S1 | A list of characterized genes encoding pentatricopeptide repeat-containing proteins. The genes are arranged according to the kingdom to which the organism belongs and then listed alphabetically.

PPR protein- encoding gene	Organism	Localization (<u>P</u> redicted, <u>C</u> onfirmed)/ target RNA (<u>P</u> redicted, <u>in vivo</u> association, <u>in vitro</u> confirmation)	Possible function or involvement	Loss of function phenotype	Reference	Notes
Plants		1	1	l		1
CRP1	Maize	Chloroplast stroma (C) /psaC 5' UTR (in vivo), petA 5' UTR (in vivo), petD (P)	Translation of <i>petA</i> , <i>psaC</i> mRNA, processing of <i>petD</i> mRNA	Reduced cytochrome <i>f</i> (<i>petA</i>) and photosystem I subunit (<i>psaC</i>) protein, unprocessed poly- cistronic <i>petD</i> mRNA, loss of cytochrome <i>b</i> _o <i>f</i> complex, decrease of photosystem I activity	1-3	Associated with multisubunit protein complexes
CRR2 (At3g46790)	Arabidopsis	Chlorplast (P) / <i>rps7-ndhB</i> pre-mRNA (P)	Controls <i>ndhB</i> expression by regulat- ing intragenic processing of <i>rps7-ndhB</i> transcript	Decreased NdhB protein levels, reduced chlo- roplast NA(P)DH dehydrogenase complex activity	4	
CRR4 (At2g45350)	Arabidopsis	Chloroplast (C) /ndhH (in vitro)	Binds <i>ndhD</i> mRNA to recruit RNA editing machinery	Reduced NdhH protein, reduced chloroplast NA(P)DH dehydrogenase complex activity	5,6	
EMP4	Maize	Mitochondria (C) /unknown	Mitochondria development, seed development	Lethal loss of endosperm development in seeds, reduced levels of mitochondrial <i>rps2A/rp2B</i> , <i>rps3/rp113</i> , <i>mttb</i> RNA's	7	
Grp23 (At1g10270)	Arabidopsis	Nucleus (C) /RNA polymerase II, subunit III (<i>in vivo</i>)	Transcriptionally regulates early embryo development through interac- tions with RNA polymerase II	Loss of proper embryonic development	8	
GUN1 (At2g31400)	Arabidopsis	Chloroplast (C) /unknown	Chloroplast development, Retrograde signaling	<i>gun</i> mutant, does not repress photosynthesis-related nuclear genes after chloroplast photo-oxidative damage or translation inhibition	9	
HCF152 (At3g09650)	Arabidopsis	Chloroplast stroma (C) / <i>petB</i> pre-mRNA(<i>in vitro</i>)	Controls processing of <i>psbB-psbT-</i> <i>psbH-petB-petD</i> polycicstronic RNA	Impaired <i>petB</i> intron splicing/stabilization, impaired endonucleolytic cleavage of <i>psbH-</i> <i>petB</i> mRNA transcript, reduced cytochrome <i>b</i> _o f complex activity	10-12	
LOI1 (At4g14850)	Arabidopsis	Mitochondria (P) /unknown	Post-transcriptionally regulates 3- hydroxy-3-methylglutaryl coenzyme A reductase and isoprenoid biosyn- thesis	Insensitive to isoprenoid biosynthesis inhibitors lovastatin and clomazone	13	Binds single stranded nucleic acids <i>in vitro</i>
MCA1	Chlamydomonas reinhardtii, (eukaryotic algae)	Chloroplast (C) /petA (P)	Regulates <i>petA</i> mRNA transcript stability	Reduced levels of <i>petA</i> mRNA transcript, reduced levels of cytochrome f (<i>petA</i>) protein, reduced activity of cytochrome b_of complex	14,15	MCA1 is a short-lived protein, abundance fluctuates rapidly under different growth conditions
OTP3 (<i>At1g74910</i>)	Arabidopsis	Mitochondria (P) /nad1 (in vivo)	Required for <i>trans</i> -splicing of intron 1 of <i>nad1</i> mRNA	Reduced levels of Complex I activity. Defects in seed development and germination	16	
PGR3 (At4g31850)	Arabidopsis	Chloroplast (P) / <i>petL</i> (P), <i>ndhD</i> (P)	Regulates stabliziation/translation of <i>petL</i> mRNA and translation of <i>ndhD</i> mRNA	Reduced <i>petL</i> , <i>petG</i> mRNA, reduced NdhD protein, reduced level of cytochrome $b_{o}f$ and NA(P)DH dehydrogenase complex activities	17	

