that affect X; if they have finite variance, then by the central limit theorem,

adding these small perturbations up yields a normally distributed random variable. We will

assume that this accumulated perturbation over a time period of length ∆t has mean 0 and

variance σ2∆t (the linear relationship with ∆t is required in order for X(T ) to have finite,

non-zero variance in the continuous time limit). Therefore, the change in the stochastic
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process over a time interval of length ∆t can be written as

∆Xi = f(Xi)∆t+ σ∆Wi, (S3)

where ∆Wi is normally distributed with mean 0 and variance ∆t. Adding up the changes

in the process over the time interval [0, T ] yields

X(T ) = X(0) +
m∑
i=1

f(Xi)∆t+ σ

m∑
i=1

∆Wi, ( 4)

which suggests an integral equation for the continuous time limit,

X(T ) = X(0) +

∫ T

0

f(X)dt+ σ

∫ T

0

dW. (S5)

If the intensity of perturbations depend on the value of X, then equation (S.5) can be

generalized to

X(T ) = X(0) +

∫ T

0

f(X)dt+ σ

∫ T

0

g (X) dW ( 6)

The integrals in equation (S6) make the notation cumbersome. In light of this, a modified 

notation is used. The stochastic differential equation

dX = f(X) dt+ σ g(X) dW ( 7)

formally means that X(t) is a solution to equation (S7). Note that  dW does not exist,dt

because the sample paths of W (t) are almost surely nowhere differentiable. This is why the 

notation in equation (S7) is used; it reminds us that X(t) is defined by the integral

equation (S6).

Section S2: Freidlin-Wentzell quasi-potential

In this section, we provide a more formal definition of the Freidlin-Wentzell quasi-

potential. Consider a system of stochastic differential equations

dX = f(X) dt+ σ g(X) dW, ( 8)
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where X = (X1, . . . , Xn) is a vector of state variables, W = (W1, . . . , Wm) is a vector of 

m independent Wiener processes. Vectors in this paper should be interpreted as column 

vectors. The lower-case notation x = (x1, . . . , xn) is used to indicate a point (as opposed to 

a stochastic process). f is a vector field that is the deterministic skeleton of the system.

g(x) is a matrix that determines how the different noise sources affect the state variables, 

and σ is the noise intensity. For simplicity, we will focus on the case where m = n and g(x) 

is the identity matrix, which represents constant-intensity isotropic noise, affecting each state 

variable with equal intensity. Under these assumptions, equation (S8) can be written as

dX = f(X) dt+ σ dW. (S9)

In Section S6, we will return to the general case (S8), but constant, isotropic noise provides a 

useful starting point. If there exists a function U(x) such that f = −∇U, then the differential 

equations are called a gradient system, and the function U is called a potential function. Like 

one-dimensional systems, a multi-dimensional gradient system can be viewed with the ball-

in-cup framework. For n = 2, the relevant metaphor is a ball rolling on a two-dimensional 

surface specified by the function U(x). For n ≥ 3, the situation is difficult to visualize, but the 

same general intuitive aspects hold. The steady-state probability distribution of higher-

dimensional gradient systems is related to the potential U in the same way as in (6), except x 

replaces x and Z is obtained from an

n-dimensional integral. Expressions for the mean first passage time between stable 

equilibria separated by a saddle are similar to the one-dimensional case as well.

Unfortunately, gradient systems are a very special situation. In most cases of ( 9),

there will not exist a function U satisfying f = −∇U . For these non-gradient systems, we

cannot use a potential function to quantify stability, as we did in example 1. In what

follows, we develop an approach that is conceptually analogous but applicable to non-

gradient systems.

