Supplemental material

Figure S1: Methylation level of the CGI overlapping a retrocopy plotted against the methylation level of the surrounding region containing at least one repeat 1000 bp upstream and downstream of the retrocopy.
Figure S2: Methylation level of the CGI overlapping a retrocopy plotted against the methylation level of the surrounding region containing no repeat 1000 bp upstream and downstream of the retrocopy.
Figure S3: Methylation level of the CGI overlapping a retrocopy plotted against the methylation level of the surrounding region containing at least one repeat 1000 bp downstream of the retrocopy.
Figure S4: Methylation level of the CGI overlapping a retrocopy plotted against the methylation level of the surrounding region containing at least one repeat 1000 bp upstream of the retrocopy.
Figure S4: Methylation level of the CGI overlapping a retrocopy plotted against the methylation level of the surrounding region containing at least one repeat 1000 bp upstream of the retrocopy.
Figure S5-S21: IGV screenshots of 17 differentially methylated CGIs (methylome 1).
Figure S2: Expression analysis of IGF2BP3 in placenta of different trimester of pregnancy
Table S1: Classification of CGIs overlapping retrogenes
Table S2: Expression level of retrogenes overlapping a CGI as classified by the UCSC browser
Table S3: Genomic location of retrogenes overlapping a CGI according to RefSeq genes
Table S4: Genomic location of retrogenes overlapping a CGI according to RefSeq genes according to their expression level

Table S5: Expression level of intergenic retrogenes overlapping a CGI according to their methylation level

Table S6: Expression level of intragenic retrogenes overlapping a CGI according to their methylation level

 Table S7: CGI methylation levels in other tissues

 Table S7: COI methylation levels in other fissues

 Table S8: Primer sequences for genomic sequence analysis

Table S9: Primer sequences for deep bisulfite sequencing (universal tags in bold)

Table S10: Primer sequences for RNA analysis

Table S11: Detailed description of the analyzed 17 RO-CGIs

Table S12: Row data of SNaPshot analysis

Interpretation of Phred Quality Score

Strategy of genomic primer design

Strategy of bisulfit primer design

Fig. S1: Methylation level of the CGI overlapping a retrocopy plotted against the methylation level of the surrounding region containing at least one repeat 1000 bp upstream and downstream of the retrocopy.

Fig. S2: Methylation level of the CGI overlapping a retrocopy plotted against the methylation level of the surrounding region containing no repeat 1000 bp upstream and downstream of the retrocopy.

Fig. S3: Methylation level of the CGI overlapping a retrocopy plotted against the methylation level of the surrounding region containing at least one repeat 1000 bp downstream of the retrocopy.

Fig. S4: Methylation level of the CGI overlapping a retrocopy plotted against the methylation level of the surrounding region containing at least one repeat 1000 bp upstream of the retrocopy.

Fig. S5: Screenshot IGV Browser of CGI 2391_1_hg19 (GREM2)

Fig. S6: Screenshot IGV Browser of CGI 6141_1_hg19 (LOC101927636)

Fig. S7: Screenshot IGV Browser of CGI 9224_1_hg19 (intergenic)

Fig. S8: Screenshot IGV Browser of CGI 9261_1_hg19 (RPS2P32)

Fig. S9: Screenshot IGV Browser of CGI 9377_1_hg19 (intergenic)

Fig. S10: Screenshot IGV Browser of CGI 9473_1_hg19 (intergenic)

Fig. S11: Screenshot IGV Browser of CGI 13085_1_hg19 (intergenic)

Fig. S12: Screenshot IGV Browser of CGI 13250_1_hg19 (LINC00865)

Fig. S13: Screenshot IGV Browser of CGI 15400_1_hg19 (intergenic)

Fig. S14: Screenshot IGV Browser of CGI 15512_1_hg19 (SPATS2)

Fig. S15: Screenshot IGV Browser of CGI 16448_1_hg19 (MIPEPP3)

Fig. S16: Screenshot IGV Browser of CGI 16458_1_hg19 (intergenic)

Fig. S17: Screenshot IGV Browser of CGI 17031_1_hg19 (intergenic)

Fig. S18: Screenshot IGV Browser of CGI 20403_1_hg19 (intergenic)

Fig. S19: Screenshot IGV Browser of CGI 23548_1_hg19 (intergenic)

Fig. S20: Screenshot IGV Browser of CGI 24982_1_hg19 (HM13)

Fig. S21: Screenshot IGV Browser of CGI 26859_1_hg19 (FAM47C)

Fig. S22: Expression analysis of IGF2BP3 in placenta of different trimester. Both alleles are present in RNA, which indicates biallelic expression.