SUPPLEMENTARY INFORMATION

PPR2	Maize	Chloroplast stroma (C)/ unknown	Required for the synthesis or assembly	Chloroplasts lack ribosomes,	18	
			of chloroplast translation machinery	albino seedlings		
PPR4	Maize	Chloroplast stroma (C)	Regulates rps12 trans-splicing and	Defective in <i>rsp12 trans</i> -splicing, albino seed-	19	
		/1 st intron of <i>rps12</i> pre-mRNA (<i>in vivo</i>)	chloroplast	lings lacking chloroplast ribosomes		
			ribosome biogenesis			
PPR531-11	Physcomitrella	Chloroplast (P)	Regulates intergenic cleavage between	Reduced levels of photosystem II reaction	20	
	patens (moss)	/clpP (P)	clpP and 5'-rps12 mRNA and splicing	center protein D1 (<i>clpP</i>), abnormal chloroplast		
			of <i>clpP</i> mRNA	morphology		
PTAC2	Arabidopsis	Chloroplast (C)	Required for normal chloroplast	Reduction of chloroplast transcription, albino	21	Associated with chlo-
(At1g74850)	_	/unknown	encoded RNA polymerase-dependent	seedlings		roplast transcription-
			transcription			ally active complexes
			1			in vivo
Tbc2	Chlamydomonas	Chloroplast stroma (C)	Regulates translation of <i>psbC</i> mRNA	Reduced levels of chlorophyll-binding photo-	22,23	
	reinhardtii,	/ <i>psbC</i> 5' UTR (P)	as part of a protein complex	system II reaction center subunit P6 protein		
	(eukaryotic		<u>i</u> <u>i</u> <u>i</u> <u>i</u>	(<i>psbC</i>), reduced photosystem II activity		
	algae)			(per c), realized photocyclem in activity		
Plant CMS resto					<u> </u>	
Rf1a, PPR791,	Rice	Mitochondria (P)	Dominant restorer of BT-type CMS,	Male sterility, accumulation of aberrant <i>urf-rmc</i>	24-27	
PPR8-1		/B-atp6/orf79 (urf-rmc) (P)	reduces levels of aberrant CMS-asso-	protein product	/	
11101		(1) (inpototig) ((ing (tino) (1))	ciated protein, promotes endonucleo-	protoin product		
			lytic cleavage of <i>urf-rmc</i> RNA, role in			
			<i>atp6</i> mRNA editing			
Dfile	Rice	Mitochondria (P)	Dominant restorer of BT-type CMS,	Male sterility, accumulation of aberrant <i>urf-rmc</i>	24.25	
Rf1b	Rice				24,25	
		/B-atp6/orf79 (urf-rmc) (P)	reduces levels of aberrant CMS-asso-	protein product		
			ciated protein, destabilizes urf-rmc			
- 7 -			mRNA			
Rfk1,	Radish	Mitochondria (P)	Dominant Kosena-CMS restorer of	Male sterility, accumulation of ORF125 protein	28	
ORF687		/orf125 (P)	fertility, decreases accumulation of	product		
			CMS-associated protein ORF125 but			
			does not decrease transcript levels			
Rfo	Radish	Mitochondria (P)	Dominant Ogura (ogu)-CMS restorer	Male sterility, accumulation of ORF138 protein	29,30	
		/orf138 (P)	of fertility, decreases accumulation of	product		
			CMS-associated protein ORF138 but			
			does not decrease transcript levels			
Rf-PPR592	Petunia	Mitochondria (C)	Dominant CMS restorer of fertility,	Male sterility (CMS), accumulation of CMS	31,32	
		/pcf (in vivo)	decreases accumulation of CMS-asso-	associated protein PCF		
			ciated protein PCF	-		
Animals	,		, .		,	
BSF	Drosophila mela-	Cytoplasm (C)	Regulates stability of <i>IV/V</i> RNA dur-	Reduced levels of IV/V RNA	33	
	nogaster	/ <i>IV</i> / <i>V</i> RNA (3' UTR of bicoid (<i>bcd</i>)	ing oogenesis			
	0	mRNA) (<i>in vitro</i>)			1	

LRPPRC, LRP130	Human	Mitochondria (C), nucleus (C) /coxI, coxIII (P)	Regulates the stability/ translation of <i>coxI, coxIII</i> mRNA's	Leigh syndrome French Canadian, cytochrome <i>c</i> oxidase deficiency	34-37	Associated with nuclear and mitochon- drial RNA <i>in vivo</i> , has nucleotide-binding
Protists						activity in vitro
					1	
TbPPR1-	Trypanosoma	TBPPR1-7: Mitochondria (C)	TbPPR2-7 involved in mitochondrial	Defects in oxidative phosphorylation and	38	
TbPPR8	brucei (protist	TBbPPR8: Cytosol (C)	ribosome assembly/function	growth in glucose medium,		
	causes African	/TbPPR5: 12S rRNA (in vivo)		<i>TbPPR2-7</i> mutants have reduced mitochondrial		
	Sleeping			rRNA levels		
	Sickness)					
Fungi				·		
Cya-5	Neurospora	Mitochondria (P)	Required for the stabilization/transla-	Reduced cytochrome <i>c</i> oxidase activity	39	
	crassa	/coxI (P)	tion cox1 mRNA			
PET309	Saccharomyces	Mitochondrial inner membrane (C)	Required for the normal processing/	Reduced cytochrome <i>c</i> oxidase activity, reduced	40,41	
	cerevisiae	/coxI 5' UTR(P)	stabilization of <i>coxI</i> pre mRNA and its	levels of mature <i>coxI</i> mRNA and COXI protein		
			translation			

