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Supplementary table 1 Plasmids and strains used in this study. 
Plasmid	 Description	 Reference	
pET‐28b(+)	 bacterial	expression	vector Novagen	
pTEV5	 bacterial	expression	vector 3	
pJAB27	 pET‐28b(+)	CckA(70‐691)	expression	vector 4	
pJAB41	 pET‐28b(+)	CckA(70‐295) expression	vector This	Study	
pJAB42	 pET‐28b(+)	CckA(70‐378) expression	vector This	Study	
pJAB43	 pET‐28b(+)	CckA(70‐544) expression	vector This	Study	
pJAB44	 pET‐28b(+)	CckA(197‐544) expression	vector This	Study	
pJAB45	 pET‐28b(+)	CckA(294‐544) expression	vector This	Study	
pJAB46	 pET‐28b(+)	CckA(197‐691) expression	vector This	Study	
pJAB47	 pET‐28b(+)	CckA(294‐691) expression	vector This	Study	
pTM19	 pTEV5‐CckA(70‐182;	fused	to	296‐691) expression	vector This	Study	
pTM38	 pTEV5‐CckA(70‐182;296‐544) expression	vector This	Study	
pWSC30	 pET‐28b(+)	PleC(310‐842) expression	vector 5	
pAP433	 pTEV5‐DivJ(188‐595)	 expression	vector Perez	et	al.,	in	

preparation	
pAP500	 pCHYC‐2	stpX	 Perez	et	al.,	in	

preparation	
pRVYFPC‐6	 Low	copy,	replicating,	C‐terminal	eyfp	fusion	vector 6	
pTM28	 pRVYFPC‐6	CckA(1‐691) This	Study	
pTM31	 pRVYFPC‐6	CckA(1‐69;	fused	to	197‐691) This	Study	
pTM32	 pRVYFPC‐6	CckA(1‐69;	fused	to	294‐691) This	Study	
pTM33	 pRVYFPC‐6	CckA(1‐182;	fused	to	296‐691) This	Study	
	 	 	
Strain	 Description	 Reference	
C.	crescentus	
NA1000	

Laboratory	Caulobacter	crescentus	strain 5 

E.	coli	DH5α	 Bacterial	cloning	strain Invitrogen	
E.	coli	
Rosetta(DE3)pLysS	

Bacterial	expression	strain Novagen	

E.	coli	BL21	 Bacterial	expression	strain Novagen	
LS3382	 NA1000	cckA::gent	+	pMR10‐cckA 7	
WSC229	 pET‐28b(+)	PleC	expression	vector 5	
AP434	 BL21	pTEV5	DivJ(188‐595) Perez	et	al.,	in	

preparation	
AP501	 NA1000	stpX::stpX‐mCherry Perez	et	al.,	in	

preparation	
JAB70	 Rosetta	pET‐28b(+)	CckA(70‐691)	expression	vector 4	
JAB97	 Rosetta	pET‐28b(+)	CckA(70‐295) expression	vector This	Study	
JAB98	 Rosetta	pET‐28b(+)	CckA(70‐378) expression	vector This	Study	
JAB99	 Rosetta	pET‐28b(+)	CckA(70‐544) expression	vector This	Study	
JAB100	 Rosetta	pET‐28b(+)	CckA(197‐544) expression	vector This	Study	
JAB101	 Rosetta	pET‐28b(+)	CckA(294‐544)	expression	vector This	Study	
WSC282	 Rosetta	pET‐28b(+)	CckA(197‐691)	expression	vector This	Study	
WSC283	 Rosetta	pET‐28b(+)	CckA(294‐691)	expression	vector This	Study	
THM48	 BL21	pTEV5‐CckA(70‐182;	fused	to	296‐691)	expression	

vector	
This	Study	

THM68	 BL21	pTEV5‐CckA(70‐182; fused	to	296‐544)	expression	
vector	

This	Study	

AP434	 BL21	pTEV5‐DivJ(188‐595)	 expression	vector Perez	et	al.,	in	
preparation	

THM60	 NA1000	+	pRVYFPC‐6	CckA(1‐691) This	Study	
THM72	 NA1000	+	pRVYFPC‐6	CckA(1‐69;	fused	to	197‐691) This	Study	
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Supplementary table 2. Gibson cloning strategy to generate constructs. 
Plasmid# Strain# Assembly 

method 
Vector 
backbone 

Restriction 
enzyme(s) 

