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Supplemental Data 

Figure S1. aanat mutant sequences and effects aanat2 mutation on melatonin levels and 

behavior in LD (Related to Figure 1). (A) Amino acid sequence alignment of human (Hs), 

mouse (Mm) and sheep (Oa) Aanat, and zebrafish (Dr) Aanat1 and Aanat2, are shown. The 

sequences of two zebrafish Aanat2 mutant proteins (d10 and d11) and one zebrafish Aanat1 

mutant protein (d40) that were generated in this study are also shown. Red boxes indicate 

conserved amino acids that interact with the acetyl-CoA substrate and are critical for enzyme 

activity in the sheep Aanat protein (Hickman et al., 1999; Scheibner et al., 2002). (B) aanat2-/- 

larvae contain little or no melatonin. Melatonin concentration was assayed by ELISA from WT 

and aanat2-/- larvae at the end of the night (6 am) or end of the day (6 pm). Little or no melatonin 

was detected in WT larvae at 6 pm or in aanat2-/- larvae at either time point. The assay was 

performed in triplicate, with 5 larvae per sample. Mean ± SEM is shown. ***, p<1x10-6 by 

Student’s t-test. (C, D) Serotonin (5-HT) levels in the pineal gland are higher at night compared 

to the day in both aanat2+/- and aanat2-/- larvae, and are higher at night in aanat2-/- larvae 

compared to their aanat2+/- siblings. Single 0.75 µm thick confocal sections are shown. Number 

of animals analyzed: aanat2+/- day=11, aanat2+/- night=6, aanat2-/- day=7, aanat2-/- night=13. 

Mean ± SEM is shown. *, p<0.05. ***, p<1x10-6 By Tukey’s test. Scale=20 µm. (E-L) aanat2-/- 

larvae are more active and sleep less at night in LD compared to their heterozygous mutant and 

WT siblings. Graphs are based on the data shown in Figures 1A-1F. aanat2-/- larvae exhibit 

slightly fewer sleep bouts (F), shorter sleep bouts (H), longer sleep latency (J), and longer wake 

bouts (L) at night, but no phenotype during the day (E, G, I, K). Data is combined from three 

experiments. Median ± median absolute deviation (MAD) (E, F) and mean ± SEM (G-L) are 

shown. n, number of larvae analyzed. *, p<0.05; **, p<0.01 compared to aanat2-/- by Steel-
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Dwass (E, F) or Dunnett’s test (G-L). (M) The response probability to a mechanoacoustic 

stimulus applied once per minute at night over a range of stimulus intensities is similar for all 

genotypes (log (half-maximal response probability) = 1.17±0.03, 1.15±0.03 and 1.16±0.04 for 

aanat2-/-, aanat2+/- and aanat2+/+, respectively; p=0.92 by extra sum-of-squares F test). Each data 

point represents the mean response probability ± SEM at a particular stimulus intensity. The x-

axis shows 0% to 100% stimulus intensity plotted as arbitrary units on a logarithmic scale. (N) 

When taps were applied every 5 minutes, sleeping (inactive for 1 or more minutes) aanat2-/-, 

aanat2+/- and aanat2+/+ larvae were equally likely to respond (response probability = 0.31±0.03, 

0.35±0.03, and 0.30±0.03, respectively; p=0.43 by one-way ANOVA). Mean ± SEM is shown. 

n, number of larvae analyzed. 

 

Figure S2. Depletion of aanat2-expressing pineal gland cells decreases sleep at night 

(Related to Figure 1). (A, B) Double fluorescent in situ hybridization using probes specific for 

cfp-ntr (green) and aanat2 (red) was performed on an aanat2-CFP-NTR transgenic larva fixed at 

120 hpf. Boxed region in (A) is shown at higher magnification in (B). Scale=100 µm (A) and 20 

µm (B). cfp-ntr expression is only observed in aanat2-expressing pineal gland cells. (C) Ablation 

experiment outline. Larvae were treated with 15 mM MTZ from 60-80 and 108-128 hpf, and 

behavioral monitoring was initiated at 134 hpf. (D) aanat2-CFP-NTR expressing cells in the 

pineal gland were imaged during the fifth, sixth and seventh nights of development in larvae 

treated with DMSO vehicle control or MTZ. Scale=20 µm. (E) Quantification of aanat2-CFP-

NTR cells. Mean ± SEM is shown. n, number of larvae quantified. (F-K) CFP-NTR-expressing 

larvae exhibit increased locomotor activity (F, I) and decreased sleep (G, K) during night 6 

compared to non-transgenic siblings. The phenotype is absent on night 7, presumably due to the 
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increased number of aanat2-expressing cells (D, E). **, p<0.01 for the indicated comparisons by 

Tukey’s test. 

