Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of *Arabidopsis thaliana*

(cloning/inorganic pyrophosphatase/nucleotide sequence)

VAHE SARAFIAN*[†], YONGCHEOL KIM*, RONALD J. POOLE[†], AND PHILIP A. REA*[‡]

*Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104; [†]Department of Biology, McGill University, 1205 Avenue Dr. Penfield, Montreal, PQ H3A 1B1, Canada

Communicated by André Jagendorf, November 1, 1991 (received for review September 16, 1991)

ABSTRACT The energy-dependent transport of solutes across the vacuolar membrane (tonoplast) of plant cells is driven by two H⁺ pumps: a vacuolar ("V-type") H⁺-ATPase (EC 3.6.1.3) and a H⁺-translocating (pyrophosphate-energized) inorganic pyrophosphatase (H⁺-PPase; EC 3.6.1.1). The H⁺-PPase, like the V-type H⁺-ATPase, is abundant and ubiquitous in the vacuolar membranes of plant cells, and both enzymes make a substantial contribution to the transtonoplast H⁺-electrochemical potential difference. Here, we report the cloning and sequence of cDNAs encoding the tonoplast H⁺-PPase of Arabidopsis thaliana. The protein predicted from the nucleotide sequence of the cDNAs is constituted of 770 amino acids and has a molecular weight of 80,800. It is a highly hydrophobic integral membrane protein, and the structure derived from hydrophilicity plots contains at least 13 transmembrane spans. Since the tonoplast H⁺-PPase appears to be constituted of one polypeptide species and genomic Southern analyses indicate that the gene encoding the M_r 80,800 polypeptide is present in only a single copy in the genome of Arabidopsis, it is suggested that the H⁺-PPase has been cloned in its entirety. The lack of sequence identities between the tonoplast H⁺-PPase and any other characterized H⁺ pump or PP_i-dependent enzyme implies a different evolutionary origin for this translocase.

The chemiosmotic hypothesis (1) contends that membranebound H⁺ pumps constitute the primary transducers by means of which living cells interconvert light, chemical, and electrical energy. Through the establishment and maintenance of transmembrane electrochemical gradients, H⁺ pumps energize the transport of other solutes or, in the special case of the energy-coupling membranes of mitochondria, chloroplasts, and bacteria, transduce the H⁺ electrochemical gradient generated by membrane-linked anisotropic redox reactions to the synthesis of ATP (1). Given the multitude of biological reactions energized by ATP, primary H⁺ translocation and the interconversions of ATP have come to be recognized as the principal generators of usable energy in the cell. Intriguing, therefore, is the fact that the vacuolar membrane (tonoplast) of plant cells contains not only a H⁺-ATPase (EC 3.6.1.3) (2, 3) but also an inorganic pyrophosphate-energized H⁺-pyrophophatase (H⁺-PPase; EC 3.6.1.1) (2). Both enzymes catalyze inward electrogenic H⁺ translocation (from cytosol to vacuole lumen), but the H⁺-PPase is unusual in its exclusive use of PP_i as energy source

The tonoplast H^+ -PPase appears to be important for plant cell function: it is widespread, active, and abundant. The enzyme is ubiquitous in the vacuolar membranes of plant

cells (2) and capable of establishing a H⁺ gradient of similar, and often greater, magnitude than the H⁺-ATPase on the same membrane (2, 5–7). The M_r 64,500–73,000 substrate (MgPP_i)-binding subunit of the H⁺-PPase constitutes between 1% (8) and 10% (6, 7) of total vacuolar membrane protein and the purified enzyme has a turnover number of between 50 and 100 s⁻¹, depending on source and preparation (7, 8). When account is taken of the large size of the vacuole—it can account for 90–99% of total intracellular volume—the potential bioenergetic impact of the H⁺-PPase is great.

Here we describe the molecular cloning of cDNAs encoding the tonoplast H⁺-PPase of *Arabidopsis thaliana*.[§] While the predicted structural characteristics of the protein encoded by the clones are consistent with the capacity of the enzyme for PP_i-dependent H⁺ pumping, the deduced amino acid sequence of the polypeptide encoded does not show identities with any other sequenced ion pump. We therefore propose that this enzyme is a member of a class of ion translocase that has not been previously described.

MATERIALS AND METHODS

Materials. The plant materials were Arabidopsis thaliana cv. Columbia, Vigna radiata cv. Berken (mung bean), and Beta vulgaris L. cv. Detroit Dark (red beet). Rabbit polyclonal antibody raised against tonoplast H⁺-PPase purified from etiolated hypocotyls of Vigna radiata was a kind gift from M. Maeshima (Hokkaido University, Japan) to V.S. and R.J.P. The Arabidopsis cDNA libraries constructed in λ ZAP and λ gt10, respectively, were provided by Joe Ecker (University of Pennsylvania) and Nigel Crawford (University of California, San Diego).

Preparation of Membranes. Tonoplast vesicles were isolated from *Beta vulgaris* storage root and etiolated hypocotyls of *Vigna radiata* as described previously (6, 9). Microsomes were prepared from 10-day-old dark-grown seedlings of *Arabidopsis thaliana* by homogenization and differential centrifugation (9).

