
Supplementary Information: Mathematical Anal-

ysis

We establish some mathematical conditions for when 1) mutual-inhibition
induced topological memory, 2) intermittent rivalry, 3) dominance time de-
pendence on frame presentation period, and 4) slow habituation effect will
arise in the rivalry model for i = 1, 2:

τu
dui
dt

= −ui + f(S(t)− βsjuj − γai) (1)

τa
dai
dt

= −ai + ui (2)

τs
dsi
dt

= 1− si − φuisi (3)

where f(x) = 0 for x ≤ 0 and it is a monotonically increasing continuous
function for x > 0. f(x) is differentiable everywhere except possibly at x = 0.
Note that this is still general because we can always shift the threshold to
zero by shifting x. S(t) oscillates between an an off-state Soff > 0 for time
Toff and an on-state Son > Soff for time Ton, with a period of T = Ton + Toff.
The initial conditions satisfy 0 < ui(0) < f(Son), 0 ≤ ai(0) < f(Son), and
0 < s(0) ≤ 1.

Topological memory requires that there exists a winner-take-all (WTA)
fixed point where one population is active while the other is silent in both
the off-state and the on-state. The fixed point obeys

u0
i = f(Soff/on − βsju0

j − γai) (4)

for fixed ai and sj. The WTA fixed point consists of a state where the activity
of one pool is zero while the other is nonzero. Without loss of generality, let
us choose u0

1 > 0 and u0
2 = 0. Topological memory implies the existence of a

WTA fixed point for a wide range of inputs satisfying the conditions:

u0
1 = f(S − γa1) (5)

u0
2 = 0 (6)

The existence condition requires S > γa1, S − βs1u
0
1 − γa2 < 0. Hence,

topological memory is possible if

βs1u
0
1 + γa2 > S > γa1 (7)

1



Theorem 1. In the absence of fatigue (si = 1 and ai = 0), for S on any
finite interval Ω = [r1, r2], r2 > r1 > 0, there is a β > 0 such that topological
memory exists.

Proof. Without fatigue, the existence condition for topological memory is
βf(S) > S > 0. Hence, S must be positive by the lower bound condition.
Since f(S) is positive and continuous by definition for S > 0, S/f(S) is
bounded and continuous and the upper bound condition can be written as
β > S/f(S). Now pick an interval Ω. Since S/f(S) is continuous and
bounded there is a supremum C on the interval. Taking β > C satisfies
β > S/f(S) as required.

Theorem 2. If the fixed point is WTA for S = Son then it is also WTA for
S = Soff < Son if f is concave on S > 0 (e.g. f ′′ < 0).

Proof. The WTA fixed point for S(t) = Son satisfies βf(Son) > Son > 0.
Hence, β > Son/f(Son) since f(Son) > 0. We must show that this implies
βf(Soff) > Soff > 0. The lower bound is satisfied by the definition of Soff . The
upper bound requires β > Soff/f(Soff). Because f is concave then f(tS) ≥
(1−t)f(0)+tf(S) = tf(S), t ∈ [0, 1], since f(0) = 0 by definition. Let Soff =
tSon. Then Soff/f(Soff) = tSon/f(tSon) ≤ Son/f(Son) < β by concavity,
which proves the proposition.

Corollary 1. Topological memory can persist with nonzero fatigue (a >
0, s < 1) for some choice of Soff , Son, and β > 0.

Proof. Topological memory requires that (7) must be satisfied. Choose Soff >
γa1(t) so that lower bound condition is satisfied. Since f is a continuous
positive function for positive argument and S ≥ Soff is positive and bounded
then u1(t) is positive and bounded. Hence, ai(t) is positive and bounded and
0 < sj ≤ 1. u0

1 from (5) is also positive. Hence, for any γ, (7) can be satisfied
for sufficiently large β.

Remark 1. The piecewise square root gain function f(x) =
√

max(x, 0)
satisfies all the conditions for topological memory.

We have thus established the conditions for topological memory. We must
now examine the dynamics to probe the existence of intermittent rivalry.
We consider the singular limit where the fatigue variables are much slower
than the activity variables, i.e. τa, τs >> τu, and use a slow-fast time-scale
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analysis. Without loss of generality, we rescale time such that τu = 1. The
activity variables are a fast subsystem while the fatigue variables comprise
the slow subsystem. In the singular limit, we can examine the fast dynamics
assuming that the slow variables are fixed.