 

Figure S3. Reduced sleep in aanat2-/- zebrafish does not require an entrained circadian 

rhythm (Related to Figure 2). (A-F) Graphs are based on data shown in Figures 2A-2F. When 

raised and tested in DD, aanat2-/- larvae exhibit fewer sleep bouts (A, B), shorter sleep bouts (C, 

D) and longer wake bouts (E, F) during periods corresponding to the 5th and 6th days and nights 

of development. Data are combined from three experiments. Median ± MAD (A, B) and Mean ± 

SEM (C-F) are shown. n, number of larvae analyzed. *, p<0.05; **, p<0.01 compared to aanat2-

/- by Steel-Dwass (A, B) or Dunnett’s test (C-F). (G, H) WT larvae raised in DD (red) exhibit 

dramatically reduced or absent rhythmic expression of the circadian clock genes per1b (G) and 

arntl1a (H) compared to siblings raised in LD (blue). Samples were collected at 6-hour intervals 

from 6 pm on day 5 until 6 pm on day 6. The expression of both mRNAs display robust 

oscillations in LD but not in DD (peak:trough ratio is 33 in LD versus 2 in DD for per1b, and 4.2 

in LD versus 1.6 in DD for arntl1a). None of the DD data points for per1b or arntl1a is 

significantly different from any other (p>0.12 and p>0.25 for per1b and arntl1a, respectively, by 

Tukey’s test). The LD data points are significantly different from each other (p<1x10-6 for per1b 

and arntl1a by Tukey’s test). 24 larvae were pooled for each time point and the mean ± SEM of 

triplicate samples is shown. (I-Q). Larvae raised in LD (lights on at 9 am and off at 11 pm) or 

DD were fixed at the indicated time points beginning at 6 pm at 6 dpf. Dissected brains were 

processed for fluorescent in situ hybridization using a probe specific for per1b and were 

counterstained with DAPI to label nuclei. In LD, per1b expression oscillates with a peak at 12 

pm and trough at 12 am (I, K, M, O). In DD, per1b expression levels are similar at all time 
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points (J, L, N, P). White boxes in I and I’ indicate region of the hypothalamus that is shown at 

higher magnification in (I”-P”) and (I”’-P”’). Yellow ovals in I” and I’” indicate region used to 

quantify per1b fluorescence in all samples. Representative images are shown. Scale=50 µm. (R). 

Quantification of total per1b fluorescence intensity in a 23 µm thick confocal image stack. per1b 

expression oscillates in LD (peak:trough ratio=10.7, p<0.01 by Tukey’s test) but not in DD 

(peak:trough ratio=1.2, p=0.77 by Tukey’s test). Mean ± SEM is shown. Three brains were 

quantified for each lighting condition at each time point. 

 

Figure S4. Melatonin is required for the circadian regulation of sleep (Related to Figure 4). 

(A-J) Graphs are based on data shown in Figures 4A-4C. (A, B) WT and heterozygous mutants 

raised in LD and tested in DD maintain locomotor activity and sleep circadian rhythms, but 

aanat2-/- larvae lack sleep circadian oscillations. Black and hatched boxes indicate subjective 

night and day, respectively. aanat2-/- larvae exhibit slightly fewer sleep bouts (D), shorter sleep 

bouts (F), more locomotor activity (H) and longer wake bouts (J) during subjective night. Similar 

but generally weaker phenotypes are observed during subjective day (C, E, G, I). Data are from 

one representative experiment (A, B) or combined from three (C-J) experiments. Bar graphs 

represent median ± MAD (C, D) and mean ± SEM (E-J). *, p<0.05; **, p<0.01 compared to 

aanat2-/- by Steel-Dwass (C, D) or Dunnett’s test (E-J). (K, L) aanat2-/- and WT larvae raised in 

LD maintain circadian rhythms in DD (LDDD). WT (red) and aanat2-/- (blue) larvae were raised 

in LD and shifted to DD at 11 pm on the fourth night of development. Samples were collected at 