In the following, we will use the concept of logarithmic equivalence, denoted by �. We
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write f(x) � eκh(x) if

lim
κ→∞

κ−1 ln(f(x)) = h(x). (S10)

The Freidlin-Wentzell approach is to obtain a large deviation principle for trajectories x(t)

of (S9). In this context, a large deviation principle is an asymptotic rule that determines

how likely it is for realizations of (S9) to depart from a given path. To make this concrete,

let a be an asymptotically stable equilibrium of f in ( 9). Let b ∈ R nand T > 0. Let Θ T

be the set of all absolutely continuous paths θ : [0, T ]→ Rn such that θ(0) = a and

θ(T ) = b. We will study the probability that a realization xσ(t) of ( 9) with noise

intensity σ and with xσ(0) = a and xσ(T ) = b stays close to θ ∈ ΘT . A large deviation

principle declares that there exists a δ0 > 0 such that, if 0 < δ < δ0, then

Pr

{
sup

0≤s≤T
|xσ(s)− θ(s)| < δ

}
� exp

(
−ST (θ)

σ2

)
, ( 11)

where the logarithmic equivalence holds as σ → 0. The functional ST : ΘT → [0,∞) is

called the action, and it is defined by

ST (θ) =
1

2

∫ T

0

∣∣∣f(θ(t))− θ̇(t)
∣∣∣2 dt. ( 12)

Note that ST measures how much θ̇ deviates from the vector field f . If ST (θ) = 0, then θ is

a trajectory of the deterministic system, dx
dt

= f(x). The action ST is related to the

probability distribution of X by

lim
σ→0

σ2 ln (Pr {X(T ) ∈ Ω|X(0) = a}) = − inf
θ∈ΘT

{ST (θ)|θ(0) = a, θ(T ) ∈ Ω} , ( 13)

where Ω is a domain in Rn. For details on the technical assumptions behind this

relationship, see Freidlin and Wentzell (2012). To get from a to b in a “likely” way, the

action should be made as small as possible. This motivates the definition of the Freidlin-

Wentzell quasi-potential (or simply quasi-potential), Φa : Rn → [0,∞),

Φa(b) = inf
T>0,θ∈ΘT

{ST (θ)|θ(0) = a, θ(T ) = b} . ( 14)
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Note that the infimum is taken over paths of all durations (that is, all times T > 0).

The quasi-potential is the value of the action for the minimum-action path (i.e., the

most likely path) between a and b. It is closely related to first passage times from domains

of attraction. If D is a region contained within the domain of attraction of a, then the

expected time until a trajectory exits D, τ∂Da , is given by

lim
σ→0

σ2 ln(τ∂Da ) = inf
x∈∂D

Φa(x). ( 15)

The quasi-potential need not be defined solely in terms of an isolated asymptotically

stable equilibrium a. Cameron (2012) generalized the quasi-potential, and defined it for

compact sets. This generalization allows the quasi-potential to be determined for limit

cycles (as demonstrated in example 3). A different approach to generalizing the

quasi-potential to compact sets can be can be found in Freidlin and Wentzell (2012).

Cameron’s generalization requires considering the geometric action (Heymann and

Vanden-Eijnden 2008b,a), which we will denote by S∗. Suppose that θ ∈ ΘT , and ψ(ν) is a

reparameterization of θ such that ψ(0) = θ(0) and ψ(ν0) = θ(T ). Then the geometric

action is

S∗(ψ) =

∫ ν0

0

|f(ψ(ν))| |ψ̇(ν)| − f(ψ(ν)) · ψ̇(ν) dν. ( 16)

The value of S∗ is independent of the parameterization of ψ. If A and B are compact sets

in Rn, then the quasi-potential can be defined by

ΦA(B) = inf {S∗(ψ)|ψ(0) ∈ A,ψ(ν0) ∈ B} . ( 17)

Section S3: A global quasi-potential

In systems with multiple stable equilibria, it is desirable to obtain a global quasi-

potential that describes how trajectories switch between states. In the preceding section,

the quasi-potential was defined in terms of a stable equilibrium a. Suppose now that there

are two stable equilibria, a1 and a2, with corresponding domains of attraction D1 and D2.