References

- Fisk, D. G., Walker, M. B. & Barkan, A. Molecular cloning of the maize gene crp1 reveals similarity between regulators of mitochondrial and chloroplast gene expression. *EMBO J.* 18, 2621-2630 (1999).
- 2. Barkan, A., Walker, M., Nolasco, M. & Johnson, D. A nuclear mutation in maize blocks the processing and translation of several chloroplast mRNAs and provides evidence for the differential translation of alternative mRNA forms. *EMBO J.* **13**, 3170-3181 (1994).
- 3. Schmitz-Linneweber, C., Williams-Carrier, R. & Barkan, A. RNA immunoprecipitation and microarray analysis show a chloroplast Pentatricopeptide repeat protein to be associated with the 5' region of mRNAs whose translation it activates. *Plant Cell* **17**, 2791-2804 (2005).
- 4. Hashimoto, M., Endo, T., Peltier, G., Tasaka, M. & Shikanai, T. A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. *Plant J.* **36**, 541-549 (2003).
- 5. Okuda, K., Nakamura, T., Sugita, M., Shimizu, T. & Shikanai, T. A pentatricopeptide repeat protein is a site recognition factor in chloroplast RNA editing. *J. Biol. Chem.* 281, 37661-37667 (2006).
- 6. Kotera, E., Tasaka, M. & Shikanai, T. A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. *Nature* **433**, 326-330 (2005).
- 7. Gutierrez-Marcos, J. F. *et al.* empty pericarp4 encodes a mitochondrion-targeted pentatricopeptide repeat protein necessary for seed development and plant growth in maize. *Plant Cell* **19**, 196-210 (2007).
- 8. Ding, Y. H., Liu, N. Y., Tang, Z. S., Liu, J. & Yang, W. C. Arabidopsis GLUTAMINE-RICH PROTEIN23 is essential for early embryogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase II subunit III. *Plant Cell* **18**, 815-830 (2006).
- 9. Koussevitzky, S. *et al.* Signals from chloroplasts converge to regulate nuclear gene expression. *Science* **316**, 715-719 (2007).
- 10. Meierhoff, K., Felder, S., Nakamura, T., Bechtold, N. & Schuster, G. HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs. *Plant Cell* **15**, 1480-1495 (2003).
- 11. Felder, S. *et al.* The nucleus-encoded HCF107 gene of Arabidopsis provides a link between intercistronic RNA processing and the accumulation of translation-competent psbH transcripts in chloroplasts. *Plant Cell* **13**, 2127-2141 (2001).
- 12. Nakamura, T., Meierhoff, K., Westhoff, P. & Schuster, G. RNA-binding properties of HCF152, an Arabidopsis PPR protein involved in the processing of chloroplast RNA. *Eur. J. Biochem.* **270**, 4070-4081 (2003).
- Kobayashi, K. *et al.* Lovastatin insensitive 1, a Novel pentatricopeptide repeat protein, is a potential regulatory factor of isoprenoid biosynthesis in Arabidopsis. *Plant Cell Physiol.* 48, 322-331 (2007).