6-hour intervals from 6 pm on day 5 until 6 pm on day 6. The expression of per1b (K) and 

arntl1a (L) oscillates for both WT and aanat2-/- larvae (peak:trough ratio is 16 for WT and 22 for 

aanat2-/- for per1b, and 4.3 for WT and 3.7 for aanat2-/- for arntl1a). 24 larvae were pooled for 
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each time point and the mean ± SEM of triplicate samples is shown. (M-O) Dose response 

curves for NECA (M), ABT702 (N) and pyrilamine (O). Each data point represents the average 

locomotor activity of 8 larvae during the day following addition of each drug. Drugs were used 

at or above the EC50 concentration for behavioral experiments. (P-S) Larvae were treated with 

either vehicle or 30 µM ABT702 starting on day 6. On night 6, vehicle-treated aanat2-/- larvae 

are more active (P, R) and sleep less (Q, S) than vehicle-treated aanat2+/- larvae. In contrast, 

ABT702-treated aanat2-/- larvae exhibit the same amount of activity (P, R) and sleep (Q, S) as 

ABT702-treated aanat2+/- larvae. Bar graphs represent mean ± SEM. *, p<0.05; **, p<0.01 

compared to aanat2-/- DMSO by Dunnett’s test. Note that there are no significant differences in 

locomotor activity or sleep on night 6 between ABT702-treated aanat2+/- and aanat2-/- larvae, 

but there are significant differences between DMSO- and ABT702-treated aanat2-/- larvae. Also 

note that the transient apparent increase in locomotor activity observed upon adding the drug or 

vehicle is an artifact due to compounds being pipetted into the plate. (T) Model for circadian 

regulation of sleep by melatonin. The circadian clock regulates expression of aanat2, and thus 

melatonin production, in the pineal gland, with high levels at night and low levels during the day 

(Fisher et al., 2013). The high level of melatonin at night promotes the initiation and 

maintenance of sleep. Extracellular adenosine accumulates in specific brain regions in proportion 

to time spent awake, and is thought to play a role in the homeostatic regulation of sleep (Brown 

et al., 2012). Melatonin may promote sleep, at least in part, by promoting adenosine signaling, 

thus linking homeostatic and circadian regulation of sleep. Melatonin likely also promotes sleep 

via additional mechanisms because extracellular adenosine levels decline during sleep (Brown et 

al., 2012) whereas the aanat2 mutant phenotype persists throughout the night. Melatonin-

induced adenosine signaling may predominantly occur at the beginning of the night, when 
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melatonin levels are still rising, to promote a rapid and robust wake to sleep transition. We found 

no evidence that melatonin feeds back to the circadian clock to regulate circadian rhythms. 
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Supplemental Experimental Procedures 

Zebrafish Genetics 

aanat2 mutant zebrafish were generated using the TAL effector nuclease (TALEN) method as 

described (Reyon et al., 2012) using plasmids obtained from Addgene. The TALEN target sites 

were 5’-TGGTGGCCTTCATCATT-3’ and 5’-TGTTCTAGTTTCTCTT-3’. Two mutants were 

isolated and tested. Mutant d10 contains a 10 bp deletion (nucleotides 295-304 of the open 

reading frame: 5’-TCTGGCTGGG-3’). Mutant d11 contains an 11 bp deletion (nucleotides 296-

306 of the open reading frame: 5’-CTGGCTGGGAT-3’). The mutations result in a change in 

reading frame after amino acid 98 and a premature stop codon after amino acid 102 (d10) or 98 

(d11), compared to 210 amino acids for the WT protein. The mutants exhibited identical 

phenotypes and mutant d10 was used for all reported experiments. aanat2 mutants were 

genotyped using the primers 5’-CAGTGTCCTGAGCTGTCCAT-3’ and 5’-

CGAAAGGCACATCACCATC-3’. Mutant and WT PCR products (162 bp and 172 bp, 

respectively) were distinguished by running the PCR reaction on a 4% agarose gel. aanat1 

mutants were generated using the Cas9/CRISPR method (Hwang et al., 2013) using plasmids 

obtained from Addgene and the sgRNA 5’-GGAGCGTGTGTCGGCGCTGG-3’. The aanat1 

mutant contains a 40 bp deletion (nucleotides 67-106 of the open reading frame: 5’-