Vector 
insert(s) 

Forward 
primer 

Reverse 
primer 

Note 

pTM19 THM48 Gibson pTEV5 NheI CckA(70-182) tmp56 tmp57  
     CckA(296-

691) 
tmp58 tmp59  

pTM38 THM68 Gibson pTEV5 NheI CckA(70-182; 
fused to 296-
544) 

tmp56 tmp119 * 

pTM28 THM60 Gibson pRVYFPC-6 SacI, 
HindIII 

CckA 
promoter 

tmp81 tmp75 ** 

     CckA(1-691) tmp74 tmp75  
pTM31 THM72 Gibson pRVYFPC-6 SacI, 

HindIII 
CckA 
promoter + (1-
69) 

tmp81 tmp90 ** 

     CckA (197-
691) 

tmp91 tmp80  

pTM32 THM74 Gibson pRVYFPC-6 SacI, 
HindIII 

CckA 
promoter + (1-
69) 

tmp81 tmp92 ** 

     CckA (294-
691) 

tmp93 tmp75  

pTM33 THM70 Gibson pRVYFPC-6 SacI, 
HindIII 

CckA 
Promoter + (1-
182) 

tmp81 tmp94 ** 

     CckA (296-
691) 

tmp58 tmp75  

 
* The PCR template was pTM19. 

 
** The vanillate region was removed via double digest and CckA was expressed under its native 

promoter. 

 
 
 
 
 
 
 

THM74	 NA1000	+	pRVYFPC‐6	CckA(1‐69;	fused	to	294‐691) This	Study	
THM70	 NA1000	+	pRVYFPC‐6	CckA(1‐182;	fused	to	296‐691) This	Study	
THM114	 THM60	+	cckA::gent	transduction This	Study	
THM115	 THM70	+	cckA::gent	transduction This	Study	
THM116	 THM72	+	cckA::gent	transduction This	Study	
THM125	 THM115	+	stpX::stpX‐mCherry	transduction This	Study	
THM126	 THM116	+	stpX::stpX‐mCherry	transduction This	Study	
THM127	 THM114	+	stpX::stpX‐mCherry	transduction This	Study	
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Supplementary table 3. DNA oligonucleotides used in this study. 
Oligo Plasmid(s) Description Site Sequence 5’-3’ (Restriction site is underlined.) 
JABp64 pJAB27 

