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Figure S1: Enrichment of BioGRID-supported edges within all cell lines across four different mod-
eling approaches and six different pre-processing methods. For raw pileup (blue) we binned raw
Hg38 mapped read start sites. For control-adjusted pileup (red), we took MACS2 pileup output
and normalized by a paired control. For MACS2 peaks (yellow), we used MACS2 with paired con-
trols and a lenient peak threshold (varying the threshold produced similar results, see Figure S2).
For each of the data transforms we applied the given function to the value in each 1,000 bp bin.
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Figure S2: Enrichment of BioGRID-supported edges in a GroupGM created from a binary data
matrix of MACS peaks called at two different thresholds (P < 0.05, blue; P < 0.001, red). Within
the larger network we examined BioGRID enrichment among ENCODE tier 1 cell lines: K562
myeloid leukemia cells, GM12878 lymphoblastoid cells, and H1-hESC embryonic stem cells.
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Figure S3: Distribution of group widths within ChromNet. Groups containing only a single regu-
latory factor type tend to have a stronger correlation, but many heterogeneous groups also show
tight correlations. The gray region highlights the groups we allowed in the ChromNet network used
for analysis in this paper.
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Figure S4: Comparison of BioGRID enrichment performance between inverse correlation and partial
correlation. Partial correlation can be viewed as a re-normalized version of the inverse correlation
matrix, but is not used in ChromNet since the group graphical model proof is specific to the inverse
correlation matrix.
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Figure S5: Wall clock training time to fit the pairwise pseudo-likelihood Markov random field model
from Zhou et al. [14] on ENCODE data. As the number of variables in the model increases, the
method’s running time becomes infeasible. We tuned regularization parameters using the same 61
warm-started optimizations used in [14]. We ran this test on a 12-core Intel Xeon CPU E5645
2.40GHz computer with 24 GB of random access memory.
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Figure S6: Just as BioGRID was used to validate the performance of protein-protein connections
in ChromNet (Figure 3A), histone mark writers can be used to validate protein/histone-mark
connections. All histone-mark/writer combinations were taken from the HIstome database [4] and
enrichment for these edges among all protein/histone-mark connections was calculated.
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Figure S7: The factors CTCF and SIX5 closely associate specifically when ZNF143 is also present.
This causes ZNF143 to mediate the interaction between CTCF and SIX5. The presence of ZNF143
can be also be viewed as the “context” in which CTCF and SIX5 co-localize (Figure S19).
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Figure S8: Illustration of how GroupGM helps with problems in inverse correlation caused by
collinearity. When using all 1,451 datasets inverse correlation recovers edges between ZNF143 and
four of the five CTCF datasets in K562 (left). When the four datasets with an edge to ZNF143 are
removed the other dataset gets an edge to ZNF143 stronger than any of the original four datasets
(middle). This means that redundancy with the other datasets caused the other dataset to be
ignored, even though it was strongly related to ZNF143. In contrast the group graphical model
recovers a much stronger edge between CTCF and ZNF143 (right).
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Figure S9: Some datasets target the same factor in the same cell type/condition. Here we average
those datasets under the assumption that the distinction between them is not important. GroupGM
still provides an improvement even in the absence of these potentially redundant datasets both
within cell types (P-value = 0.002) and between cell types (P-value = 0.021). The left figure is
enrichment for BioGRID supported edges within all cell types, while the right figure is enrichment
between all cell types.
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Figure S10: Histogram of area under the curve (AUC) ratios comparing enrichment of BioGRID-
supported edges in a GroupGM network versus networks created by inverse correlation (red), corre-
lation (yellow), and random edge score assignment (grey). Specifically, we compared the area under
enrichment–edge density curves from 10,000 bootstrap samples from regulatory factors, excluding
edges between different cell types (Figure 3A top). P -values represent the fraction of bootstrap
samples with a ratio of AUC’s less than 1. Being less than 1 means that GroupGM performed
worse than the alternative method.