Preparation of Antibody for Immunoscreens. The rabbit polyclonal antibody used in these studies had been raised against total peak tonoplast H⁺-PPase chromatographic fractions purified from etiolated hypocotyls of Vigna (6). To ensure monospecificity, the antibody was affinity-purified against the M_r 66,000 substrate (MgPP_i)-binding subunit of the H⁺-PPase from Vigna (7) by the method of Sambrook et al. (ref. 10, pp. 18.17–18.18).

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. \$1734 solely to indicate this fact.

Abbreviation: H⁺-PPase, H⁺-translocating inorganic pyrophosphatase.

To whom reprint requests should be addressed.

[§]The sequence reported in this paper has been deposited in the GenBank data base (accession no. M81892).

Polypeptide Sequencing. Beta tonoplast vesicles were isolated (9), the H⁺-PPase was purified by the methods of Britten et al. (8) and Sarafian and Poole (11), and aliquots (20-50 μ g) of the purified enzyme were separated by onedimensional SDS/PAGE (7) according to the recommendations of Matsudaira (12). Electrophoresed PPase was electrotransferred to 0.45- μ m nitrocellulose filters and protein was reversibly stained with Ponceau-S (13). The protein band corresponding to the substrate-binding subunit of the H⁺-PPase was excised immediately after destaining, stored wet at -85°C, and shipped on dry ice to the Harvard Microchemistry Facility (Cambridge, MA) for *in situ* tryptic digestion and gas-phase sequence analysis by the method of Aebersold et al. (13).

Screens of Arabidopsis λ ZAP and λ gt 10 cDNA Libraries. An Arabidopsis cDNA expression library in λ ZAP was screened by standard procedures (ref. 10, pp. 12.16–12.20) to isolate the primary partial clone AVP-1 (AVP = Arabidopsis vacuolar pyrophosphatase), which was then employed for hybridization screens of a cDNA library constructed in λ gt10 for the isolation of the near-full-length clone pAVP-3.

Genomic Blot Hybridizations. Genomic DNA was extracted from 14-day-old Arabidopsis seedlings (14). Samples (2 μ g) of the DNA were digested with restriction enzyme, electrophoresed on 0.8% agarose gels, and transferred to nylon membrane filters (Nytran-45; Schleicher & Schuell) for the hybridizations (ref. 10, pp. 9.42–9.55). The filters were exposed to Kodak X-Omat AR x-ray film with intensifying screens for 12–16 hr at -85°C.

Northern Blot Hybridizations. Total RNA was extracted from 7-day-old dark-grown Arabidopsis seedlings by the phenol/SDS method (14), and poly(A)⁺ RNA was isolated by oligo(dT)-cellulose chromatography (ref. 10, pp. 7.26–7.29). The poly(A)⁺ RNA was size-fractionated by electrophoresis on 1% agarose gels containing 0.63 M formaldehyde and blotted onto nylon membrane filters (Nytran-45). The filters were prehybridized as described for the λ gt10 screens and hybridized in the same solution containing random-primed AVP-1 cDNA as probe (specific activity 1 × 10⁸ cpm/µg) for 15–20 hr at 42°C. The filters were washed and exposed to x-ray film as described above for the genomic blot hybridizations.

DNA Sequencing. DNA was sequenced by the dideoxynucleotide chain-termination method (15), using a Sequenase II kit (United States Biochemical). A series of nested deletions derived from the cDNA insert of pAVP-1 were obtained by using a double-stranded nested deletion kit (Pharmacia). All other sequencing reactions were performed with custom-synthesized oligonucleotide primers.

RESULTS

Selection of cDNA Clones Encoding H⁺-PPase. Immunoblots demonstrated that the antibody raised and affinitypurified against the M_r 66,000 MgPP_i-binding subunit of the H⁺-PPase from Vigna immunoreacts specifically with an M_r 66,800 polypeptide in microsomes prepared from Arabidopsis. Thus, to isolate cDNAs encoding the tonoplast H⁺-PPase, the affinity-purified antibody was used to screen a size-fractionated [2-3 kilobases (kb)] Arabidopsis cDNA library constructed in the expression vector λ ZAP. Approximately 200,000 plaques were screened with antibody and 6 independent positive clones were obtained. After in vivo excision, the plasmids were found to contain inserts ranging in length from 1.6 to 2.1 kb. Restriction mapping confirmed that all 6 inserts correspond to the same gene. Sequence analysis of two of the clones, pAVP-1 and pAVP-2, showed both to contain cDNA inserts of about 2.1 kb with nonoverlapping 5' and 3' ends (Fig. 1).

FIG. 1. Sequencing strategy and restriction map of clones pAVP-1, pAVP-2, and pAVP-3. Dashed arrows indicate inserts sequenced with T3 and T7 primers from nested deletions of pAVP-1. Solid arrows indicate sequences obtained from T3 and T7 primers, or specific custom-synthesized primers, using complete plasmid clones as templates. The restriction enzymes employed were *Bam*HI (B), *Bgl* II (Bg), *Hind*III (H), *Pvu* II (P), and *Sca* I (S). The insert boundaries demark the *Eco*RI sites. bp, Base pairs.