pJAB41 
pJAB42 
pJAB43 

CckA70-691 
forward  

NdeI 
GGCCTTGTCCATATGCGCGGCTCAGCGCTTTC
CGG 
 

JABp66 pJAB27 
pJAB46 
pJAB47 

CckA70-691 
reverse 

SacI 
ACTGCGGAGCTCCTACGCCGCCTGCAGCTGCT
G 

JABp99 pJAB44 
pJAB46 

CckA 197 
forward 

NdeI 
ACCCCATATGCTGGACGCCTTCGC 

JABp100 pJAB41 CckA 295 
reverse 

SacI 
ATCTGGAGCTCCTaGGACACGTCGATCATG 

JABp101 pJAB45 
pJAB47 

CckA 294 
forward 

NdeI 
ACATGCATATGGTGTCCGAGCAGAAGCAGAT
CG 

JABp102 pJAB42 cckA 70-378 
reverse 

SacI 
ACGAGCTCCTaCACGGTCTGCTTGCGCGA 

JABp104 pJAB43 
pJAB44 
pJAB45 

CckA70-544 
reverse 

SacI 
CCGAGCTCCtATTCATAGACCGGCAGG 

tmp56 pTM19 
pTM38 

CckA 70 
forward 

 CCAACTAGTGAAAACCTGTATTTTCAGGGCGC
TCGCGGCTCAGCGCTTTCC 

tmp57 pTM19 CckA 182 
reverse 

 TCTGCTTCTGCTCCGACGCGTCTTCCACAACC 

tmp58 pTM19 
pTM33 

CckA 296 
forward 

 GGAAGACGCGTCGGAGCAGAAGCAGATCGAG
CTG 

tmp59 pTM19 CckA 691 
reverse 

 GCTCGAGAATTCCATGGCCATATGGCTTTACG
CCGCCTGCAGCTG 

tmp73 pTM28 PcckA 
reverse 

 GCAAGTCGGCCATCGGCGAGGTTGTACCTTTC
TTACGGC 

tmp74 pTM28 CckA 1 
forward 

 TACAACCTCGCCGATGGCCGACTTGCAGCTCC
AGG 

tmp75 pTM28 
pTM32 
pTM33 

CckA 691 
reverse 

 CGCGTAACGTTCGAATTCTCCGGAGCCGCCGC
CTGCAGCTGCTGC 

tmp80 pTM31 CckA 691 
reverse 

 CGCGTAACGTTCGAATTCTCCGGAGCCGCCGC
CTGCAGCTGCTG 

tmp81 pTM28 
pTM31 
pTM32 
pTM33 

PcckA 
forward 

 GCTTAATGAATTACAACAGTTTTTATATAAGC
TTTCATTCTCCAGAAAACTGACCTAGCCTCC 

tmp90 pTM31 CckA 69 
reverse 

 CGAAGGCGTCCAGAATGGCGACAAGGCCCAA
CACA 

tmp91 pTM31 CckA 197 
forward 

 CCTTGTCGCCATTCTGGACGCCTTCGCCGGAG
C 

     
tmp92 pTM32 CckA 69 

reverse 
 GCTTCTGCTCGGACACAATGGCGACAAGGCC

CAACACA 
tmp93 pTM32 CckA 294 

forward 
 CCTTGTCGCCATTGTGTCCGAGCAGAAGCAGA

TCGAGC 
tmp94 pTM33 CckA 182 rev  CGATCTGCTTCTGCTCCGACGCGTCTTCCACA

ACCGG 
tmp119 pTM38 CckA 544 rev  GCTCGAGAATTCCATGGCCATATGGCTCTATT

CATAGACCGGCAGGAAGATGC 
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oap125 pAP433 DivJ 188 
forward 

 AAACCTGTATTTTCAGGGCGCTAGCGCCAGCG
AGATCATCGGTCTG 
 

oap127 pAP433 DivJ 595 
reverse 

 GAGAATTCCATGGCCATATGGCTAGCCTAGC
GCGGCGCAAAGGC 

WSCp114 pWSC30 PleC 310 
forward 

NheI AAAAGCTAGCGTCGCCCATCGCGAGTTCATC
G 

WSCp115 pWSC30 PleC 842 
reverse 

SacI AAAAGAGCTCCCTCAGGCCGCCACGAAGTC 

tmp189  qpcr_ccrM1  GCCGACCGTGATCGAGCCG 
tmp190  qpcr_ccrM2  GGCACCATCGTCGAGGC 
tmp197  qpcr_divK1  GCAGGCGCTTGATGGTC 
tmp198  qpcr_divK2  GGAGCGCATCCGCGAG 
tmp201  qpcr_sciP1  GGTCTGCTCTCGCTCGA 
tmp202  qpcr_sciP2  GCCAGGCCGTGCCGA 
mdm306	 	 qpcr_rho1*8	 GTCGAGAACGCCAACTCCAT	
mdm307	 	 qpcr_rho2	 CGAGGGTCTTCAGGATCGC
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Supplementary note  1.  Calculation of the number of CckA molecules per liposome and the 

density of CckA per unit area. 