CGCCAGCGCCGACACACGCTCCCAGCAAGCGAGTTTCGCT-3’). This deletion results in 

a change in reading frame after amino acid 23 and a premature stop codon after amino acid 78, 

compared to 204 amino acids for the WT protein. aanat1 mutants were genotyped using the 

primers 5’-GTAGTGAGCGCACTGCCTTT-3’ and 5’-CACACATATGACCACACAAACCT-

3’. Mutant and WT PCR products (168 bp and 208 bp, respectively) were distinguished by 

running the PCR reaction on a 3% agarose gel. For both aanat1 and aanat2 mutants, the frame 
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shifts and premature stop codons are 5’ to domains critical for enzyme activity in the sheep aanat 

ortholog (Hickman et al., 1999; Scheibner et al., 2002), indicating that the mutant proteins are 

likely to be non-functional. The Tg(aanat2:CFP-NTR) transgenic line was generated by 

subcloning the 5’ and 3’ aanat2 enhancer elements (Gothilf et al., 2002) 5’ and 3’ to a CFP-NTR 

transgene (Curado et al., 2007) in a vector containing Tol2 transposase arms. The plasmid was 

coinjected with Tol2 transposase mRNA and transgenic lines were identified based on CFP 

fluorescence. 

 

Behavioral Analysis 

Larval zebrafish were raised on a 14:10 hour light:dark cycle at 28.5OC with lights on at 9 am 

and off at 11 pm. Individual larvae were placed into each well of a 96-well plate (7701-1651, 

Whatman) containing 650 µL of E3 embryo medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM 

CaCl2, 0.33 mM MgSO4, pH 7.4) (Prober et al., 2006). In most experiments, plates were sealed 

with an optical adhesive film (4311971, Applied Biosystems) to prevent evaporation. The sealing 

process introduces air bubbles in some wells, which are discarded from analysis. Locomotor 

activity was monitored using an automated videotracking system (Viewpoint Life Sciences) with 

a Dinion one-third inch Monochrome camera (Dragonfly 2, Point Grey) fitted with a variable-

focus megapixel lens (M5018-MP, Computar) and infrared filter. The movement of each larva 

was recorded using the quantization mode. The 96-well plate and camera were housed inside a 

custom-modified Zebrabox (Viewpoint Life Sciences) that was continuously illuminated with 

infrared lights and illuminated with white lights from 9 am to 11 pm. The 96-well plate was 

housed in a chamber filled with recirculating water to maintain a constant temperature of 28.5OC. 

The parameters used for detection were: detection threshold, 15; burst, 25; freeze, 3; bin size, 60 
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seconds. Larvae were exposed to 10 µM melatonin (3550, Tocris Bioscience) or 10 µM 

pyrilamine (P5514, Sigma Aldrich) by adding 100 µL of a 65 µM stock solution (in 0.02% and 

0.065% DMSO for melatonin and pyrilamine, respectively) to E3 embryo medium during the 

experiment. Larvae were exposed to 50 µM NECA (E2387, Sigma Aldrich) by adding 100 µL of 

a 325 µM stock solution containing 1% DMSO to E3 embryo medium. Larvae were exposed to 

30 µM ABT 702 dihydrochloride (2372, Tocris) by adding 100 µL of a 195 µM stock solution 

containing 0.65% DMSO to E3 embryo medium. The same concentration of DMSO was used as 

vehicle control for each drug experiment. For dose-response experiments, curve fitting was 

performed using a 4 parameter logistic nonlinear curve model and EC50 values were calculated 

using JMP 10.0 (SAS Institute Inc.). 

 

Arousal Threshold Assay 

The videotracking system was modified with an Arduino (http://www.arduino.cc/) based 

automated driver to control a solenoid (28P-I-12, Guardian Electric) delivering a tap to a 96-well 

plate containing larvae. Taps were applied from 12:30 am to 7:30 am the 5th night of 

development with an inter-trial-interval of 1 minute to measure overall arousal threshold or 5 

minutes to assay arousal during sleep. Previous studies showed that a 30 second interval between 

repetitive stimuli is sufficient to prevent behavioral habituation (Woods et al., 2014). In 

experiments where stimulus intensities were varied, 14 different intensities were applied in a 

random manner, with 30 trials at each intensity. For experiments where the stimulus was applied 

every 5 minutes, 60 trials were performed. The response of larvae to the stimuli was monitored 

using the videotracking software and subsequently analyzed in Matlab (version R2013a, The 
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Mathworks, Inc) and Excel (Microsoft). Statistical analysis was performed using the Variable 

Slope log(dose) response curve fitting module of Prism (Graphpad). 