number of occurences of one CGI/retrogene	number of ancestral genes	number of CGIs
1	541	541
2	134	268
3	41	123
4	26	104
5	8	40
6	7	42
7	7	49
8	2	16
9	4	36
10	1	10
11	2	22
12	0	0
13	3	39
14	0	0
15	0	0
16	1	16
not classifiable	n/a	13
sum	778	1319

Table S1: Classification of CGIs overlapping retrogenes

Table S2: Expression level of retrogenes overlapping a CGI as classified by the UCSC browser

		expression level of retrogenes overlapping a CGI											
	expre	essed	expresse	d noOrf	pseud	ogene	total number						
number of retrogenes	93	4	18	38	19	9 7	13	19					
methylation CGIs	[number]	[%]	[number]	[%]	[number]	[%]	[number]	[%]					
CGIs m < 20%	273	29%	84	45%	27	14%	384	29%					
CGIs $20\% \ge m \le 80\%$	125	13%	30	16%	40	20%	195	15%					
CGIs m > 80%	436	47%	45	24%	107	54%	588	45%					
not covered*	100	11%	29	15%	23	12%	152	12%					

Table S3: Genomic location of retrogenes overlapping a CGI according to RefSeq genes

	location of the retrogenes overlapping a CGI									
	intergenen	ic (RefSeq)	intragenie	c (RefSeq)	total					
number of retrogenes	60	50	65	59	13	1319				
methylation CGIs	[number]	[%]	[number]	[%]	[number]	[%]				
CGIs m < 20%	119	18%	265	40%	384	29%				
CGIs $20\% \ge m \le 80\%$	124	19%	68	10%	192	15%				
CGIs m > 80%	313	47%	278	42%	591	45%				
not covered*	104	16%	48	7%	152	12%				

pression level			location of retrogenes overlapping a CGI									
		intergeneni	ic (RefSeq)	total 1319								
number of retrogenes		660					6.	59				
expression type		[number]	[%]	[number]	[%]	[number]	[%]					
all 4 types expressed		395	60%	539	82%	934	71%					
exp	oressed	8	1%	10	2%	18	1%					
expressed	1 weak	327	50%	109	17%	436	33%					
expressed	strong	42	6%	119	18%	161	12%					
expressed	shuffle	18	3%	301	46%	319	24%					
expressed noOrf		90	14%	98	15%	188	14%					
pseudogene		175	27%	22	3%	197	15%					

 Table S4: Genomic location of retrogenes overlapping a CGI according to RefSeq genes according to their expression level

Table S5: Expression level of intergenic retrogenes overlapping a CGI according to their methylation level

		expression level of intergenic retrogenes overlapping a CGI											
	expro	essed	expresse	d shuffle	expresse	d strong	expressed strong noOrf						
number of retrogenes	8		1	18		2	14						
methylation CGIs	[number]	[%]	[number]	[%]	[number]	[%]	[number]	[%]					
CGIs m < 20%	2	25%	3	17%	9	21%	7	50%					
CGIs $20\% \ge m \le 80\%$	0	0%	2	11%	9	21%	1	7%					
CGIs m > 80%	4	50%	8	44%	21	50%	1	7%					
not covered*	2	25%	5	28%	3	7%	5	36%					

		expression level of intergenic retrogenes overlapping a CGI											
	express	ed weak	expressed v	veak noOrf	pseud	ogene	total number						
number of retrogenes	32	327		76		75	660						
methylation CGIs	[number]	[%]	[number]	[%]	[number]	[%]	[number]	[%]					
CGIs m < 20%	49	15%	26	34%	22	13%	118	18%					
CGIs $20\% \ge m \le 80\%$	65	20%	11	14%	38	22%	126	19%					
CGIs m > 80%	162	50%	23	30%	93	53%	312	47%					
not covered*	51	16%	16	21%	22	13%	104	16%					

Table S6: Expression level of intragenic retrogenes overlapping a CGI according to their methylation level

		expression level of intragenic retrogenes overlapping a CGI											
	expr	essed	expresse	d shuffle	expresse	d strong	expressed strong noOrf						
number of retrogenes	1	0	301		11	19	48						
methylation CGIs	[number]	[%]	[number]	[%]	[number]	[%]	[number]	[%]					
CGIs m < 20%	2	20%	136	45%	57	48%	21	44%					
CGIs 20% ≥ m ≤ 80%	1	10%	23	8%	12	10%	15	31%					
CGIs m > 80%	2	20%	122	41%	45	38%	11	23%					
not covered*	5	50%	20	7%	5	4%	1	2%					

	expression level of intragenic retrogenes overlapping									
	express	ed weak	expressed v	weak noOrf	pseud	ogene	total number			
number of retrogenes	109		50		22		659			
methylation CGIs	[number]	[%]	[number]	[%]	[number]	[%]	[number]	[%]		
CGIs m < 20%	14	13%	30	60%	5	23%	265	40%		
CGIs 20% ≥ m ≤ 80%	12	11%	3	6%	2	9%	68	10%		
CGIs m > 80%	74	68%	10	20%	14	64%	278	42%		
not covered*	9	8%	7	14%	1	5%	48	7%		