To obtain longer cDNA inserts encoding the tonoplast H^+ -PPase, the cDNA insert of pAVP-1 was used as probe for filter hybridization screens of an *Arabidopsis* cDNA library constructed in λ gt10. From 50,000 plaques, 2 positive clones containing cDNA inserts of 2.7 and 2.8 kb, respectively, were isolated and subcloned in pBluescript II (Stratagene). Restriction mapping demonstrated that both clones encode the same gene but contain inserts extending beyond those of pAVP-1 and pAVP-2 in both the 5' and 3' directions. The largest λ gt10-derived clone, pAVP-3, was sequenced.

Nucleotide Sequence. The complete nucleotide sequence and predicted amino acid sequence of AVP-3 (Fig. 2) were determined by the sequencing strategy depicted in Fig. 1.

The methionine (ATG) codon at position 1 in the nucleotide sequence is identified as the translation initiation site. Only by invoking translation initiation at this point can the N-terminal sequence obtained directly by Maeshima and Yoshida (6) for the substrate-binding subunit of the H⁺-PPase from *Vigna* (7) be accommodated by the deduced amino acid sequence of the protein encoded by the cDNA. Moreover, only the sequences contiguous with this, the first methionine codon (AAG ATG GT) in the near full-length clone, match the consensus sequence for plant initiator codons (<u>R</u> <u>A/CA/C AUG GC</u>) with R (purine) at -3 and G at +4 being the most critical (16). The open reading frame of the cDNA insert of pAVP-3 contains 2310 nucleotides followed by a translation termination codon (TAA) at position 2371 and 348 nucleotides of 3' noncoding sequence (Fig. 2).

mRNA Analysis. The cDNA insert of pAVP-3 is near full length as indicated by the results of Northern blot analyses (Fig. 3). When $poly(A)^+$ RNA is isolated from 7-day-old dark-grown seedlings of *Arabidopsis*, size-fractionated, and hybridized with random-primed AVP-1 cDNA, a single RNA species with an approximate length of 2.8 kb is detected. The lengths of AVP-3 and mature *Arabidopsis* transcript therefore coincide.

Identity of cDNA Clones. The identity of the putative H^+ -PPase cDNA clones from *Arabidopsis* is verified by the precise alignment of the deduced amino acid sequence of the protein encoded by AVP-3 with direct internal sequence data acquired from the M_r 64,500–67,000, MgPP_i-binding polypeptide of *Beta* (7, 8, 11) and N-terminal sequence data obtained from the corresponding polypeptide of *Vigna* (6).

In situ tryptic digestion (13) of the " M_r 67,000" (Beta-1) and " M_r 64,500" (Beta-2) substrate-binding subunits of the H⁺-PPase purified by the methods of Sarafian and Poole (11) and Britten *et al.* (8), respectively, generates peptide fragments with identical sequences (Fig. 2). The direct sequence data from the M_r 64,500–67,000 subunit of Beta and the amino