 

period3-luciferase Assay 

This assay was performed as described (Kaneko and Cahill, 2005), with some modifications. 

Larval zebrafish harboring a per3-luc reporter (Kaneko and Cahill, 2005) were raised on a 14:10 

hour light:dark cycle at 22°C with lights on at 9 am and off at 11 pm. At 6 days post-fertilization 

(dpf), individual larvae were placed in each well of 96-well plates (T-2996-075, Greiner) 

containing 50 µL Holtfreter’s solution (59 mM NaCl, 0.67 mM KCl, 0.76 mM CaCl2, and 2.4 

mM NaHCO3, pH 7.0), 0.5 mM D-luciferin (L8220, Biosynth Chemistry and Biology) and 

0.013% Amquel Instant Water Detoxifier (Kordon), and sealed with an optical adhesive film 

(4311971, Applied Biosystems). Bioluminescence in each well was recorded for 3 seconds every 

hour for 100 hours in constant darkness using a plate reader (M1000 Pro, Tecan). 

 

Data analysis 

Videotracker sleep/wake data was processed using custom PERL and Matlab (version R2013a, 

The Mathworks, Inc) scripts. Any one minute period with no movement was defined as one 

minute of sleep (Prober et al., 2006). A sleep bout was defined as a continuous string of sleep 

minutes. Sleep latency was defined as the length of time from lights on or off to the start of the 

first sleep bout. Average activity was defined as the average amount of detected activity in 

seconds/minute, including all rest bouts. These parameters were calculated for each experimental 

day and night.  Luminescence and behavioral data was processed for circadian analysis using 

custom Matlab scripts. Raw data were fit to a damped cosine curve as described (Hirota et al., 
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2008). Statistical tests were performed using JMP 10.0 (SAS Institute Inc.). 

 

Pineal Ablation 

Cell ablation using nitroreductase (NTR) was performed as described (Curado et al., 2007) with 

some modifications. aanat2-CFP-NTR lines containing multiple copies of the transgene and 

exhibiting high levels of CFP fluorescence in the pineal gland, with no non-pineal expression, 

were selected and incrossed. Embryos were raised in E3 medium until 60 hours post-fertilization 

(hpf), at which point they were separated into pools of larvae that exhibited strong or no CFP 

expression. Each pool was treated with 15 mM metronidazole (MTZ, 46461, Sigma Aldrich) in 

0.2% DMSO/E3 medium for 20 hours (60-80 hpf). Larvae were then thoroughly rinsed with 

fresh E3 medium and maintained in E3 medium for 24 hours, followed by a second treatment 

with 15 mM MTZ for 20 hours (108-128 hpf). Larvae were then transferred to fresh E3 medium 

and screened for efficacy of pineal ablation using a fluorescence stereomicroscope (m205c, 

Leica Microsystems Inc.). Larvae with the weakest CFP fluorescence, as well as CFP negative 

siblings that were similarly treated and screened, were selected for behavioral monitoring that 

was initiated at 134 hpf. To quantify the extent of pineal ablation, aanat2-CFP-NTR animals 

treated with MTZ or DMSO vehicle control as described above were anesthetized (0.016% w/v 

tricaine methane sulfonate, A5040, Sigma Aldrich) and mounted in 0.8% low melting agarose 

(16520-050, Invitrogen), and imaged on a confocal microscope (Zeiss 780 LSM, 20x dipping 

objective with 3x digital zoom). Imaging was performed between 11 pm and 7 am. The number 

of CFP-expressing cells was counted using the contrast between the nucleus and cytoplasm to 

distinguish individual cells for 3 animals at each time point. Double-fluorescent in situ 

hybridizations were performed using digoxygenin (DIG)- and 2,4-dinitrophenol (DNP)-labeled 
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riboprobes and the TSA Plus DNP System (NEL741001, PerkinElmer). Samples were mounted 

in 50% glycerol/PBS and imaged using a confocal microscope (Zeiss 780 LSM). 