At the initiation of the on-state, S(t) changes abruptly from Soff to Son

at which point the off-state fixed point no longer exists. The system will
then evolve towards the asymmetric on-state fixed point. The pool that
becomes dominant depends on which basin of attraction the off-state fixed
point resides, i.e. which side of the separatrix the off-state lies on. We can
compute the direction of the initial response to the on-state by linearizing
around the off-state fixed point with ui(t) = u0

i + vi(t). Using (4), the fast
subsystem then obeys

dvi
dt

= Ai − vi − f ′i(Son)βsjvj (8)

where fi(I) = f(I − sjβu
0
j − γai), and Ai = fi(Son) − fi(Soff). Setting

β̃ = f ′i(Son)βsj in (8) gives

dvi
dt

= Ai − vi − β̃jvj (9)

with initial conditions vi(0) = 0. In matrix form, (9) is

dv

dt
= A+Mv (10)

where v = (v1, v2)′, S = (A1, A2)′ and

M =

(
−1 −β̃2

−β̃1 −1

)
(11)

The eigenvalues of M are λ± = −1±
√
β̃1β̃2 with eigenvectors

e± =

(
1,∓

√
β̃1/β̃2

)′
(12)

respectively. We can diagonalize the system by operating on (10) with the
inverse of the matrix of eigenvectors U = [e+, e−]:

U−1 =
1

2

1 −
√
β̃2/β̃1

1
√
β̃2/β̃1

 (13)
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to obtain

dv±
dt

= A± + λ±v± (14)

where (
v+

v−

)
= U−1

(
v1

v2

)
,

(
A+

A−

)
= U−1

(
A1

A2

)
(15)

and initial conditions are v±(0) = 0. The solutions are

v±(t) =
A±
λ±

(eλ±t − 1) (16)

If

√
β̃1β̃2 > 1 then λ+ > 1 and v+(t) will tend to either positive or negative

infinity depending on the sign of A+, while v−(t) will approach zero. Hence,
asymptotically for large t, we have

v1(t) = v+ + v− ∼
A+

λ+

eλ+t (17)

v2(t) =

√
β̃1

β̃2

(v− − v+) ∼ −

√
β̃1

β̃2

A+

λ+

eλ+t (18)

If A+ > 0 then population 1 will become dominant and if A+ < 0 then

population 2 will be dominant. A+ =

(
A1 −

√
β̃2/β̃1A2

)
/2 is a function of

the slow variables.
In order to prove the existence of intermittent rivalry, we need to examine

how repeated on-states affect A+. Let Tn represent the time of the nth on-
state. A+(Tn) changes on each on-state because of the change in the slow
variables (i.e. fatigue processes). What we need to show is that the change
of the slow variables is sufficient to cause A+ to alternate signs.

Consider first that the only slow process is local fatigue. We can then set
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s1 = s2 = 1. Let population 1 be dominant. Hence,

2A+(Tn) = f(Son − γa1(Tn))−

√
f ′1(Son)

f ′2(Son)
f(Son − βu0

1 − γa2(Tn))

− f(Soff − γa1(Tn))

≡ f1(Son)−

√
f ′1(Son)

f ′2(Son)
f2(Son)− f1(Soff) (19)

u0
1(Tn) = f1(Soff) (20)

The following is essentially a restatement of Proposition 1 and 2:

Corollary 2. There will be a WTA state where one pool is dominant (i.e.
A+ > 0 in (19)) if f ′′ < 0 on S > 0 (concave) for some β̃ > 0.

Proof. We first note that f is a monotonically increasing function. Hence,
f1(Son) > f1(Soff) and f2(Son) < f1(Son). If f ′′i (Son) < 0 (i.e. f is concave)
then f ′2(Son) > f ′1(Son). Since u0

1 > 0, f2(Son) decreases as β increases and
since f(0) = 0 then f2(Son) = 0 for β > 0 sufficiently large. Hence, by
continuity of f , A+ > 0 for some β > 0.