Table S7: CGI methylation levels in other tissues. For each CGI methylation (meth.) and coverage (cov.) are specified. **red:** methylation > 80%, **blue:** methylation < 20%, * data published in Rademacher et al. (2014), ** data published by Ziller et al. (2013), *** data published by Okae et al. (2014)

		2391_	1_hg19	6141_	1_hg19	9224_	l_hg19	9261_	1_hg19	9377_	l_hg19	9473_	1_hg19
sample_name	cell/tissue	meth.	cov.										
Monocyte methylome 1 *	monocyte	56%	12	49%	18	58%	13	72%	15	39%	7	79%	12
Monocyte methylome 2 *	monocyte	63%	8	54%	7	31%	12	49%	6	65%	5	80%	5
Frontal_cortex_normal_1 **	cortex	57%	42	32%	46	57%	51	41%	42	63%	49	92%	45
Frontal_cortex_normal_2 **	cortex	47%	32	25%	35	61%	32	45%	28	66%	25	83%	32
Frontal_cortex_AD_1 **	cortex	29%	41	29%	43	69%	43	31%	38	67%	37	82%	41
Frontal_cortex_AD_2 **	cortex	56%	57	35%	54	62%	67	46%	46	67%	47	87%	55
IMR90 **	Lung, foetel, fibroblast	75%	18	24%	12	24%	12	56%	24	44%	15	70%	14
Colon_Primary_Normal **	colon	70%	54	45%	33	45%	33	55%	66	37%	39	79%	44
human sperm **	sperm	2%	6	5%	9	0%	5	6%	6	1%	8	2%	6
adult liver replicate 1 **	liver	87%	63	49%	65	66%	46	62%	57	29%	50	80%	73
adult liver replicate 2 **	liver	71%	49	28%	43	79%	56	48%	69	30%	44	68%	50
hippocampus middle replicate 1 **	hippocampus middle	60%	52	35%	40	62%	41	46%	67	60%	37	90%	60
hippocampus middle replicate 2 **	hippocampus middle	52%	39	33%	35	61%	47	42%	45	57%	38	89%	46
fetal heart (119) **	fetal heart	50%	40	19%	34	66%	40	53%	69	31%	32	66%	40
fetal thymus (1238) **	fetal thymus	45%	41	15%	36	50%	29	44%	57	29%	40	73%	35
fetal adrenal (1244) **	fetal adrenal	26%	25	21%	24	76%	22	28%	29	17%	34	65%	32
fetal muscle leg (1243) **	fetal muscle leg	49%	35	11%	34	61%	25	37%	40	26%	35	77%	35
fetal brain (515) **	fetal brain	58%	24	19%	24	66%	20	39%	28	33%	18	89%	27
human oocytes 1 ***	oocytes	1%	6	5%	7	91%	9	94%	9	2%	8	7%	7
human oocytes 2 ***	oocytes	3%	3	11%	3	100%	2	100%	2	2%	2	23%	2