 

Melatonin ELISA 

The melatonin ELISA was performed as described (de Borsetti et al., 2011; Kazimi and Cahill, 

1999). Triplicate samples containing 5 larvae each were homogenized in 0.5 mL 0.1 N NaOH at 

6 am on night 5 and 6 pm on day 6. One mL methylene chloride (9315, J.T. Baker) was added to 

each sample, followed by vortexing for 30 seconds and centrifugation at 4250 g for 3 hours at 

4°C. The organic phase was collected and 0.5 mL 0.1 N NaOH was added, followed by 

vortexing for 30 seconds and centrifugation for 20 minutes at 4250 g at 4°C. The organic phase 

was collected and 0.15 g sodium sulfate (SX0760, EMD Millipore) was added to each sample, 

followed by another 30 second vortex and 20 minute centrifugation at 4250 g at 4°C. One mL of 

the organic phase from each sample was transferred to a 15 mL falcon tube and wrapped in foil 

to protect from light. The solution in each tube was evaporated using a rotary evaporator with a 

room temperature water bath. The residue was dissolved in 200 µL phosphate buffered saline 

(PBS) with 0.1% gelatin (214340, Becton Dickinson). Melatonin levels were assayed using a 

melatonin saliva ELISA kit (101720-920, Alpco Diagnostics) according to the manufacturer’s 

instructions. 

 

Pineal Serotonin (5-HT) Quantification 

Larvae were raised in E3 medium until 6 dpf and fixed at 6 pm (day) or 6 am (night) in 4% 

paraformaldehyde (PFA) overnight at 4oC. Samples were washed in 0.25% Triton X-100 in PBS 

(PBSTx). Brains were dissected while leaving skin on the dorsal side of the brain intact to avoid 
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removing pineal gland cells, and treated with 1 mg/ml collagenase for 45 minutes at room 

temperature. Samples were blocked in 2% normal goat serum/2% DMSO in PBSTx for at least 

two hours at room temperature. Antibody incubations were performed in blocking solution 

overnight at 4oC. Rabbit anti-serotonin (1:1000, S5545; Sigma) and Alexa-488 anti-rabbit 

(1:500, A11034, Life Technologies) antibodies were used. Samples were washed in PBSTx and 

mounted in 50% glycerol/PBS. Pineal imaging was performed using a confocal microscope 

(Zeiss 780 LSM, 40x objective, 2x digital zoom) using the same settings for all samples. ImageJ 

was used to create a summation z-projection for each confocal stack and the integrated pixel 

density for the entire pineal gland was used to quantify 5-HT fluorescence. 

 

per1b Fluorescent In Situ Hybridization 

Larvae were raised in E3 medium in either LD (lights on at 9 am and off at 11 pm) or DD 

(starting at 6 hpf) until 6 dpf. Samples were fixed in 4% PFA overnight at room temperature and 

fluorescent in situ hybridization was performed on dissected brains using a DIG-labeled 

antisense riboprobe specific for per1b (Dekens and Whitmore, 2008) and the TSA Plus System 

(NEL741001, PerkinElmer). Samples were developed using Cy3 amplification reagent at 1:200 

for 10 minutes and stained with 4′,6-Diamidino-2-phenylindole dihydrochloride (DAPI) 

(268298, EMD Millipore) in 2% DMSO PBSTx for at least 4 hours at room temperature. 

Samples were then washed in PBSTx and mounted in 50% glycerol/PBS. Imaging was 

performed using a confocal microscope using the same settings for all samples (Zeiss 780 LSM, 

10x and 40x objectives). 31 optical sections of 0.75 µm thickness each (23.25 µm total) were 

acquired for each sample. ImageJ was used to create a summation z-projection for each stack and 

the integrated pixel density within a region of interest of the same size for all samples was used 
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to quantify total Cy3 fluorescence. 

 

Quantitative PCR 

Larval zebrafish were raised on either a 14:10 hour light:dark cycle at 28.5°C with lights on at 9 

am and off at 11 pm, or in constant darkness. At 4 dpf, individual larvae were placed into each 

well of 96-well plates (7701-1651, Whatman) in dim red lighting and placed into constant 

darkness. Total RNA was collected using Trizol reagent (15596-026, Life Technologies) from 24 

pooled larvae starting at 6 pm on day 5 every 6 hours for 24 hours. cDNA was synthesized from 

5 µg of total RNA using Superscript III Reverse Transcriptase (18080-051, Invitrogen) and 

quantitative PCR was carried out using SYBR green master mix (4364346, Life Technologies) in 

an ABI PRISM 7900HT (Life Technologies) instrument. Δ Ct was calculated using ribosomal 

protein l13α (rpl13α) as a reference gene. Relative expression levels were plotted by determining 

ΔΔCt by normalizing to the LD sample or the WT LDDD sample (for Figures S3G-S3H and 

S4K-S4L, respectively) with the highest ΔCt value for each gene. 
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