99% CI

Figure S11: One-sided hypergeometric test negative log10 P -values for enrichment of BioGRID-
supported edges within cell types that have 25 supported edges or more (Figure 3C). The hyper-
geometric test is less conservative than the bootstrap approach used in Figure S10 and Figure S14.
Cell types with more datasets will likely have more significant P -values, since they have more edges
to compare. Dashed line indicates 99% confidence level (P = 0.01). Beneath each cell type name
is the number of datasets in that cell type.
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Figure S12: Visual comparison of simulated data and read data from two CTCF ChIP-seq tracks.
While not identical, the simulated data is designed to be qualitatively similar to the distribution
of real data tracks.
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Figure S13: Results from a simulated data study with 126 datasets and 200,000 samples. Complexes
of one, two and three simulated proteins were created where within complex correlations matched
correlations observed in real data. Each method was then run and compared to known simulated
interactions between complexes.
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Figure S14: Histogram of area under the curve (AUC) ratios comparing enrichment of BioGRID-
supported edges in a GroupGM network versus networks created by inverse correlation (red),
correlation (yellow), and random assignment (grey). Specifically, we compared the area under
enrichment–edge density curves from 10,000 bootstrap samples from regulatory factors, including
edges between different cell types (Figure 3A bottom). Variability was higher than in an examina-
tion of edges within cell types (Figure S10). This is because resampling regulatory factors measured
in many cell types alters many edges across cell types.

8



0.2 0.0 0.2 0.4 0.6 0.8 1.0
correlation between histone mark experiments

Same target
Different target

0.2 0.0 0.2 0.4 0.6 0.8 1.0
correlation between non-histone mark experiments

Same target
Different target

Figure S15: Correlations of the same factor between different cell types. Correlations between
the same histone marks in different cell types is shown on the left, while correlations between the
same non-histone factors is shown on the right. The clear bias towards positive correlation is likely
the result of regions of consistent chromatin accessibility and mappability between all ChIP-seq
datasets.
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Figure S16: A joint model allows comparison with datasets not only within a single cell type
but also across cell types. Here the increased number of BioGRID supported unique factor-factor
interaction types detected at a threshold of 0.2 by a joint model is shown for each cell type.
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Figure S17: Comparison of a joint GroupGM of all cell types vs. individually learned GroupGM
networks for each cell type. cross-cell-type edges from the joint model are ignored and only edges
common to both networks are compared for enrichment of BioGRID supported edges. The joint
model is marginally better than individual cell type models (P-value = 0.0672).
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Figure S18: Similar to Figure 4A but with a CTCF experiment and ZNF143 experiment added to
the figure. The network edges are from a GroupGM model with an edge threshold of 0.3. Both new
experiments tend to associate with the cohesion complex proteins RAD21 and SMC3. The CTCF
association is consistent with its combined role with cohesion in mediating chromosomal structure
[9].
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Figure S19: If all ZNF143 datasets from ChromNet are removed and then samples that drive a
connection between CTCF and SIX5 in K562 are estimated we find that those samples strongly
overlap with positions where ZNF143 is present. The top 1,000 positions driving the edge between
SIX5 and CTCF overlap more strongly with the highest 1,000 ZNF143 positions than with any
other dataset in K562, including the CTCF and SIX5 datasets the edge actually connects.
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Figure S20: Quantifications for each independent replicate for the MYC–HCFC1 proximity ligation
assay. Signal is quantified as the number of foci per nucleus. Individual values (grey dots) and
mean ± standard deviation black bars are shown for each replicate.

11



H1-hESCGM12878K562

Figure S21: Embeddings of cell-type specific networks using the same approach as in Figure 6
(Methods). All three Tier 1 ENCODE cell types are highlighted with the same coloring used in
Figure 6A.
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Figure S22: Precision when predicting BioGRID interactions using inverse covariance (blue), a
binary Markov random field model from [14] (red), and partial correlation (yellow). A tilde (˜)
indicates we took Markov random field precision numbers directly from the published precision-
recall plot in [14]. To generate inverse covariance and partial correlation results, we started with
processed data from [14]. Then, we calculated bootstrap-averaged performance on BioGRID in-
teractions as Zhou et al. did in their article. We compared methods under three different testing
regimes. Continuous represents testing on the original control-adjusted, normalized, and binned
data. Binary represents testing on binarized data, without regularization. L1 binary represents
testing on binarized data, with L1 regularization of both models.
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Inverse correlation
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Figure S23: A precision-recall curve for known protein-protein interactions in BioGRID among
experiments from the K562 cell type. Bootstrapped Bayesian network inference was performed as
in previous work on D. melanogaster [11, 1]. We used networks from 400 bootstrap re-samples to
estimate 400 Bayesian networks.
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Figure S24: Enrichment of BioGRID supported edges within all cell types as the number of samples
used to build the network is varied. Subsampling is done uniformly from the 1,000 bp bins across
the genome and has the effect of both reducing the number of samples and also decreasing the
correlation between neighboring samples. Up to 100-fold subsampling is possible before noticeable
performance degradation.
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Figure S25: Enrichment of BioGRID support in edges with a given weight. Negative coefficients
indicate negative correlation. Dark grey line indicates the fraction of BioGRID-supported edges in a
randomly connected network (8.4%). Light grey shaded area represents those edges with coefficient
magnitude less than the 0.2 minimum used in the ChromNet interface.

