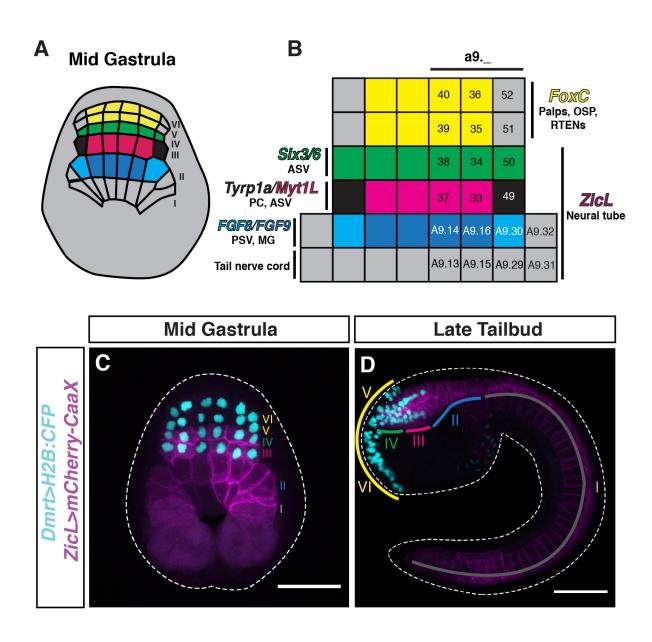
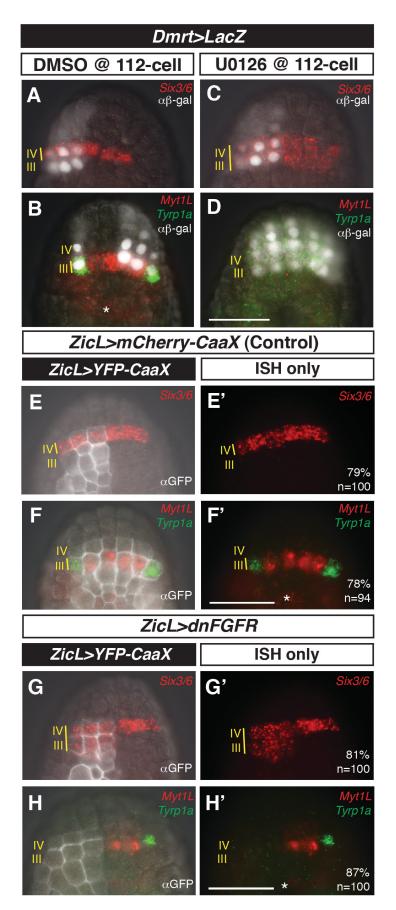
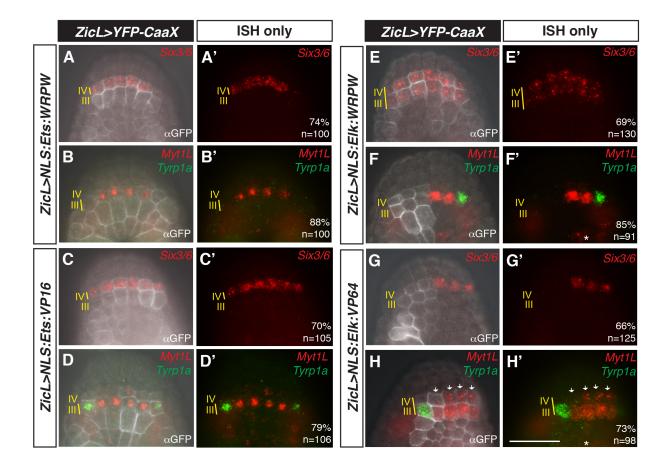
## **Supplementary Material**