-155	CTTAG	ATTTATCTTTGAGTCCCGAAACATCGAGGAACGCCTTCGAATCCCTCTCTCT	-67
-66	CGAAGCGGT	TCTCTTTCTTTTGTTTATTTGTTTTTGTTTTTGTTTTTCTCTTATACGGAGGAGAGAGA	27 9
28	CTCTGGACG	GAGATCCTTGTACCGATTGTGCGGTGATTGGTATCGCCTTTTCGCTTTTCCAATGGTACGTTGTATCTCGCGTGAAACTCACC	120
10	LeuTrpThr	<u>GluileLeuValProileCysAlaValIleGlyIleAlaPheSerLeuPheGlnTrp</u> TyrValValSerArgValLysLeuThr	40
121	TCTGACCTC	GGCGCATCGTCTTCCGGTGGAGCTAACAATGGGAAGAATGGATACGGTGATTATCTAATCGAGGAAGAGGAAGGTGTTAATGAC	213
41	SerAspLeu	GlyAlaSerSerSerGlyGlyAlaAsnAsnGlyLysAsnGlyTyrGlyAspTyrLeuIleGluGluGluGluGlyValAsnAsp	71
213	CAGAGTGTT	GTCGCTAAGTGCGCTGACAATTCAGACTGCTATTTCCGAAGGTGCAACTTCATTCCTATTCACGGAGTACAAATATGTTGGTGTC	306
72	GlnSerVal	ValAlaLysCysAlaGluileGinThrAlaIleSerGluGlyAlaThrSerPheLeuPheThrGluTyrLySTyrValGlyVal Thromaconconconta hochtronatoratorococcurrenteralocolatorococcutal bichlocottation (Alechico)	102
307	PhoMotile	TICTITIGUEGUEGIETATUTTEGITTICUTUGGUEUGETUGAGGATUGAGGATUGAGGATUGAGUEUGAAUGAGAGGAGGAGUAGU Dhadhad 1 ad 1 sub 1 1 ladhad 1 dhalandi u Sarval Gundu u Dhaggatuga an lug ProCusth r Turagata Thr Thr a	133
400	AGAACCTGC	AGCCTGCATTGCTACTCCAGCCTTCCAGTACCATTGCTTGC	492
134	ArgThrCys	$Lys {\it ProAlaLeuAlaThrAlaAlaPheSerThrIleAlaPheValLeuGlyAlaValThrSerValLeuSerGlyPheLeuGly}$	164
493	ATGAAGATT	GCTACATACGCTAATGCTAGGACCACTTTGGAGGGGGAGGAAAGGTGTTGGAAAGGCGTTCATTGTTGCATTCAGGTCTGGTGCT	585
165	MetLysIle.	AlaThrTyrAlaAsnAlaArgThrThrLeuGluAlaArgLysGlyValGlyLysAlaPheIleValAlaPheArgSerGlyAla	195
586	GTGATGGGT	TTCCTTCTTGCAGCGAGTGGTCTATTGGTGCTTTACATTACTATCAATGTGTTCAAGATCTATTACGGAGATGACTGGGAAGGT	678
196	ValMetGly	PheLeuLeuAlaAlaSerGlyLeuLeuValLeuTyrIleThrIleAsnValPheLysIleTyrTyrGlyAspAspTrpGluGly	226
679	CTTTTTGAG	GCTATTACTGGTTATGGTCTTGGTGGGTCTTCCATGGCTCTTTTGGCCGTGTTGGTGGTGGGATCTACACTAAGCTGCGTGGA	257
227	CTCCCCCCT	Alailein Gyly Goly Leugy Duy Sei Seimet Ala Leur Begynt y Valgi y Gygoly i Ley International Charles an an arte a charl attact a construction and a construction and a construction and a construction and a	257
258	Valcivala	GAULI I GI LEGI MAATI I GAGAGAAN ATTI I CUGAGAGATAN CUMAAAA CUGAGAGATAN I GALAAGAGAAAA I I AA I A A A I I AA I AA	288
865	GTTGGTGAC		957
289	ValGlvAsp	lleAlaGlvMetGlvSerAspLeuPheGlvSerTvrAlaGluAlaSerCvsAlaAlaLeuValValAlaSerIleSerSerPhe	319
958	GGAATCAAC	CACGACTTCACTGCCATGTGCTACCCATTGCTCATCAGTTCAATGGGAATCTTGGTTTGTTT	1050
320	GlyIleAsn	${\tt HisAspPheThrAlaMetCysTyrProLeuLeuIleSerSerMetGlyIleLeuValCysLeuIleThrThrLeuPheAlaThr}$	350
1051	GACTTCTTT	GAGATTAAGCTTGTCAAGGAGATTGAACCAGCATTGAAGAACCAGCTCATTATCTCAACTGTTATTATGACTGTTGGTATTGCT	1143
351	AspPhePhe	GluIleLysLeuValLysGluIleGluProAlaLeuLysAsnGlnLeuIleIleSerThrValIleMetThrValGlyIleAla	381
1144	ATTGTGTCA	TGGGTTGGCTTACCGACCTCCTTTACCATCTTCAACTTGGAACACCAAAAAGTGTCAAGAACTGGCAGGCA	1236
382	llevalser	TTPV41G1yLeuPfointserPheinfliePheAshPheGlyinfginLysvalvalLysAshTipGinLeuPheLeuCysval	412
1237	CveValCly	$ \begin{array}{c} 1111 \\ 103 \\ 1041 \\ 10$	443
1330	TGCAGAACT	GGTGCAGCTACCAATGTTATCTTCGGCCTTGCTTGGTTACAAATCCGTCATTATTCCAATCTTTGCTATTGCTATCGTATCAATA	1422
444	CysArgThr	GlyAlaAlaThrAsnValIlePheGlyLeuAlaLeuGlyTyrLysSerValIleIleProIlePheAlaIleAlaIleSerIle	474
1423	TTCGTTAG	CTTCAGCTTTGCTGCTATGTATGGTGTTGCTGCTGCTGCTCTTGGTATGCTCAGTACCATTGCCACTGGTTTGGCAATTGATGCT	1515