14



Supplementary tables

Table S1: Summary of all ENCODE datasets processed by ChromNet broken down by cell type.
This summarizes the full listing of all 1,451 datasets with ENCODE experiment identifiers (Sup-
plementary Data 1). The transcription factor and histone columns represent how many unique
transcription factors or histone modifications were measured in that cell type. The treatments
column lists the number of additional treatment conditions each cell type was measured under.

Transcription Histone
Cell type Datasets factors modifications Treatments

K562 236 154 12 2
GM12878 143 107 11 1

HepG2 115 81 11 3
A549 94 51 11 2

HeLa-S3 85 62 11 1
H1-hESC 84 60 11 0

MCF-7 55 35 6 1
SK-N-SH 44 27 6 1

endothelial cell of umbilical vein 28 9 12 0
HCT116 28 22 5 0
Ishikawa 25 21 0 6

fibroblast of lung 22 2 11 0
keratinocyte 19 2 12 0

neural cell 17 9 8 0
mammary epithelial cell 16 2 11 0

SUDHL6 14 2 12 0
Karpas-422 14 2 12 0

CD14-positive monocyte 14 1 11 0
skeletal muscle myoblast 13 2 11 0

myotube 13 2 11 0
fibroblast of dermis 13 2 11 0

astrocyte 13 2 11 0
Panc1 13 4 6 0

DND-41 13 2 11 0
osteoblast 12 2 10 0

cardiac mesoderm 12 0 3 0
MCF 10A 12 5 0 1

HEK293 12 7 5 0
DOHH2 12 1 11 0

OCI-LY7 11 1 10 0
OCI-LY3 11 1 10 0
OCI-LY1 11 0 11 0

Loucy 11 1 10 0
IMR-90 10 10 0 0

GM12891 10 9 0 1
T47D 9 6 0 4

NT2/D1 9 3 6 0
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Transcription Histone
Cell type Datasets factors modifications Treatments

GM12892 8 7 0 1
B cell 8 2 5 0

PFSK-1 6 5 0 0
HL-60 6 5 1 0

NB4 5 4 1 0
mononuclear cell 4 0 4 0

kidney epithelial cell 4 1 3 0
foreskin fibroblast 4 1 1 0

bronchial epithelial cell 4 1 3 0
U2OS 4 2 2 0

GM06990 4 1 3 0
Caco-2 4 1 3 0

BJ 4 1 3 0
ACC112 4 0 4 0

erythroblast 3 2 0 0
cardiac fibroblast 3 1 1 0

WI38 3 1 1 1
SK-N-MC 3 2 1 0

LNCaP clone FGC 3 1 1 1
H7-hESC 3 0 3 0

retinal pigment epithelial cell 2 1 1 0
fibroblast of villous mesenchyme 2 1 1 0

fibroblast of upper leg skin 2 1 1 0
fibroblast of the aortic adventitia 2 1 1 0

fibroblast of skin of abdomen 2 1 1 0
fibroblast of pulmonary artery 2 1 1 0

fibroblast of pedal digit skin 2 1 1 0
fibroblast of mammary gland 2 1 1 0

fibroblast of gingiva 2 1 1 0
epithelial cell of proximal tubule 2 1 1 0

epithelial cell of esophagus 2 1 1 0
choroid plexus epithelial cell 2 1 1 0

cardiac muscle cell 2 1 1 0
brain microvascular endothelial cell 2 1 1 0

astrocyte of the spinal cord 2 1 1 0
astrocyte of the cerebellum 2 1 1 0

WERI-Rb-1 2 1 1 0
SH-SY5Y 2 2 0 0
HFF-Myc 2 1 1 0

H54 2 2 0 0
GM19193 2 2 0 1
GM19099 2 2 0 1
GM18951 2 2 0 1
GM18526 2 2 0 1
GM18505 2 2 0 1
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Transcription Histone
Cell type Datasets factors modifications Treatments