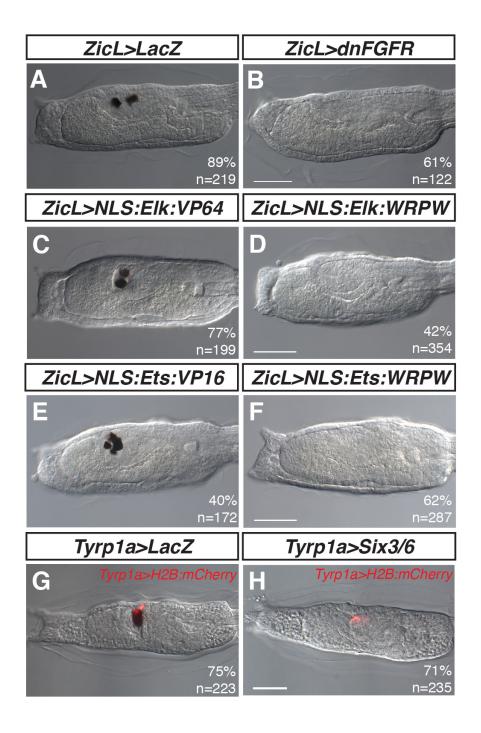

Supplementary Figure 1. FGF-dependent induction and early patterning of *Ciona* anterior neural tissue. (A-C) Schematics of neural plate development from 32- to 110-cell stages. Upper diagrams show simplified embryos with cells of interest highlighted. Lower diagrams show expression of key patterning genes within the future neural plate. Numbers indicate cell names using the nomenclature of Conklin. Only right-sided blastomeres are labeled, but names apply to their contralateral partners as well. (A) Anterior neural tissue is induced at the 32-cell stage by FGF9 from vegetal blastomeres. (B) At the 64-cell stage, *Dmrt* is induced in the six precursors of the anterior neural plate. (C) By the 1120-cell stage, the anterior neural boundary (ANB) has been established between the *ZicL*+ cells (anterior neural tube) and the *FoxC*+ cells (presumptive palps, OSP, neurogenic ectoderm).

Supplementary Figure 2. Sequential requirement for MEK in early neural plate patterning. (A-C) Embryos were electroporated with *ZicL>LacZ* and *Dmrt>H2B:YFP*, treated with DMSO (A) or U0126 at 76-cell (B) or 112-cell (C) stages, and fixed at mid-gastrula for *in situ* hybridization and immunohistochemistry. (A) In control embryos, *ZicL* and *Dmrt* reporters are co-expressed in rows III and IV. *Six3/6* is restricted to row IV. (B) U0126 treatment at 76-cell stage results in loss of *ZicL* reporter expression in rows III and IV and loss of *Six3/6* expression. (C) U0126 treatment at 112-cell stage results in normal expression of *ZicL* reporter and a poster expansion of *Six3/6* into row III.

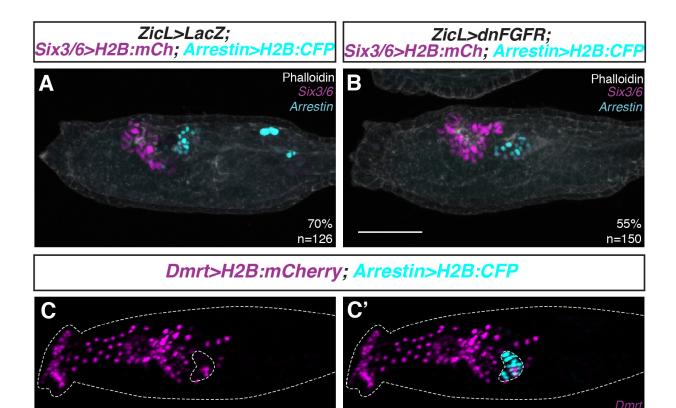

Supplementary Figure 3. Expression of ETS family transcription factors in the neural plate. (A-C) Embryos were electroporated with *ZicL>LacZ* and *Dmrt>YFP-CaaX*, then fixed at

mid-gastrula or neurula stages and assayed for expression of Ets1/2 or Elk1/3/4 by *in situ* hybridization with immunohistochemistry. Lower panels show *in situ* hybridization channel alone for clarity. (A,A') Ets1/2 is expressed throughout the neural plate at mid-gastrula stage. (B,B') At early neurula stage, Ets1/2 expression is more restricted, with strongest expression in the lateral a9.50 cells of row IV. (C,C') Elk1/3/4 is expressed in rows I, III, and IV of the mid-gastrula neural plate, but excluded from row II.