The action functionals can be used to obtain Φa1 and Φa2 , but these quasi-potentials are of
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limited utility outside of D1 and D2, respectively. The minimum action path from a1 to a2

will follow streamlines of the vector field once it enters D2. This will result in no

accumulated work; hence Φa1 will be flat along streamlines in D2. The quasi-potentials

both describe dynamics well within their domains of attraction, but in order to create a

complete surface in the spirit of a classical potential function, it is necessary to combine

the two. This is easily accomplished if there is a single saddle point s that lies on the

separatrix between D1 and D2. We find the constant

C = Φa1(s)− Φa2(s) ( 18)

so that Φ∗a2
= Φa2 + C agrees with Φa1 at s. Finally, we compute the global quasi-potential

Φ as

Φ(x) = min
(
Φa1(x),Φ∗a2

(x)
)
. ( 19)

More complicated cases can arise when domains of attraction are connected by more than

one saddle (Freidlin and Wentzell 2012). For details about how to combine local

quasi-potentials into a global quasi-potential in these more complicated cases, see Freidlin

and Wentzell (2012), Moore et al. (Submitted), and Roy and Nauman (1995).

This section describes the relationship between V and V0, and shows the derivation of

the Hamilton-Jacobi equation for V0. The Fokker-Planck equation associated with the two-

dimensional version of (A.9) is (10). Under relatively mild conditions on the function f

(for details, see Freidlin and Wentzell 2012), there will exist a steady-state probability

distribution

ps(x) = lim
t→∞

p(x, t). ( 20)

Steady-state distributions can often be approximated by very long-time realizations.

Determining when such an approximation holds is the subject of ergodic theory (see

Arnold 2010). Approximations to steady-state distributions for the consumer-resource in
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example 2 (i.e., the system (8)) are shown in Figure S1. Each panel corresponds to a

different noise intensity, σ. Qualitatively, Figure S1 confirms that trajectories spend more time 

near eA than eB, and hence a sensible stability metric should classify eA as more stable than 

eB. However, it also clearly shows that the steady-state distribution depends on the noise 

level; each choice of σ yields a different distribution. If one is interested in the general 

properties of the system, and not just the steady-state distribution for a specific noise 

intensity, then steady-states distributions are of limited utility.

The “effective potential” (not to be confused with the potential or quasi-potential) is

defined as

V (x) = −σ
2

ln ps(x) + C, (S21)
2

where C is a constant. The effective potential’s relationship with the steady-state 

distribution makes it a helpful tool. The peaks of the steady-state distribution correspond 

to valleys of the effective potential, and vice versa. There are two reasons why we do not 

adopt the effective potential as a stability metric in this paper. First, the effective potential 

depends on σ, and hence suffers from the same issue as the steady-state distribution. In 

the ball-in-cup metaphor, the noise intensity σ determines the perturbations of the ball as 

it rolls, rather than determining the shape of the landscape. Second, the effective potential 

is not a Lyapunov function for the deterministic system, so a trajectory of a system with 

zero noise does not necessarily move downhill. Finally, a decomposition based on the 

gradient of V is not orthogonal. Despite these shortcomings, the effective potential is closely 

related to the quasi-potential. Solving (S21) for ps(x) yields

ps(x) = e
2C
σ2 e−

2V (x)

σ2 . (S22)

Substituting this into the Fokker-Planck equation yields

|∇V |2 + f1
∂V

∂x1

+ f2
∂V

∂x2

− σ2

2

(
∇2V +

∂f1

∂x1

+
∂f2

∂x2

)
= 0. (S23)

To simplify this equation, we consider how the system behaves for small noise values, and
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expand V in terms of the small parameter ε = σ2

2
. This yields

V (x) =
∞∑
i=0

Vi(x)εi, (S24)

where Vi is the coefficient function associated with order εi. Inserting this into (S23) and

retaining lowest-order terms, we obtain the Hamilton-Jacobi equation for V0,

|∇V0|2 + f1
∂V0

∂x1

+ f2
∂V0

∂x2

= 0. ( 25)

By deriving the Hamilton-Jacobi equation for the quasi-potential, we can verify the 

relationship Φ = 2V0. This relationship is crucial. We described key properties about V0 

concerning the effective potential, the steady-state probability distribution, the Lyapunov 

property, and the orthogonality of the decomposition f = −∇V + Q; in Section S2, we 

described properties of Φ. The relationship Φ = 2 V0 shows that these functions share those 

properties; they only differ by multiplication of a scalar.