GM15510 2 2 0 1
GM12875 2 1 1 0
GM12866 2 1 1 0
GM12865 2 1 1 0
GM12864 2 1 1 0
GM10847 2 2 0 1
GM08714 2 1 1 0

BE2C 2 1 1 0
spleen 1 1 0 0

skeletal muscle cell 1 0 1 0
pancreas 1 1 0 0

medulloblastoma 1 1 0 0
lung 1 1 0 0

kidney 1 1 0 0
Raji 1 1 0 0

Jurkat 1 0 1 0
GM20000 1 1 0 0
GM19240 1 1 0 0
GM19239 1 1 0 0
GM19238 1 1 0 0
GM13977 1 1 0 0
GM13976 1 1 0 0
GM12874 1 1 0 0
GM12873 1 1 0 0
GM12872 1 1 0 0
GM12871 1 1 0 0
GM12870 1 1 0 0
GM12869 1 1 0 0
GM12868 1 1 0 0
GM12867 1 1 0 0
GM12801 1 1 0 0
GM10266 1 1 0 0
GM10248 1 1 0 0

Total 1,451 812 376 33
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K562 GM12878 H1-hESC HepG2 A549 HeLa-S3 SK-N-SH

POLR2A POLR2A POLR2A POLR2A POLR2A POLR2A REST
EP300 MTA3 TAF1 EP300 NR3C1 EP300 EP300
MAX NFIC EP300 NFIC SP1 SMARCC1 POLR2A
MTA3 ATF2 GABPA SP1 EP300 TBP RAD21
WHSC1 YY1 HDAC2 MBD4 MAX MAX MXI1
eGFP-JUND STAT5A RBBP5 MAX SIN3A SREBF2 YY1
HDAC2 SP1 CHD1 FOXA2 FOSL2 CEBPB RFX5
CBX3 IKZF1 CTBP2 TBP REST TAF1 JUND
YY1 RUNX3 ATF2 MYBL2 SIX5 MYC SMC3
MYC EP300 SP1 ZHX2 USF1 ELK4 CTCF

Table S2: H3K4me1 and H3K27ac combine to mark active enhancers [2]. Here group edges from
these two histone marks are computed to all other non-histone regulatory factors and the top ten
within each cell type are listed. The well known enhancer associated transcription factor EP300 [10]
is found in each cell type and is a validation that we are finding enhancer associated transcription
factors (P-value < 1 × 10−6). Using a false discovery threshold of 0.1 we highlighted in red those
factors with a significant bias towards a high ranked associated with H3K4me1 and H3K27ac in
these cell types.

Supplementary Note 1: Scalability of previous methods

Only correlation and inverse correlation are compared to ChromNet for the full human chromatin
network in Figure 3. This is because the other previous methods we considered could not scale
to the full 1,451 datasets. These are ARACNE (a well-known network learning method for gene
expression data) [7], binary Markov random fields [14], and bootstrapped Bayesian networks [11,
1].

ARACNE is designed to handle gene expression which contains a large number of variables,
but not necessarily a large number of samples. This was evident when we sought to apply it to
chromatin network estimation. ARACNE exhausted all memory on a 24 gigabyte system with only
10 variables and 100,000 samples. This precludes it from even approaching the 3 million samples
and 1,451 variables in the ENCODE dataset.

Binary Markov random fields were used successfully to recover regulatory factor interactions
in D. melanogaster, with 73 variables and 100,000 samples [14]. Using the code kindly provided
by Zhou et al., we attempted to apply the Markov random field to the human ENCODE data.
Estimating the full joint distribution of a binary Markov random field model is very expensive.
One approximation that is much more efficient involves the use of the psuedo-likelihood instead
of the joint likelihood. This was one of the methods used by Zhou et al. [14], however even the
pseudo-likelihood becomes intractable when we consider all ENCODE datasets, taking over 10
hours with just 60 variables in the model (Figure S5). Furthermore, when we compared inverse
correlation to the Binary Markov random field recovery methods on the original D. melanogaster
data we obtained equivalent performance (Figure S22).