475	PheValSer	PheSerPheAlaAlaMetTyrGlyValAlaValAlaAlaLeuGlyMetLeuSerThrIleAlaThrGlyLeuAlaIleAspAla	505
1516	TATGGTCCC	ATCAGTGACAATGCTGGTGGTATTGCTGAAATGGCTGGAATGAGCCACCGCATCCGTGAAAGAACTGATGCTCTTGATGCCGCT	1608
506	TyrGlyPro	IleSerAspAsnAlaGlyGlyIleAlaGluMetAlaGlyMetSerHisArgIleArgGluArg <u>ThrAspAlaLeuAspAlaAla</u>	536
1609	GGAAACACC	ACTGCTGCTATTGGAAAGGGATTTGCCATTGGCTCTGCTGCCCTAGTCCCTTGGCTCTTTTGGTGCCTTTGGAACGGATTTGCAAGCGATGCA	1701
537	GlyAsnThr	ThrAlaAlaIleClvLvsGlyPheAlaIleGlySerAlaAlaLeuvalSerLeuAlaLeuPheGlyAlaPheValSerArgAla	56/
1/02	GGGATCCAC		598
1705	<u>GIVIIERIS</u>	<u>IIII VAIASPVAILEUIIFIUDI</u> VAILEETIEGIPEULEUVAINKLEUUFIOIJIIPIREURIAANKUKAINIIIIIIIII	1887
1793	LycSorVal	General a la la la la lucificación de la clorente de la constructione de la construction de la constructione de	629
1888	GACTACGCC	ACATGTETCAAGATCTCCACCGATGCTTCCATCAAGGAAATGATACCTCCTGGTTGCCTTGTCATGCTCACACCCTCTCATTGTT	1980
630	AspTyrAla	Thr CysValLysIleSerThr AspAlaSerIleLysGluMetIleProProGlyCysLeuValMetLeuThrProLeuIleValDeValDeValDeValDeValDeValDeValDeVal	660
1981	GGTTTCTTC	TTTGGAGTTGAGACCCTCTCTGGTGTCCTCGCCGGATCTCTTGTATCCGGTGTTCAGATCGCCATATCAGCATCTAACACTGGT	2073
661	GlyPhePhe	PheGlyValGluThrLeuSerGlyValLeuAlaGlySerLeuValSerGlyValGlnIleAlaIleSerAlaSerAsnThrGly	691
2074	GGTGCCTGG	GACAACGCCAAGAAATACATCGAGGCTGGTGTATCAGAGCACGCAAAGAGCCTTGGACCAAAGGGTTCAGAGCCACAACAAGGCA	2166
692	GlyAlaTrp	AspAsnAlaLysLysTyrIleGluAlaGlyValSerGluHisAlaLysSerLeuGlyProLysGlySerGluProHisLy <u>sAla</u>	722
2167	GCTGTGATT	GGAGACACAATTGGAGACCCATTGAAGGATACTTCAGGACCTTCATGAACATCCTCATCAGGCTCATGGGCTGTGAGTCTCTT	2259
723	AlaVallie	GIYASDIAFITEGIYASDIAFICEULVSASDIAFSEGIYPTOSETLEUASDITELEULTELVSLEUMELAIAVAIGIUSEFLEU	753
2260	GTCTTTGCT	CCCTTCTTCGCCACTCACGTGGTGTCCCTTTCAG5CTACTCTAACTCATCCGAGGGAAGAAGATGACGATGATGAGAAGAA	2352
2353	ACANCATC	ProphernealaininisGlyGiyilebeurnebysiyirne>//O brcarcciarccarccaurcaurcau brcarcciarccaurcaurcaurcruarcruarcruartructurtaccurtaccurcuuraaaaaaccurtTTTTCTTCATCA	2445
2333	GGCTCATT	abagaaccaaccaaatcaatgattettettettetetetetettettettettettettet	2538
2539	CAAGTATTC	GGTCGAGACTTGTTTTAGCCGTTACTTTCTGCTGCTTGCT	2631
2632	TGTTACTGT	ΤΑGTCTAAAAAAAAAA 2658	
Arabidopsis	1	ATGGTGGCGCCTGCTTGTTACCGGAGCTCTGGACGGAGATCCTTGTACCGATTGTGCGGTGATTGGTACCGCTTTTCGCT	TTCCAATGGTAC
	1	MetValAlaProAlaLeuLeuProGluLeuTrpThrGluIleLeuValProlleCysAlaVallleGly1leAlaPheSerLeu	PheGInTrpTyr
Viana		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	PheGlnTrpLeu
VIGNA			r neot nit poed
Arabidopsis	763	GCTGCTGATGTCGGCGCTGACCTTGTCGGTAAAATTGAG	
•	255	AlaAlaAspValGlyAlaAspLeuValGlyLysIleGlu	
Beta-2 (NT25	-2)	AlaAlaAspValGlyAlaAspLeuValGlyLysValGlu	
Arabidopsis	1288	ACTGATGCTCTTGATGCCGCTGGAAACACCACIGCTGCTATIGGAAAG	
	550		
Beta-1 (NT25)	ThrAspAlaLeuAspAlaAlaGlyAsnThrThrAlaAlaIleGlyLys	
Beta-2 (NT22	,	AspAlaCysAspAlaAlaGlyAsnThrThrAlaAlaIleGly	
Arabidopsis	1699	GCAGGGATCCACACCGTAGATGTTTTGACCCCTAAA	
	567	AlaGlyIleHisThrValAspValLeuThrProLys	
Dota-1 (1m21	,	;	
beca-1 (NT31	,	ALASETTEGININIVALASPVALLEUINIFIOLYS	
Arabidonsis	2166	GCAGCTGTGATTGGAGACACAATTGGAGACCCATTGAAGGATACTTCAGGACCTTCATTGAACATCCTCATCAAG	
	722	AlaAlaValIleGlyAspThrIleGlyAspProLeuLysAspThrSerGlyProSerLeuAsnIleLeuIleLys	
Beta-1 (NT53)	AlaAlaValIleGlyAspThrIleGlyAspProLeuLysAspThrSerGlyProSerLeuAsnIleLeuLys	
Beta-2 (NT41)	vallleGlyAspThrlleGlyAspLeuAsp	