Bellman’s Principle from optimal control theory can be used to derive the Hamilton-

Jacobi equation for Φ. We sketch the proof from Cameron (2012). The calculation of

ΦA(x), the value of the quasi-potential starting at a compact set A and going to a point x,

can be viewed as an optimal control problem. We seek to minimize the value function

ΦA(x) by choosing an optimal path ψ(ν). This path is controlled by the velocity vector

ψ̇(ν). We are free to choose the parameterization of ψ(ν), so we select one where the

velocity vector has unit magnitude at every point. The optimal control problem amounts

to determining the tangent direction ψ̇(ν) for each ν, so that the resulting path minimizes

the action. Bellman’s Principle essentially turns this problem into a recursive equation.

Heuristically, one can imagine the last segment of an optimal path ψ(ν) from ψ(0) ∈ A to

ψ(K) = x. This last segment is specified by the parameter values ν ∈ [K − δ,K]. Clearly

this optimal path will be optimal over the interval [K − δ,K]. Therefore, if one knows the

optimal path up to parameter value K − δ, one knows the remainder of the path as well.
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(a) σ = 0.02 (b) σ = 0.1

(c) σ = 0.25 (d) σ = 0.5

Figure 1. Approximations to the steady-state probability density of equations (8), obtained
from a long-time (t = 25000) simulation, with four different noise intensities. Integration was 
performed with the Euler-Maruyama method and ∆t = 0.025. Variables are scaled, so the units are 
dimensionless. The horizontal axis is resource population density and the vertical axis is consumer 
population density. White corresponds to high probability density. The information conveyed 
in each plot depends on the noise intensity (see Section S4).

Mathematically, this principle takes the form

ΦA(x) = inf
ψ̇∈Sn−1

{∫ K

K−δ
|f(ψ(ν))| − f(ψ(ν)) · ψ̇(ν) dν + ΦA (ψ(K − δ))

}
. ( 26)

10

S

S



A small δ expansion yields

ΦA(x) = inf
ψ̇∈Sn−1

{
(|f(x)| − f(x) · ψ̇)δ + ΦA(x)−∇ΦA(x) · ψ̇ δ

}
. (S27)

Solving this equation is equivalent to solving

inf
ψ̇∈Sn−1

{
|f(x)| − f(x) · ψ̇ −∇ΦA(x) · ψ̇

}
= 0. (S28)

Using the Cauchy-Schwarz inequality, one finds that the infimum of the left-hand side

of (S28) occurs when

ψ̇ =
f(x) +∇ΦA(x)

|f(x)|
. (S29)

Substituting this into (S28) yields

|∇ΦA|2 + 2∇ΦA · f = 0. (S30)

This paper focuses on the case g(x) = I in equation (S8), where I is the identity

matrix. The quasi-potential can be calculated for more general cases. Such a generalization

requires a modification in the definition of the action:

ST (θ) =
1

2

∫ T

0

∑
i,j

qi,j(θ(t))
(
fi(θ(t))− θ̇i(t)

)(
fj(θ(t))− θ̇j(t)

)
dt. (S31)
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Comparing this to (12), we can see that, if solutions exist, they have the relationship

ΦA = 2 V0. Classical solutions do not always exist for the Hamilton-Jacobi equation, so it is 

often necessary to consider a class of weak solutions called “viscosity solutions” (Sethian and 

Vladimirsky 2001, Crandall and Lions 1983, Crandall et al. 1984). When a classical solution 

does exist, it coincides with the viscosity solution.
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where q(x) =
(
g(x)gT (x)

)−1
. The large deviation relationships, (S11) and (S13), are still

valid. The Hamilton-Jacobi equation for (S8) is

∑
i,j

qi,j
∂Φ

∂xi

∂Φ

∂xj
+ 2∇Φ · f = 0. (S32)