SUPPLEMENTARY INFORMATION

- 14. Lown, F. J., Watson, A. T. & Purton, S. Chlamydomonas nuclear mutants that fail to assemble respiratory or photosynthetic electron transfer complexes. *Biochem. Soc. Trans.* 29, 452-455 (2001).
- 15. Raynaud, C. *et al.* Evidence for regulatory function of nucleus-encoded factors on mRNA stabilization and translation in the chloroplast. *Proc Natl Acad Sci U S A* **104**, 9093-9098 (2007).
- 16. de Longevialle, A. F. *et al.* The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 Intron 1 in Arabidopsis thaliana. *Plant Cell* **19**, 3256-3265 (2007).
- 17. Yamazaki, H., Tasaka, M. & Shikanai, T. PPR motifs of the nucleus-encoded factor, PGR3, function in the selective and distinct steps of chloroplast gene expression in Arabidopsis. *Plant J.* **38**, 152-163 (2004).
- 18. Williams, P. M. & Barkan, A. A chloroplast-localized PPR protein required for plastid ribosome accumulation. *Plant J.* **36**, 675-686 (2003).
- 19. Schmitz-Linneweber, C. et al. A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell 18, 2650-2663 (2006).
- 20. Hattori, M., Miyake, H. & Sugita, M. A Pentatricopeptide repeat protein is required for RNA processing of clpP Pre-mRNA in moss chloroplasts. J. Biol. Chem. 282, 10773-10782 (2007).
- 21. Pfalz, J., Liere, K., Kandlbinder, A., Dietz, K. J. & Oelmuller, R. pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. *Plant Cell* 18, 176-197 (2006).
- 22. Zerges, W., Auchincloss, A. H. & Rochaix, J. D. Multiple translational control sequences in the 5' leader of the chloroplast psbC mRNA interact with nuclear gene products in Chlamydomonas reinhardtii. *Genetics* 163, 895-904 (2003).
- 23. Auchincloss, A. H., Zerges, W., Perron, K., Girard-Bascou, J. & Rochaix, J. D. Characterization of Tbc2, a nucleus-encoded factor specifically required for translation of the chloroplast psbC mRNA in Chlamydomonas reinhardtii. *J. Cell Biol.* 157, 953-962 (2002).
- 24. Wang, Z. *et al.* Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. *Plant Cell* **18**, 676-687 (2006).
- 25. Akagi, H. *et al.* Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein. *Theor. Appl. Genet.* **108**, 1449-1457 (2004).
- 26. Komori, T. et al. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J. 37, 315-325 (2004).
- 27. Kazama, T. & Toriyama, K. A pentatricopeptide repeat-containing gene that promotes the processing of aberrant atp6 RNA of cytoplasmic male-sterile rice. *FEBS Lett.* **544**, 99-102 (2003).
- 28. Koizuka, N. *et al.* Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. *Plant J.* **34**, 407-415 (2003).
- 29. Brown, G. G. et al. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J. 35, 262-272 (2003).
- 30. Desloire, S. et al. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep. 4, 588-594 (2003).
- 31. Gillman, J. D., Bentolila, S. & Hanson, M. R. The petunia restorer of fertility protein is part of a large mitochondrial complex that interacts with transcripts of the CMS-associated locus. *Plant J.* **49**, 217-227 (2007).
- 32. Bentolila, S., Alfonso, A. A. & Hanson, M. R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. *Proc Natl Acad Sci U S A* **99**, 10887-10892 (2002).
- 33. Mancebo, R., Zhou, X., Shillinglaw, W., Henzel, W. & Macdonald, P. M. BSF binds specifically to the bicoid mRNA 3' untranslated region and contributes to stabilization of bicoid mRNA. *Mol. Cell Biol.* 21, 3462-3471 (2001).
- 34. Xu, F., Morin, C., Mitchell, G., Ackerley, C. & Robinson, B. H. The role of the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene in cytochrome oxidase assembly: mutation causes lowered levels of COX (cytochrome c oxidase) I and COX III mRNA. *Biochem. J.* **382**, 331-336 (2004).
- 35. Mootha, V. K. *et al.* Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. *Proc. Natl. Acad. Sci. USA* 100, 605-610 (2003).
- 36. Mili, S. & Pinol-Roma, S. LRP130, a pentatricopeptide motif protein with a noncanonical RNA-binding domain, is bound in vivo to mitochondrial and nuclear RNAs. *Mol Cell Biol* 23, 4972-4982 (2003).
- 37. Mili, S., Shu, H. J., Zhao, Y. & Pinol-Roma, S. Distinct RNP complexes of shuttling hnRNP proteins with pre-mRNA and mRNA: candidate intermediates in formation and export of mRNA. *Mol. Cell Biol.* **21**, 7307-7319 (2001).
- 38. Pusnik, M., Small, I., Read, L. K., Fabbro, T. & Schneider, A. Pentatricopeptide Repeat Proteins in Trypanosoma brucei Function in Mitochondrial Ribosomes. *Mol. Cell Biol.* 27, 6876-6888 (2007).

SUPPLEMENTARY INFORMATION

- 39. Coffin, J. W., Dhillon, R., Ritzel, R. G. & Nargang, F. E. The Neurospora crassa cya-5 nuclear gene encodes a protein with a region of homology to the Saccharomyces cerevisiae PET309 protein and is required in a post-transcriptional step for the expression of the mitochondrially encoded COXI protein. *Curr. Genet.* **32**, 273-280 (1997).
- 40. Manthey, G. M., Przybyla-Zawislak, B. D. & McEwen, J. E. The Saccharomyces cerevisiae Pet309 protein is embedded in the mitochondrial inner membrane. *Eur. J. Biochem.* 255, 156-161 (1998).
- 41. Manthey, G. M. & McEwen, J. E. The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae. *EMBO J.* 14, 4031-4043 (1995).