Bootstrapped versions of Bayesian network inference have been used previously to infer networks
among regulatory factors in D. melanogaster [11, 1]. These experiments were run on binary data
among up to 112 factors, but scaling them to human data is much more challenging. Because of
run-time constraints we restricted the model to only consider 238 datasets from the K562 cell type.
We then used networks from 400 bootstrap re-samples to estimate 400 networks. Each network
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Regulatory factor Max total edge weight Known in BioGRID

MAX 5.93 +
POLR2A 1.66 +

PHF8 1.26 −
NEUROD1 0.81 −
CREB3L1 0.79 −

CEBPB 0.78 +
HCFC1 0.73 −

ATF7 0.70 −
SUZ12 0.67 −
EP300 0.64 +

Table S3: Top 10 (out of 193) regulatory factors with a strong connection to MYC in ChromNet.
Scores are the sum of within cell type group edges connecting MYC experiments to the listed factor.
The maximum score is then taken over all ENCODE tier 1 cell types. For comparison we also ran
the same experiment using standard correlation instead of group edges and HCFC1 was the 31st
strongest interaction with MYC (as opposed to the 7th here).

took about 1.2 hours of processing time to find good solutions, leading to over 500 CPU hours of
compute time. Inverse correlation uses a normal approximation for the binary data, runs in less
than 10 seconds, and out-performs the far less efficient Bayesian network inference method in terms
of known agreement with physical protein-protein interactions labeled in BioGRID (Figure S23).

Note that to allow for a direct comparison with these methods we used binary data rather than
raw read counts. The inverse correlation model still outperformed or matched these methods even
on their own data types. GroupGM provides and additional level of improvement on top of inverse
correlation as demonstrated in Figure 3.

Supplementary Note 2: Proof that the group graphical model preserves edge
magnitudes in the presence of arbitrary collinearity

The inverse covariance matrix (a symmetric matrix) can be interpreted in terms of multiple regres-
sion [5, 12], where for simplicity of notation we assume infinite data samples so Σ̂ = Σ:

Σ−1 = Ω =


1/[Σ11(1−R2

1)] −β12/[Σ11(1−R2
1)] · · · −β1n/[Σ11(1−R2

1)]
−β21/[Σ22(1−R2

2)] 1/[Σ22(1−R2
2)] · · · −β2n/[Σ22(1−R2

2)]
...

...
. . .

...
−βn1/[Σnn(1−R2

n)] −βn2/[Σnn(1−R2
n)] · · · 1/[Σnn(1−R2

n)]


where βij is a parameter of the ith regression that predicts the ith variable from all the others, and
R2

i is the proportion of the variance in variable i explained by the ith regression. For correlation
matrices the on-diagonal Σii entries will be one:

Ω =


1/(1−R2

1) −β12/(1−R2
1) · · · −β1n/(1−R2

1)
−β21/(1−R2

2) 1/(1−R2
2) · · · −β2n/(1−R2

2)
...

...
. . .

...
−βn1/(1−R2

n) −βn2/(1−R2
n) · · · 1/(1−R2

n)


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To further simplify, we can define Si = −1
1−R2

i
:

Ω =


−S1 S1β12 · · · S1β1n
S2β21 −S2 · · · S2β2n

...
...

. . .
...

Snβn1 Snβn2 · · · −Sn


Consider an arbitrary edge between two nodes A and B with that correspond to rows A1 and

B1 in Ω. The strength of the connection in the symmetric matrix Ω is SA1βA1B1 = SB1βB1A1 .
Now consider a new data set with a superset of the variables in the original network represented

by Ω. This new dataset, represented by Ω(2), has a second B variable with index B2. These two
B variables (B1 and B2) are arbitrarily similar to one another but not identical, and the second
variable bears no relationship to other variables in the network beyond what it gains by being
similar to B1. The regression problem for A1 would be unstable, because B1 and B2 are highly
correlated to each other, which makes it unclear how the weights should be distributed to these
two predictor variables. However, the sum of the coefficients for the B group remains the same:

β
(2)
A1B1

+ β
(2)
A1B2

= βA1B1 ,

In addition, no new information has been provided about A, so SA remains unchanged (because
the amount of variance explained remains the same):

S
(2)
A = SA,

which means the following:

S
(2)
A β

(2)
A1B1

+ S
(2)
A β

(2)
A1B2

= SAβA1B1 ,

which is equivalent to:

Ω
(2)
A1B1

+ Ω
(2)
A1B2

= ΩA1B1 .

This means that the connection strength that was present in between A and B in Ω is now preserved
as a sum of two entries in Ω(2). This argument generalizes to any number of variables in the B
group.