Alternatively, one can find a transform of (S8) that turns the system into the form (S9),

compute the quasi-potential in these new coordinates, and then back-transform to the

original coordinates. For the system

dX1 = f1(X1, X2) dt+ σ g1 dW1

dX2 = f2(X1, X2) dt+ σ g2 dW2,

(S33)

where g1 and g2 are constants, the appropriate transform is X̃1 = g−1
1 X1, X̃2 = g−1

2 X2. For

the system

dX1 = f1(X1, X2) dt+ σ g1X1 dW1
(S34)

Steady-state probability densities and mean first passage times can be determined from

the quasi-potential, but only in the small-noise limit. These quantities are often expressed

12

dX2 = f2(X1, X2) dt + σ g2 X2 dW2, 

the appropriate transform is X˜
1 = g1

−1 ln(X1), X˜
2 = g2

−1 ln(X2). 

Section S7: Curvature

The concept of curvature is more nuanced for surfaces than it is for curves. The 

principal curvatures of the surface specified by V0 at e0 are the largest and smallest 

curvatures of the one-dimensional normal sections at e0. A normal section is obtained by 

intersecting a plane containing the normal vector of the surface V0 at e0 with V0. The 

principal curvatures correspond to the eigenvalues of the Hessian matrix of V0. In the 

gradient case, f = −∇V0, so the Hessian matrix of V0 is simply the negative of the 

Jacobian matrix of f. In other words, the principal curvatures of the surface V0 are the 

eigenvalues obtained from the linear stability analysis (except with the sign changed). 

Section S8: Mean first passage time asymptotics



in terms of logarithmic equivalence as σ → 0. Accurate calculation involves not just the

exponential part of the relationship, but also the prefactor. For a gradient system with

potential U , the mean first passage time τ to transition from a stable equilibrium x to a

saddle z is (Bovier et al. 2004):

τ =
2 π

|λ1 (z)|

√
|det∇2U(z)|
det∇2U(x)

exp

(
2 (U(z)− U(x))

σ2

)
(1 +O (σ |log (σ)|)) (S35)

∇2U(z) is the Hessian of the potential at z, and ∇2U(x) is the Hessian of the potential at

x. λ1(z) is the negative eigenvalue of the Hessian at the saddle. Bouchet and Reygner

(2015) obtained a similar expression has for a non-gradient system with quasi-potential V .

Their estimate for τ is

τ =
2 π

|λ1 (z)|

√
|det∇2V (z)|
det∇2V (x)

exp

(
2 (V (z)− V (x))

σ2

)
exp

(∫ ∞
−∞

F (ρ(t)) dt

)
. (S36)

λ1(z) is the unstable eigenvalue of the full deterministic skeleton (not just the

quasi-potential) at the saddle. ρ(t) is the least action path from x to z:

ρ′(t) = ∇V (ρ(t)) +Q (ρ(t)) (S37)

F is the divergence of the circulatory component, F (x) = ∇ ·Q(x).

For example 2, we can examine how the mean first passage time estimates from the

quasi-potential correspond to simulation results (figure S2). For this example, numerical

integration along the least action path suggests that
∫∞
−∞ F (ρ(t)) dt ≈ 0, so we drop this

term in the approximation. Note that the quasi-potential approximations closely match the

means of the simulated first passage times. Of course, there will always be outliers, and

these can be seen in the tails of the distributions of simulated first passage times in

figure 2.
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Figure 2. Simulation results for first passage times in example 2. The initial point is eA, and
the time step is 0.05. 500 realizations were generated at each noise level. The width of each gray
shape corresponds to the frequency with which each first passage time was observed. The black line
is the small-noise approximation of the mean first passage time from the formula in appendix S8.
Note that the small-noise approximation matches the means of the distributions well. At all noise
levels, the simulations included outliers that escaped from the basin of attraction much faster than
the small-noise prediction.

In the following, we examine a bistable model that illustrates the different ways that

the stability metrics described in this paper can classify stable states. The model is

dX = f1(X, Y ) dt+ σ dW1

dY = f2(X, Y ) dt+ σ dW1.