FIG. 2. Nucleotide sequence of Arabidopsis cDNA encoding H⁺-PPase and predicted amino acid sequence of polypeptide. (Upper) Total sequence of cDNA insert of pAVP-3. The underlined amino acids align with the direct sequence data from the MgPP_i-binding subunit of the H⁺-PPase isolated from Beta and Vigna. (Lower) Alignments of direct sequence data acquired from MgPP_i-binding subunit of the tonoplast H⁺-PPase isolated from Beta and Vigna with deduced amino acid sequence AVP-3. The sequences of the tryptic fragments derived from the " M_r 67,000" (Beta-1) and " M_r 64,500" (Beta-2) polypeptides of the H⁺-PPase purified from Beta by the methods of Sarafian and Poole (11) and Britten et al. (8), respectively, were obtained after SDS/PAGE and electrotransfer to nitrocellulose (13). The N-terminal sequence data for the enzyme from Vigna were taken from Maeshima and Yoshida (6).

acid sequence deduced from the nucleotide sequence of pAVP-3 show complete identity over a total span of 66 amino acid residues except for two conservative (Val \rightarrow Ile, Gln \rightarrow His) substitutions at positions 266 and 570 and one nonconservative (Ser \rightarrow Gly) substitution at 568. Comparison of the deduced N-terminal sequence of the open reading frame of the cDNA insert of pAVP-3 and the N terminus of the substrate-binding subunit of the H⁺-PPase from Vigna (6), on the other hand, reveals 19 identities and 5 conservative substitutions within a span of 30 amino acid residues starting at position 3 (Fig. 2).

Number of Tonoplast H⁺-PPase Genes in Arabidopsis. A Southern blot analysis of Arabidopsis genomic DNA, using the 2.1-kb cDNA insert of pAVP-1 as radioactive probe, was performed to enumerate the genes encoding the substratebinding subunit of the H⁺-PPase in this organism (Fig. 4). Of the five enzymes chosen for the genomic digestions, two (HindIII and Bgl II) each have one restriction site within the 2.1-kb fragment, while the other three (Xba I, EcoRV, and *Eco*RI) do not (Fig. 1). Hence, providing that the region, or regions, of the genome corresponding to the 2.1-kb fragment is devoid of introns containing identical restriction sites, a single band from the Xba I, EcoRV, and EcoRI digests and two bands from each of the HindIII and Bgl II digests would be expected if the H⁺-PPase is encoded by a single gene. This is exactly what is found. Genomic DNA digested with Xba I, EcoRV, or EcoRI and probed with the 2.1-kb fragment yields

FIG. 4. Genomic Southern analysis of tonoplast H⁺-PPase. Arabidopsis genomic DNA digested with Xba I (lane A), EcoRV (lane B), EcoRI (lane C), HindIII (lane D), or Bgl II (lane E) was electrophoresed, blotted, and hybridized with ³²P-labeled AVP-1. The positions of the DNA molecular weight markers (kb) are indicated.

intensely hybridizing bands at 7, 8, and 12 kb, respectively. The *Hind*III and *Bgl* II digests, on the other hand, each contain two hybridizing bands at 2.6 and 1.83 kb and 1.78 and 1.4 kb, respectively.

Deduced Amino Acid Sequence. The open reading frame of AVP-3 encodes a 770 amino acid polypeptide with a pI of approximately 4.95 and a predicted M_r of 80,800. While the estimated M_r of the protein encoded by the insert is approximately 8000 larger than the highest apparent M_r (73,000) determined by SDS/PAGE of the enzyme from Vigna (6), 13,800–16,300 greater that the estimated M_r (64,500–67,000) of the corresponding subunit from Beta (8, 11), and about 14,000 greater than the M_r 66,800 immunoreactive polypeptide reported here for Arabidopsis, the anomalous migration of hydrophobic membrane proteins on SDS gels is not unusual. The binding of nonsaturating amounts of SDS by membrane proteins is common and frequently accompanied by large shifts in apparent M_r as a result of the exposure of charged amino acid residues and/or irregularities in the shape of the SDS-protein complex (17).

Computer-assisted hydrophilicity plots of the Arabidopsis H^+ -PPase amino acid sequence establish that the cDNA insert of pAVP-3 encodes an extremely hydrophobic integral membrane protein (Fig. 5). Membrane-associated α -helices were determined by hydrophobic moment analysis (19) and some of the secondary structural characteristics of the hydrophilic sequences were assigned by the Garnier method (20). The model contains 13 transmembrane spans, all of which are amphipathic ("multimeric") and may interact to