Now after adding a redundant B variable consider adding a redundant A variable to create a
new data set Ω(3). Since the B variables cannot choose between A1 and A2 their coefficients are
unstable but still sum to their previous value:

β
(3)
B1A1

+ β
(3)
B1A2

= β
(2)
B1A1

(1)

β
(3)
B2A1

+ β
(3)
B2A2

= β
(2)
B2A1

(2)

adding A2 provided no new explanatory power for the B variables so

S
(3)
B1

= S
(2)
B1

(3)

S
(3)
B2

= S
(2)
B2
, (4)

which means
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S
(3)
B1
β
(3)
B1A1

+ S
(3)
B1
β
(3)
B1A2

= S
(2)
B1
β
(2)
B1A1

(5)

S
(3)
B2
β
(3)
B2A1

+ S
(3)
B2
β
(3)
B2A2

= S
(2)
B2
β
(2)
B2A1

, (6)

and

Ω
(3)
B1A1

+ Ω
(3)
B1A2

= Ω
(2)
B1A1

(7)

Ω
(3)
B2A1

+ Ω
(3)
B2A2

= Ω
(2)
B2A1

. (8)

Because Ω is symmetric we know that

Ω
(2)
A1B1

+ Ω
(2)
A1B2

= Ω
(2)
B1A1

+ Ω
(2)
B2A1

.

Using this we can now calculate the original connection strength ΩA1B1 as a sum of entries in Ω(3).
This can be directly generalized to any number of variables in each group, which means that the
connection strength of an edge between two variables in a non-redundant data set can be recovered
by summing edges in a data set where both variables are in groups of redundant variables.

ΩA1B1 = Ω
(2)
A1B1

+ Ω
(2)
A1B2

(9)

ΩA1B1 = Ω
(2)
B1A1

+ Ω
(2)
B2A1

(10)

ΩA1B1 = Ω
(3)
B1A1

+ Ω
(3)
B1A2

+ Ω
(3)
B2A1

+ Ω
(3)
B2A2

(11)

(12)

Supplementary Note 3: Estimation of conditional dependence from binary data

For the binary data tracks compared in Figure S1 we matched datasets with controls using metadata
from the ENCODE web site [3], then ran MACS2 [13] without peak shift adjustments and with a
P -value peak threshold of 0.05. Peak data from MACS2 was then binned into 1,000 bp windows
by labeling a window 1 if any peak overlapped the window and 0 otherwise.

Here we briefly discuss why we considered binary data in the context of inverse correlation.
Given datasets drawn from a set Xb of binary random variables, we can represent a joint pairwise
model of these datasets without loss of generality as a pairwise Markov random field:

P (x) =
1

Z
exp

− ∑
Xi∈Xb,Xj∈Xb

Φi,jXiXj

 (13)

where Φ is a matrix of pairwise interaction terms and Z is a normalizing constant. Previous work
on estimating a smaller subset of the chromatin network from binary data used Markov random
fields and higher-order extensions [14, 8]. These works employ iterative or approximate methods,
as exact inference on their models with many variables is computationally intractable. For certain
graph classes, however, the sparsity structure of Φ and of the inverse correlation matrix Σ−1 are
equivalent [6].

To compare Σ−1 with one of these methods we compared with estimates of conditional de-
pendence from a pairwise Markov random field of binary data [14] (Supplementary Note 2). The
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Markov random field implementation was based on unnormalized binary data, so for comparison
we used the inverse covariance matrix which results from an unnormalized dataset (meaning the
data was not mean centered or scaled to unit variance). We used the original processed data kindly
provided by the authors of [14] (J. Zhou, personal communication). These data are from 73 mod-
ENCODE ChIP-chip datasets on Drosophila melanogaster S2-DRSC cells. We calculated precision
for the inverse covariance of binary data using the same bootstrap procedure as the authors, and
compared against Markov random field precision numbers from their published precision-recall plot
[14].

On this smaller data set, the enrichment of known protein-protein interactions in Φ̂ and the
inverse covariance matrix were similar (Figure S22). This near-equivalence between the methods
supports the use of an inverse covariance (or correlation) matrix to estimate edge strength in a pair-
wise Markov random field. It is infeasible to estimate a Markov random field among all ENCODE
datasets (Supplementary Note 1). Using a matrix inverse dramatically increases computational
efficiency, while maintaining results similar to a full binary pairwise Markov random field.
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