(S38)
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The deterministic skeleton is given by

f1(x, y) = −2 a b1 x exp
(
−
(
b1 x

2 + b2 y
2
))
− 2 d1 (x− c) exp

((
d1 (x− c)2 + d2 (y − c)2))

f2(x, y) = −2 a b2 x exp
(
−
(
b1 x

2 + b2 y
2
))
− 2 d2 (y − c) exp

((
d1 (x− c)2 + d2 (y − c)2))

.

(S39)

This model does not represent any particular ecological process and was instead chosen for

its ability to illustrate the range of relationships that are possible between the stability

metrics we discuss. This is a gradient system, with potential function

U(x, y) = 1− a exp
(
−
(
b1 x

2 + b2 y
2
))
− exp

(
−
(
d1 (x− c)2 + d2 (y − c)2)) . (S40)

For all of the parameter values we consider, the system will have two stable states, e1 and

e2, separated by a saddle es. This example will show that each equilibria can be classified

as more stable by any combination of the stability metrics. Without loss of generality, the

stable-state with larger x -value, e2, will be more stable according to metric 3 (the basin

depth metric).

In case 1, the parameter values are a = 0.9, b1 = 1, b2 = 1, c = 1.2, d1 = 1.2, d2 = 1.2.

e2 is more stable by all three metrics (figure S3).

Metric 1: Re (λ (e1)) = −1.16769, Re (λ (e2)) = −1.75728

Metric 2: ‖e1 − es‖ = 0.643635, ‖e2 − es‖ = 0.859567

Metric 3: U (es)− U (e1) = 0.0842552, U (es)− U (e2) = 0.204706

( 41)

In case 2, the parameter values are a = 0.9, b1 = 2, b2 = 2, c = 1.8, d1 = 0.8, d2 = 0.8.

e2 is more stable by metric 3 (depth) and metric 2 (basin width) but not metric 1 (linear
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stability) (figure S4).

Metric 1: Re (λ (e1)) = −3.51331, Re (λ (e2)) = −1.59979

Metric 2: ‖e1 − es‖ = 1.05186, ‖e2 − es‖ = 1.48722

Metric 3: U (es)− U (e1) = 0.639468, U (es)− U (e2) = 0.73379

(S42)

In case 3, parameter values are a = 0.9, b1 = 1, b2 = 1, c = 2.5, d1 = 1.2, d2 = 1.2. e2 is 

more stable by metric 3 (depth) and metric 1 (linear stability), but not metric 2 (basin width) 

(figure S5).

Metric 1: Re (λ (e1)) = −1.79998, Re (λ (e2)) = −2.39984

Metric 2: ‖e1 − es‖ = 1.81859, ‖e2 − es‖ = 1.71693

Metric 3: U (es)− U (e1) = 0.837959, U (es)− U (e2) = 0.937962

(S43)

In case 4, the parameter values are a = 0.9, b1 = 0.9, b2 = 0.9, c = 2.37, d1 = 0.78,

d2 = 1.46. e2 is more stable by metric 3 (depth), but not metric 1 (linear stability) or

metric 2 (basin width) (figure S6).

Metric 1: Re (λ (e1)) = −1.61995, Re (λ (e2)) = −1.55978

Metric 2: ‖e1 − es‖ = 1.80573, ‖e2 − es‖ = 1.77222

Metric 3: U (es)− U (e1) = 0.81102, U (es)− U (e2) = 0.91103

( 44)

These four cases show that an equilibrium in a bistable system can be classified as

“more stable” by any combination of the three metrics. Hence it is important to recognize

that each metric conveys a different piece of information about stability.
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Figure S3. (a) The potential function for case 1 of the system in Section S9. (b) A comparison
of three different metrics of stability for the system in case 1.
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Figure S4. (a) The potential function for case 2 of the system in Section S9. (b) A comparison

of three different metrics of stability for the system in case 2.
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Figure S 5. (a) The potential function for case 3 of the system in Section S9. (b) A comparison

of three different metrics of stability for the system in case 3.
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Figure S6. (a) The potential function for case 4 of the system in Section S9. (b) A comparison

of three different metrics of stability for the system in case 4.
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