If fi(Son) is not concave then it is possible that f ′2(Son) < f ′1(Son) and thus
depending on the precise shape of f , dominance may or may not be possible.
Herein, we assume that f(x) is concave for x > 0. Thus even for a state
with no asymmetry in the fatigue, any arbitrarily small initial asymmetry or
noise will allow one population to be dominant while the other is suppressed.
Dominance can also occur in the presence of local fatigue provided that a2

is sufficiently large and a1 is sufficiently small.
Intermittent rivalry will occur if A+ changes sign. Note that immediately

after A+ reaches 0, there is a discontinuity in A+ since u0
1 = 0 and u0

2 >
0. Thus, as long as A+ reaches zero and induces a switch, then the new
dominance will be established and A+ will jump to a larger magnitude value.
We thus need to prove that there is a strengh of fatigue for which A+ will
change signs and fatigue can attain that value. This is established in the
following two lemmas.

Lemma 1. If A+ > 0 initially, then A+ will become negative if a1 ≥ aswitch ≡
Soff/γ. i.e. A dominance switch will take place if the local fatigue amplitude
becomes large enough.
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Proof. We analyze how A+(Tn) changes as a function ai. Because u0
2 = 0, we

can consider the effects of a1 and a2 independently. First consider a1. Sup-
pose that a1 is sufficiently small such that A+ > 0. An increase of a1 causes
f1(Son) to decrease, f1(Soff) to decrease, and f ′1(Son) to increase by concavity
of f . It also induces f2(Son) to increase and f ′2(Son) to decrease through the
decrease in u0

1. Thus, the first two terms of (19) combine to decrease A+

but the third term increases A+. For a concave function, f1(Son) − f1(Soff)
increases with increasing a1 for f1(Soff) > 0. Thus, a switch is guaran-
teed when a1 increases to the point that f1(Soff) = 0, which occurs when
Soff − γa1 ≤ 0 because for a1 > a2, A+ < 0, proving the lemma and showing
that aswitch = Soff/γ.

Note that the a1 threshold for f1(Soff) = 0 is independent of a2. On
the other hand, a decrease of a2 causes f2(Son) to increase and f ′2(Son) to
decrease. Thus, depending on the other parameters, a2 could induce a switch
if it becomes small enough but this is not guaranteed.

In the singular limit, ui(t) immediately approaches f(Son − γai) in the
on-state and f(Soff − γai) in the off state. Hence, from (2) it will increase
towards f(Son − γai) in the on-state and relax back towards f(Soff − γai) in
the off-state. It will have a net increase after each frame presentation cycle
if the increase during the on-state is greater than the decrease during the
off-state. We show that this is possible in the following lemma.

Lemma 2. For f(Son) large enough, which is achievable if f is nonsaturating
and Son is large enough, the local fatigue variable ai can increase with each
on-state until it exceeds aswitch

Proof. We need to show that starting from a zero initial condition a1(t) can
exceed aswitch = Soff/γ. The dynamics of the local fatigue variable ai are
given by (2). Over one period the net increase in ai is

ai(t+ T )− ai(t) =
1

τa
(〈ui(t)〉 − 〈ai(t)〉) ≥

1

τa
(〈ui(t)〉 − aswitchT ) (21)

where 〈·〉 =
∫ t+T
t
· dt′. Thus, as long as 〈ui〉 > aswitchT then ai(t) will increase

with each on-state until it exceeds aswitch.
From (1) we obtain

〈ui〉 = −ui(t+ T ) + ui(t) + 〈f(S(t)− γai)〉
≥ −ui(t+ T ) + ui(t) + 〈f(S(t)− γaswitch)〉 (22)
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and 〈f(S(t)−γaswitch)〉 = Tonf(Son−γaswitch)+Tofff(Soff−γaswitch). We now
need to estimate ui(t) − ui(t + T ). For ui dominant, the activity dynamics
are

dui
dt′

= −ui + f(Son − γai(t′)), t ≤ t′ ≤ t+ Ton (23)

dui
dt′

= −ui + f(Soff − γai(t′)), t+ Toff < t′ ≤ t+ T (24)