 

To calculate the number of binding sites for CckA on a liposome, we can start by computing the 

total surface area of the liposome.  Extrusion of DOPG liposomes through 100 nm pores yields 

liposomes with vesicle diameters of 97-106 nm9, approximated here as 100 nm. 

100 nm diameter sphere – radius = 500 Å 

Surface area (SA) of a sphere = 4πr2 

SA = 3.14 * 106 Å2 

The surface area occupied by each lipid headgroup varies by headgroup identity, acyl chain 

length, and temperature10.  For 18:1 cis-DOPG, comprising 90% of the lipid mass of the 

liposomes presented in this study, each headgroup occupies 69.4 Å2 at 20oC and 70.8 Å2 at 

30oC11.   

To calculate the lipids on the outer layer, we will assume similar area on average per (69.5 Å2) 

lipid despite 10% NTA lipid incorporation. 

# lipids outer membrane = SA / (area per lipid headgroup)  

# lipids = 3.14 * 106 Å2  / (69.5 Å2/lipid) = 4.52 * 104 lipids.  

There are approximately 45,000 on the outer layer.  Of these, 10% (4,500) are DGS-NTA sites 

for possible CckA attachment. 

CckA loading onto liposomes could be limited by either the number of NTA sites or by the total 

surface area of the liposome. 

Calctool.org estimates a 622-residue protein (WT CckA) at 5.9 nm diameter.  This calculation 

assumes that the protein is spherical.   
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Projecting the sphere down onto the surface of the liposome, we can calculate the surface area of 

one molecule of CckA as a circle of radius ~3 nm. 

Area of circle (A) = πr2 

A = 2,800 Å2 – this is the area on the liposome surface that the protein occupies. 

SA liposome / Aprotein = number of proteins that can fit. 

3.14 * 106 Å2 / 2,800 Å2 = 1100 proteins 

Given that 1,100 proteins can fit by the surface area calculation and there are 4,500 NTA sites 

available, protein loading on the liposome is surface-area limited. 

To determine the molar ratio between CckA molecules and liposome particles, we need to 

compute the mass of a single liposome.  The mass of the lipids in the liposome will be equal to 

the sum of the inner and outer sheets of the bilayer. 

Bilayer thickness = 3.6 nm 

Inner diameter of liposome = ~96 nm. 

Lipids on inner layer: 

Inner SA 
 / 69.5 Å2 = 4.2 * 104 lipids on inner layer 

Total lipid molecules (TL) = #lipids inner + #lipids outer layer 

TL = (4.2 + 4.5) * 104 = 8.7 * 104 lipids/liposome 

We used 10% DGS-NTA lipids and 90% DOPG lipids by mass.  The molecular weights of the 

lipids are similar, so here we use their mass ratios as a proxy for their molar ratios. 

Mass of liposome = (mass NTA lipids) * (#NTA) + (mass DOPG) * (#DOPG) 

8.7 * 103 NTA lipids, 1057 g/mol   1.53 * 10-17 g/liposome 

7.9*104 DOPG lipids, 797 g/mol  1.05*10-16 g/liposome 

Total mass of one liposome = 1.20 * 10-16 g/liposome 
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For a 5 μM CckA sample in a 25 μL volume, we use 8.5 μg protein. 

If we add an equal mass of lipid to protein, we reach approximately maximum loading capacity. 

#Liposomes = total mass liposomes / mass per liposome 

#Liposomes in reaction = 8.5 * 10-6 g liposomes / (1.2 * 10—16) g/liposome = 7.1*1010 liposomes 

#CckA molecules in the reaction = 7.5 * 10^13 

CckA molecules per liposome = 1100 (maximum number of CckA sites by surface area). 
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