FIG. 5. Computer-assisted hydrophilicity plot (Upper) and topographic model (Lower) of Arabidopsis tonoplast H⁺-PPase amino acid sequence. The plot was calculated according to Kyte and Doolittle (18) with the MacVector program over a running window of 20 amino acid residues. Values above the median represent hydrophilic segments; values below the median represent hydrophobic segments. Numbers I through XIII represent the putative membrane-spanning segments depicted in the tentative topographic model of the tonoplast H+-PPase. Transmembrane segments, all of which appear to be multimeric on the basis of their hydrophobic moment, were predicted by the HE-LIXMEM program of PC/GENE. The structure of the nontransmembrane regions was examined with both the GARNIER and GGBSM programs of PC/GENE. The structures indicated are ww, α -helix; —, random coil; \ominus , clusters of negative charge; ⊕, clusters of positive charge; N, amino terminus; and C, carboxyl terminus.

stabilize the structure through the formation of interhelical H bonds and salt bridges. In addition, several of the hydrophilic domains are characterized by the presence of clusters of charged residues that might participate in anion $(PP_i^{4-}, MgPP_i^{2-})$ or cation (K^+, Mg^{2+}, Ca^{2+}) binding. Thus, the hydrophilic segment linking transmembrane spans I and II contains four contiguous Glu residues (positions 64-67), the segment linking spans IV and V contains four acidic residues in a stretch of eight amino acids (positions 222-229), the segment between spans VIII and IX contains the sequence Arg-Xaa-Arg-Xaa-Arg (positions 525-529), and the penultimate hydrophilic domain, linking spans XII and XIII, contains a preponderance of Lys residues. The overall orientation of the M_r 81,000 polypeptide is depicted as shown in Fig. 5 in accord with the "positive-inside rule" (21) wherein, for the majority of polytopic membrane proteins, most of the positively charged amino acids are disposed towards the cytoplasmic face of the membrane.

Computer searches of both the nucleotide sequence of the cDNA insert of pAVP-3 and the deduced amino acid sequence of the polypeptide encoded by the clone against the GenBank, Genpept, and Swiss-Prot data bases (as of September, 1991) yielded no detectable homology between this pump and any other sequenced ion translocase or PP_idependent enzyme.

CONCLUSIONS

The MgPP_i-binding subunit of the tonoplast H⁺-PPase appears to be the sole polypeptide constituting the functional enzyme complex. This component, alone, copurifies with PPase activity during detergent solubilization and chromatography (6-8, 11) and is the only polypeptide of tonoplast vesicles to undergo MgPP_i-protectable, free PP_i-potentiated labeling by $N-[^{14}C]$ ethylmaleimide (7, 8). In addition, selective purification of the MgPP_i-binding subunit of the tonoplast H⁺-PPase from Vigna and its incorporation into artificial phospholipid bilayers generate proteoliposomes capable of both MgPP_i hydrolysis and $MgPP_i$ -dependent H⁺ translocation (C. J. Britten and P.A.R., unpublished results). Together with the amino acid sequence data derived from pAVP-3, which show that the MgPP_i-binding subunit of the tonoplast H⁺-PPase is highly hydrophobic and possesses multiple transmembrane spans, these findings strongly suggest that subunits in addition to the M_r 81,000 polypeptide encoded by AVP-3 need not be implicated to account for the capacity of the tonoplast H⁺-PPase for PP_i-energized transtonoplast H⁺ translocation.

On the basis of the results reported here and its biochemical characteristics, the tonoplast H⁺-PPase must be ascribed to its own category of H⁺ translocase. Sequence identities with any other characterized ion translocase are lacking; the type-specific inhibitors azide, orthovanadate, and bafilomycin, which selectively and strongly inhibit F-, P-, and V-type ATPases, respectively, are without effect on the tonoplast H⁺-PPase (2); and none of the subunits of F-, P-, and V-type ATPases are immunologically crossreactive with the MgPP_ibinding subunit of the enzyme (P.A.R., unpublished results; V.S. and R.J.P., unpublished results). Similarly, close phylogenic links between the tonoplast H⁺-PPase and soluble PPases are unlikely. All known soluble PPases have subunit molecular weights different from the tonoplast H⁺-PPase-20,000 for the enzymes from prokaryotes (22) and 32,000-42,000 for the enzymes from eukaryotes (e.g., refs. 23, 24)-and none of the known sequences for soluble PPases [Arabidopsis (25), Escherichia coli, (22), Kluveromyces lactis, (26), and Saccharomyces cerevisiae (27)] align with the deduced sequence of the tonoplast H⁺-PPase. The recently cloned catalytic M_r 28,000–30,000 subunit of the membranebound mitochondrial H⁺-PPase (28) may also be eliminated as a homolog: the subunit from Saccharomyces is 49% identical to the soluble PPase from the same source (28) and shows no sequence identities with the tonoplast H^+ -PPase from Arabidopsis, and the corresponding enzyme from rat liver mitochondria does not crossreact with antibody raised against the tonoplast H^+ -PPase from Vigna (29).