Hence, ui(t) obeys

ui(t+ Ton) = ui(t)e
−Ton +

∫ t+Ton

t

e−(t+Ton−s)f(Son − γai(s))ds

≤ ui(t)e
−Ton + f(Son)(1− e−Ton)

ui(t+ T ) = ui(t+ Ton)e−Toff +

∫ t+T

t+Ton

e−(t+T−s)f(Soff − γai(s))ds

≤ ui(t)e
−T + f(Son)(1− e−Ton)e−Toff + f(Soff)(1− e−Toff )

Yielding

ui(t)− ui(t+ T ) ≥ ui(t)
(
1− e−T

)
− f(Son)(e−Toff − e−T )− f(Soff)(1− e−Toff )

≥ −(f(Son)− f(Soff))(e−Toff − e−T )

since ui(t) ≥ f(Soff). Thus, the condition for ai to increase beyond aswitch is

〈ui〉 ≥ −(f(Son)− f(Soff))(1− e−Ton)e−Toff

+ Tonf(Son − γaswitch) + Tofff(Soff − γaswitch) ≥ aswitchT

However, since aswitch = Soff/γ and f(0) = 0 this is

〈ui〉 ≥ −(f(Son)− f(Soff))(1− e−Ton)e−Toff + Tonf(Son − Soff) ≥ aswitchT

By concavity f(Son − Soff) ≥ f(Son)− f(Soff) and thus

〈ui〉 ≥ (f(Son)− f(Soff))(Ton − (1− e−Ton)e−Toff ) ≥ aswitchT

≥ (f(Son)− f(Soff))Ton(1− e−Toff ) ≥ aswitchT

can be satisfied for f(Son) sufficiently large.
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We now have all the pieces to establish when intermittent rivalry is pos-
sible. For intermittent rivalry, β must be sufficiently large such that the
on-state is WTA. Consider the first epoch where A+ > 0 (pool 1 is domi-
nant) and both a1 and a2 are initially zero. Then by Lemmas 1 and 2, A+

will become negative and dominance will switch. In the second epoch, pool
2 is dominant and 1 is suppressed. However, we can still use equation (19)
by exchanging the indices. Epoch 2 differs from epoch 1 in that a1 is now at
a high value while a2 is at a lower value. Thus a1 will decrease while a2 will
increase. The switch will occur when A+ ≤ 0−. This occurs when a2 reaches
the aswitch, which is guaranteed by Lemmas 1 and 2. Intermittent rivalry will
then ensue.

We now consider the dependence of dominance time on frame presentation
period. In the quartet illusion, Ton is fixed and Toff is changed. We obtain
the following result.

Theorem 3. Dominance time increases nonlinearly with Toff .

Proof. The dominance time is given by the time it takes ai to reach aswitch.
During the on-state, ui increases towards f(Son − γai) and relaxes towards
f(Soff−γai) during the off-state. In the singular limit, it attains its maximum
umax(t) at the end of the on-state, and its minimum umin(t) at the end of the
off-state. Similarly, ai increases towards umax(t) during the on-state and
relaxes towards umin(t) during the off-state. However, by Lemma 2, ai will
become progressively larger after each cycle. Let t be the time at the end of
some off-state. Then after one frame presentation period, ai has the value

ai(t+ T ) = ai(t)e
−T +

∫ t+Ton

t

e−(t+T−s)u(s)ds+

∫ t+T

t+Ton

e−(t+T−s)u(s)ds

which has derivative

dai(t+ T )

dToff

= −ai(t)e−T − e−Toff

∫ t+Ton

t

e−(t+Ton−s)u(s)ds+ u(t+ T )

−
∫ t+T

t+Ton

e−(t+T−s)u(s)ds

(25)

u(t) is decreasing during the off-state so its minimum is u(t+ T ). Thus

dai(t+ T )

dToff

≤ −ai(t)e−T − e−Toff

∫ t+Ton

t

e−(t+Ton−s)u(s)ds+ u(t+ T )e−Toff
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which is always negative since ai > u(t − T ). Hence, ai(t + T ) will become
smaller as Toff becomes larger. This then implies that it will take more frame
presentation cycles to reach aswitch and thus increase the dominance time with
increasing Toff . The increase will also be nonlinear (faster than exponential)
in Toff .

Remark 2. The mechanism for intermittent rivalry could be considered to
be release but it differs from release in static rivalry. Increased presentation
frequency will induce faster switches because it causes ai to increase faster.
Reduced amplitude of pulses will also increase dominance period because it
takes longer to reach threshold. Thus intermittent release is like escape for
static rivalry, which implies Levelt’s second proposition. It can also coexist
with escape for static rivalry in the same model.