**Supplementary Figure 4. (A)** Schematic of Ets1/2 and Elk1/3/4 proteins. Ets1/2 consists of a C-terminal ETS DNA-binding domain and a SAM/Pointed protein-protein interaction domain from residues 182-265. Elk1/3/4 has an N-terminal ETS DNA-binding domain. Domain predictions were made using SMART (http://smart.embl-heidelberg.de/\_\_Schultz et al., 1998; http://smart.embl-heidelberg.de/). Yellow and blue boxes indicate residues used in Ets1/2 -and Elk1/3/4 fusion proteins, respectively. **(B)** Alignment of Ets1/2 and Elk1/3/4 proteins. <u>Purple</u> shading indicates identical residues, pink shading indicates similar residues, and unshaded residues are not conserved. Underlined residues indicate those included in fusion proteins. Red line indicates core ETS domain. Ets1/2 and Elk1/3/4 are ~65% identical within this region. Alignment was generated using T-Coffee Expresso (Armougom et al., 2006; http://www.tcoffee.org). Formatted: Line spacing: Double




Gainous et al., Figure 1

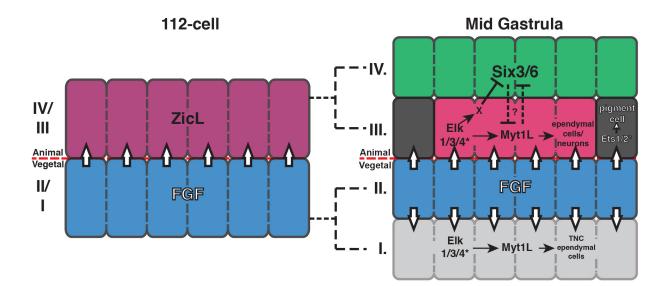


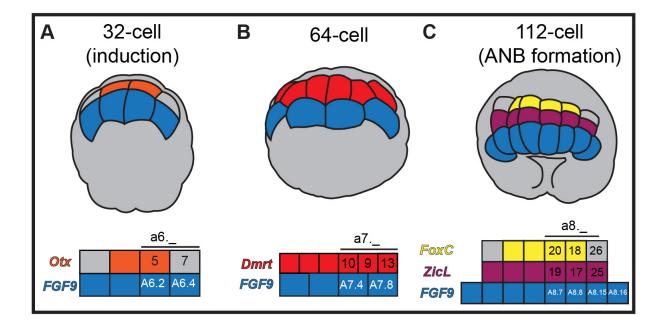

Gainous et al., Figure 2



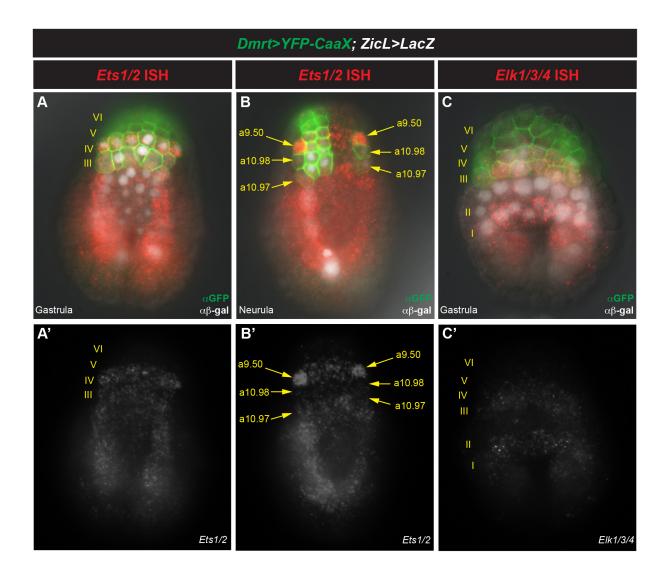


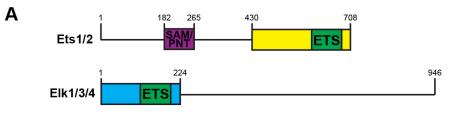
Gainous et al., Figure 4





Dmrt

Arrestin TPCC = -0.17


n=11


Gainous et al., Figure 5





| <i>Dmrt&gt;H2B:YFP; ZicL&gt;LacZ</i><br>Six3/6 ISH Mid-Gastrula |                                                  |                           |  |  |
|-----------------------------------------------------------------|--------------------------------------------------|---------------------------|--|--|
| Control                                                         | U0126 @ 76-cell                                  | U0126 @ 112-cell          |  |  |
| A<br>VI<br>V<br>IV<br>III<br>III<br>αGFP<br>αβ-gal              | B<br>VI<br>V<br>IV<br>II<br>II<br>αGFP<br>αβ-gal | C<br>VI<br>V<br>IV<br>III |  |  |