Evaluation of a potentially more promising evolutionary relationship between the tonoplast H⁺-PPase and the reversible H⁺-translocating PPase (H⁺-PP_i synthase) of phototrophic bacteria awaits the acquisition of sequence data from the latter enzyme. The existence of a H^+ -PP_i synthase on the energy-coupling membranes of phototrophic bacteria, notably Rhodospirillum rubrum, has been known for some time, but only recently has it been shown that this translocase is an integral membrane protein with an apparent M_r of 56,000 (30). Two features of the M_r 56,000 polypeptide are significant: it is immunologically crossreactive with the MgPP_ibinding subunit of the tonoplast H⁺-PPase (E. J. Kim, Y.K., and P.A.R., unpublished results) and, unlike the M_r 28,000-30,000 peripheral catalytic subunit of the mitochondrial H⁺-PPase (28), it, alone, is capable of mediating both MgPP_i hydrolysis and H⁺ translocation (30). Genomic screens of Rhodospirillum using the cDNA insert of pAVP-1 and derivatives thereof as probes should allow us to examine the exciting possibility that the H⁺-PPases of phototrophic bacteria and plant vacuoles have common evolutionary origins.

We thank Drs. Joe Ecker, Nigel Crawford, M. Maeshima, W. Lane, and Margaret Ahmad for the provision of some of the materials employed in this work. This work was supported by the National Science Foundation (Grant DCB-9005330), the University Research Foundation, University of Pennsylvania, and a grant from the Biological Sciences Research Group, University of Pennsylvania, awarded to P.A.R.; V.S. was partly supported by the Natural Sciences and Engineering Research Council, Canada, by a grant awarded to R.J.P.

- 1. Mitchell, P. (1961) Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation (Glyn Research, Bodmin, Cornwall, England).
- Rea, P. A. & Sanders, D. (1987) Physiol. Plant 71, 131-141.
- Nelson, N. & Taiz, L. (1989) Trends Biochem. Sci. 14, 113-116. 3.
- Rea, P. A. & Poole, R. J. (1986) Plant Physiol. 81, 126-129. 4.
- Rea, P. A. & Poole, R. J. (1985) Plant Physiol. 77, 46-52. 5.
- Maeshima, M. & Yoshida, Y. (1989) J. Biol. Chem. 264, 20068-20073. 6.
- Rea, P. A., Britten, C. J. & Sarafian, V. (1992) J. Biol. Chem., in press.
- 8. Britten, C. J., Turner, J. C. & Rea, P. A. (1989) FEBS Lett. 256, 200-206.
- Rea, P. A. & Turner, J. C. (1990) Methods Plant Biochem. 3, 385-405. Q
- Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989) Molecular Cloning: A 10. Laboratory Manual (Cold Spring Harbor Lab., Cold Spring Harbor, NY), 2nd Ed.
- Sarafian, V. & Poole, R. J. (1989) Plant Physiol. 91, 34-38. 11
- Matsudaira, N. (1988) A Practical Guide to Protein and Peptide Purifi-12. cation for Microsequencing (Academic, New York).
- Aebersold, R. H., Leavitt, J., Saavedra, R. A., Hood, L. E. & Kent, S. B. H. (1987) Proc. Natl. Acad. Sci. USA 84, 6970-6974. 13.
- 14. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G. & Struhl, K. (1987) Current Protocols in Molecular Biology (Wiley, New York).
- Sanger, F., Nicklen, S. & Coulson, A. R. (1977) Proc. Natl. Acad. Sci. 15. USA 74, 5463-5467.
- 16. Lutcke, H. A., Chow, K. C., Mickel, F. S., Moss, K. A., Kern, H. F. & Sceele, G. A. (1987) EMBO J. 6, 43-48.
- 17. Maddy, A. H. (1976) J. Theor. Biol. 62, 315-326.
- Kyte, J. & Doolittle, R. F. (1982) J. Mol. Biol. 157, 105-132.
- 19. Eisenberg, D., Scharz, E., Komaromy, M. & Wall, J. (1984) J. Mol. Biol. 179, 125-142.
- 20. Garnier, J., Osguthorpe, D. J. & Robson, B. (1978) J. Mol. Biol. 120, 97-120.
- 21 22.
- von Heijne, G. & Gavel, Y. (1988) Eur. J. Biochem. 174, 671-678. Lahti, R., Pitkaranta, T., Valve, E., Ilta, I., Kukko-Kalske, E. & Heinonen, J. (1988) J. Bacteriol. 170, 5901-5907.
- Cohen, S. A., Sterner, R., Keim, P. S. & Henrikson, R. L. (1978) J. Biol. 23. Chem. 253, 889-897. Krishnan, V. A. & Gnanam, A. (1988) Arch. Biochem. Biophys. 260,
- 24. 277-284.
- Kieber, J. J. & Signer, E. R. (1991) Plant Mol. Biol. 16, 345-348. 25
- Stark, M. J. R. & Milner, J. S. (1989) Yeast 5, 35-50. 26
- Kolakowski, L. F., Schloesser, M. & Cooperman, B. S. (1988) Nucleic 27. Acids Res. 22, 10441-10452.
- 28. Lundin, M., Baltscheffsky, H. & Ronne, H. (1991) J. Biol. Chem. 266, 12168-12172
- Maeshima, M. (1991) Eur. J. Biochem. 196, 11-17. 29.
- Nyren, P., Nore, B. F. & Strid, A. (1991) Biochemistry 30, 2883-2887.