Remark 3. Similar arguments can be applied to show that intermittent ri-
valry is possible with cross-pool synaptic depression.

We now consider the conditions that allow for slow habituation. Let the
dominant and suppressed populations be labeled by D and S respectively.
We show that the observed habituation of decreasing dominance times can
occur if switches are always induced by the adaptation variable aD reaching
the threshold aswitch. The first epoch is caused by aD reaching threshold
starting from zero, and the second epoch is caused by aD reaching the same
threshold from a small number. Hence, the dominance times of the first and
second epochs will always be similar. However, from the dynamics of (2) we
see that the rate of increase in aD slows linearly as aD increases. Similarly,
the rate of decrease of aS also slows linearly as aS decreases. Thus as long as
the saturated value of aD is greater than aswitch then aD will reach threshold
faster than aS will decay to near zero. This implies that during the second
epoch, aS (which was the previously dominant population) does not decrease
all the way to its initial value in the time it takes (the new) aD to reach
threshold. Thus, for the third epoch, the time it takes aD to reach threshold
will be shorter than the previous two epochs because it starts at a higher
value. This will also occur for subsequent epochs and the decay value of aS
will get progressively larger and thus shorten the dominance time. This will
eventually reach steady state where aS is large enough such that it always
relaxes back to the same state.

Now consider the case where there is depression but no adaptation. We
again assume that population 1 is dominant. In this case, we can set ai = 0
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and obtain

2A+ = f(Son)− f(Soff)−

√
f ′1(Son)s2(Tn)

f ′2(Son)s1(Tn)
f(Son − s2(Tn)βu0

1) (26)

In depression, s1 decreases while s2 increases, except for the first epoch if
the initial conditions are s1 = s2 = 1. Increasing s2 decreases f2(Son) while
increasing f ′2(Son) but because u0

1 is very small, these changes are small.
Hence, the main effect of s2 is to increase the square root factor of the third
term of (26) by its presence in the numerator. Conversely, decreasing s1

increases this factor through the denominator. Hence, both of these processes
serve to increase the third term and switching is possible for sufficiently strong
depression. We can represent the switch condition, given by A+ = 0, as√

s2(Tn)

s1(Tn)
=

f(Son)− u0
1

f(Son − s2βu0
1)

√
f ′(Son − s2βu0

1)

f ′(Son)
(27)

by rearranging (26). If f(Soff) = u0
1 << f(Son), s2 ≤ 1, f ′(Son)s2β ≥ 1,

|f ′(Son)/f(Son)| ∼ O(1), |f ′(Son)/f ′′(Son)| ∼ O(1), and f ′′(Son) < 0, we can
Taylor expand to obtain√

s2(Tn)

s1(Tn)
=

f(Son)− u0
1

f(Son)− f ′(Son)s2βu0
1

√
f ′(Son)− f ′′(Son)s2βu0

1

f ′(Son)

= 1 + Cu0
1 +O((u0

1)2) (28)

where C > 0 is O(1).
In the first epoch, s1 decreases from 1 while s2 remains near 1. From

(28), we see that dominance will switch when s1 decreases to a threshold
θ = 1−2Cu0

1+O((u0
1)2). In the second epoch, population 1 is now suppressed

and s1 will relax back to 1, while s2 will begin to decrease from 1. The
threshold condition is given by (28) but with the indices reversed. Since
s1 = θ is 2Cu0

1 less than 1, s2 will take longer to decrease to threshold than
s1 in the first epoch. Hence, the dominance time of the second epoch will be
longer than the first. In the third epoch, s1 starts very near 1 (within much
less than order u0

1) and decreases while s2 is order u0
1 below 1 and increases

towards 1. Hence, s1 and s2 will start in positions very near (much less than
order u0

1) from where they were in the second epoch. Thus, the dominance
time will be almost the same as in epoch two and this will hold for subsequent
epochs. These results are summarized in the following propositions.
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Proposition 1. Slow habituation occurs for local fatigue if the time constant
is sufficiently long.

Proposition 2. Slow habituation will not arise for cross-pool depression.
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