В

| Ci-Ets1/2<br>Ci-Elk1/3/4 | 1 MVDQHVVPSSFDINIPSINIKPDDDFFDNDLDFDVKLSNEDFSSPEDFVSTPVLPDDFLP<br>1 <u>MMTLKIDTADFDRSSIE00P00DG</u> |
|--------------------------|-----------------------------------------------------------------------------------------------------|
| consensus                | 1 * ** ** * *                                                                                       |
| Ci-Ets1/2                | 61 DLNHCSIKQSSFDKQIAYENLSAHDASHIQCNESTEYSSSYNGKHEVCTPVKNYPGKGKD                                     |
| Ci-Elk1/3/4              | 25TE                                                                                                |
| consensus                | 61                                                                                                  |
| Ci-Ets1/2<br>Ci-Elk1/3/4 | 121 ICNITPNVTPRSAQKSMPGTPLEELTGLPEKLAPEDVPKTPLFPLITPGTGAKMNDAITQ<br>36 TRNVTDSAVENDRIKS             |
| CI-EIRI/3/4<br>CONSENSUS | 36 IK                                                                                               |
| consensus                | 121                                                                                                 |
| Ci-Ets1/2                | 181 SFSSFRNIMEANSMSKDPKLWSAPQVKTWARWIAQEFSIPSLDESNFCISGSMMCSLRKE                                    |
| Ci-Elk1/3/4              | 52 <u>SD</u> <u>PEKGLLD</u> <u>RENDGSPSLDERSSMVNM</u>                                               |
| consensus                | 181 *                                                                                               |
| Ci-Ets1/2<br>Ci-Elk1/3/4 | 241 SFLHLCPPFVGEILWEHLDRLQSECGNDTRIPECSNLNQNNDKISSSTTPQNPPSCTTNP<br>79EEIDM                         |
| consensus                | 241*                                                                                                |
| Compositud               |                                                                                                     |
| Ci-Ets1/2                | 301 PYPTRPAPPYTKNPSFNQPIQNHFSLDQPPQFKEERYRPQHLDTPSHFNPTDAPPVDMS-                                    |
| Ci-Elk1/3/4              | 84 <u>OAPPSDKRL</u>                                                                                 |
| consensus                | 301 *** * .                                                                                         |
| Ci-Ets1/2                | 360 CVKREQLPHYPSHAFPVNTNRRNFSFEHSMNIKPEPMSHINAFDMHRQMSHPHKPNQRFG                                    |
| Ci-Elk1/3/4              | 93 CLANMOOLG                                                                                        |
| consensus                | 361 * * *                                                                                           |
| Ci-Ets1/2                | 420 MHMENRRSSEPILTPLKPFYRHRPLSOOMSHPFPTPTTPNAPELPGHPMHLPPHEMGGOO                                    |
| Ci-Elk1/3/4              | 102 AHLPR                                                                                           |
| consensus                | 421 *                                                                                               |
| Ci-Ets1/2                | 480 NLODLYYINIASLRHHOOIETMKRHEMAKGKIOOTITNRSFGDOOVNOHHMLSRSDSVGW                                    |
| Ci-Elk1/3/4              | 107                                                                                                 |
| consensus                | 481                                                                                                 |
| Ci-Ets1/2                | 540 NGNKGNINGLLTPEPEDFEGGFMQHSRMNSCMTQNTTAEFPSNPVIPGAFLTGYNGSGPI                                    |
| Ci-Elk1/3/4              | 107 <u>VL</u> <u>DMNV</u>                                                                           |
| consensus                | 541                                                                                                 |
| Ci-Ets1/2                | 600 <u>OLWOFLIELLTDRS</u> -COHFVTWTGDGWEFKMIDPDEVARRWGRRKNKPKMNYEKLSRGLR                            |
| Ci-Elk1/3/4              | 113 TLWOFLLELLMDPSSNSHLISWTSADGEFKLHNSEEVARLWGLRKNKTNMNYDKLSRALR                                    |
| consensus                | 601 *****.*** * *. *** ******* *** *                                                                |
| Ci-Ets1/2                | 659 YYYDKNIIOKTAGRRYVYRFYCDLOS                                                                      |
| Ci-Elk1/3/4              | 173 <u>YYYDKNIIKKVNGOKFVYKFVSFPEIIKTETKIPFRVKMERLTONENGOGGI</u> DDDDEGDP                            |
| consensus                | 661 ******** * ***.**                                                                               |
| Ci-Ets1/2                | 685                                                                                                 |
| Ci-Elk1/3/4              | 233 PSPTPSSSPPSMVVGRSDVTEEDYRYFIQRQQEAKELEQAEKRKKLSHQNEQRQEQRRQL                                    |
| consensus                | 721                                                                                                 |
| Ci-Ets1/2                | 685 <u>LLG<mark>YSPTE</mark></u>                                                                    |
| Ci-Elk1/3/4              | 293 KQLNYSNYSPTQSPADNWRHREMAEESHHATGSLQHATRSVEDVARMSLGAASSAAAAAA                                    |
| consensus                | 781 ****                                                                                            |
| Ci-Ets1/2                | 693                                                                                                 |
| Ci-Elk1/3/4              |                                                                                                     |
| consensus                | 841                                                                                                 |
|                          | 693LHSMLDVKP                                                                                        |
|                          | 413 KYHTESPPINPRGWDRHNSNNNHRSNTHSYRQQQHNDKYKHDRLSPPYPTQFHKSRKSPP                                    |
| consensus                | 901 * *                                                                                             |

| Ci-Ets1/2<br>Ci-Elk1/3/4<br>consensus |                    | EDRLSD                                                       |
|---------------------------------------|--------------------|--------------------------------------------------------------|
| Ci-Ets1/2<br>Ci-Elk1/3/4<br>consensus | 708<br>533<br>1021 | RPRSPYSSGQKRRYPGEDDVMDVRRRDPSLFCSRLEQDDIPASSNRSSIELKRPKMECSD |
| Ci-Ets1/2<br>Ci-Elk1/3/4<br>consensus | 708<br>593<br>1081 | ISSNAFPFADNFSSYSRELVGKSPPLPRPFDERNEHAESTLAMLMNGHNSAPIENTSNTN |
| Ci-Ets1/2<br>Ci-Elk1/3/4<br>consensus | 708<br>653<br>1141 | TLKRNSLNEAPLDLCTSPKASNSPPGSPRALSPMLKHSPPVSSMDGDTSRTEEKRKSPEL |
| Ci-Ets1/2<br>Ci-Elk1/3/4<br>consensus | 708<br>713<br>1201 | LPAPEQREDEELEKTKQDSGPVTPQKRRLTGKKSIDRKPSPIDLSKPTRTEADDYMDGIS |
| Ci-Ets1/2<br>Ci-Elk1/3/4<br>consensus | 708<br>773<br>1261 | SALYAQFPGIRGSSLLSHDGKSINTPDAVSRKTPSDTNATFFPTSVIMTPSPMVIPSITF |
| Ci-Ets1/2<br>Ci-Elk1/3/4<br>consensus | 708<br>833<br>1321 |                                                              |
| Ci-Ets1/2<br>Ci-Elk1/3/4<br>consensus | 708<br>893<br>1381 | PAGVPVRPIAAALGQPIPANQVSSVASQLTSHMTGVASPLNLVSSSAVTTLTSS       |

## References

- Armougom, F., Moretti, S., Poirot, O., Audic, S., Dumas, P., Schaeli, B., Keduas, V. and Notredame, C. (2006). Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res. 34, W604-W608.
- Schultz, J., Milpetz, F., Bork, P. and Ponting, C.P. (1998). SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95, 5857-5864.