		13085	1_hg19	13250_	1_hg19	15400_	1_hg19	15512	1_hg19	16448	1_hg19	16458	_1_hg19
sample_name	cell/tissue	meth.	COV.	meth.	cov.	meth.	cov.	meth.	cov.	meth.	cov.	meth.	cov.
Monocyte methylome 1 *	monocyte	76%	8	22%	10	69%	16	54%	18	79%	13	31%	11
Monocyte methylome 2 *	monocyte	78%	3	1%	4	77%	11	35%	7	90%	10	12%	5
Frontal_cortex_normal_1 **	cortex	83%	47	2%	60	88%	42	86%	28	49%	45	18%	40
Frontal_cortex_normal_2 **	cortex	90%	36	4%	43	91%	29	89%	16	52%	44	11%	33
Frontal_cortex_AD_1 **	cortex	91%	35	6%	47	85%	37	70%	20	68%	38	40%	31
Frontal_cortex_AD_2 **	cortex	91%	42	12%	68	80%	45	83%	27	56%	53	40%	38
IMR90 **	Lung, foetel, fibroblast	91%	21	8%	16	70%	22	80%	21	54%	16	15%	14
Colon Primary Normal **	colon	84%	38	7%	44	86%	52	74%	51	88%	61	43%	38
human sperm **	sperm	2%	9	0%	9	3%	6	8%	5	8%	11	2%	8
adult liver replicate 1 **	liver	82%	68	10%	57	69%	69	88%	68	72%	76	31%	43
adult liver replicate 2 **	liver	72%	53	5%	46	70%	49	73%	56	47%	64	37%	47
hippocampus middle replicate 1 **	hippocampus middle	75%	52	10%	48	89%	66	89%	60	56%	59	14%	39
hippocampus middle replicate 2 **	hippocampus middle	72%	35	2%	45	92%	44	83%	36	50%	44	36%	34
fetal heart (119) **	fetal heart	51%	35	5%	37	79%	48	38%	36	31%	44	15%	31
fetal thymus (1238) **	fetal thymus	77%	37	2%	37	68%	35	73%	33	90%	34	25%	24
fetal adrenal (1244) **	fetal adrenal	60%	29	2%	30	69%	27	69%	24	28%	22	20%	21
fetal muscle leg (1243) **	fetal muscle leg	64%	41	1%	38	86%	37	59%	26	37%	31	22%	24
fetal brain (515) **	fetal brain	70%	21	0%	25	90%	27	55%	21	40%	27	20%	24
human oocvtes 1 ***	oocvtes	0%	2	0%	4	0%	10	94%	6	2%	5	0%	8
human oocvtes 2 ***	oocvtes	12%	3	1%	3	0%	2	100%	1	2%	2	9%	3

		17031_	1_hg19	20403_	1_hg19	23548_	1_hg19	24982_1_hg19		26859_1_hg19	
sample_name	cell/tissue	meth.	cov.	meth.	cov.	meth.	cov.	meth.	COV.	meth.	cov.
Monocyte methylome 1 *	monocyte	42%	7	20%	13	59%	14	55%	20	77%	8
Monocyte methylome 2 *	monocyte	46%	18	13%	11	42%	10	55%	12	94%	4
Frontal_cortex_normal_1 **	cortex	65%	40	3%	32	81%	51	27%	44	73%	61
Frontal_cortex_normal_2 **	cortex	57%	31	1%	24	78%	36	34%	35	73%	50
Frontal_cortex_AD_1 **	cortex	35%	30	4%	30	68%	38	29%	38	71%	41
Frontal_cortex_AD_2 **	cortex	52%	51	3%	41	58%	47	35%	59	73%	72
IMR90 **	Lung, foetel, fibroblast	33%	14	12%	9	48%	16	57%	26	61%	18
Colon_Primary_Normal **	colon	72%	46	22%	30	77%	65	55%	63	86%	26
human sperm **	sperm	8%	10	3%	8	3%	9	5%	6	5%	3
adult liver replicate 1 **	liver	64%	56	24%	30	44%	79	58%	94	83%	41
adult liver replicate 2 **	liver	55%	56	16%	32	41%	51	59%	62	79%	33
hippocampus middle replicate 1 **	hippocampus middle	58%	41	5%	38	59%	79	43%	83	88%	41
hippocampus middle replicate 2 **	hippocampus middle	54%	38	7%	30	63%	58	39%	64	88%	27
fetal heart (119) **	fetal heart	41%	38	5%	30	29%	38	51%	53	78%	24
fetal thymus (1238) **	fetal thymus	36%	31	9%	29	40%	31	44%	47	67%	38
fetal adrenal (1244) **	fetal adrenal	27%	25	5%	22	23%	33	46%	36	85%	12
fetal muscle leg (1243) **	fetal muscle leg	16%	36	6%	25	56%	38	45%	44	68%	38
fetal brain (515) **	fetal brain	45%	26	4%	16	31%	30	55%	34	71%	25
human oocytes 1 ***	oocytes	0%	4	7%	6	17%	6	83%	3	4%	9
human oocytes 2 ***	oocytes	13%	1	0%	3	2%	2	89%	5	3%	4

Table S8: Primer sequences for genomic sequence analysis

CGI_ID	Primer name	Primer sequence (5'-3')	Tm (°C)	Cycles	Product size (bp)	Betain	SNP
Genomic seq	uence analysis						1
2391 1 hg19	2391_1_hg19_F	GICTIGCACCAGICACICITG	64	35	272	no	rs11806449
	2391_1_hg19_R	TACTCTACGGCCCTTCACAG					
6141 1 hg19	6141_1_hg19_F	CTGGAATTTTTGGACCATGC	64	45	428	ves	rs1849135
	6141_1_hg19_R	CGCTGGGCTTTCCTCAAG	-		-	,	
9224 1 hg19	9224_1_hg19_F	TTAAAGCAAATCCCAGCCCC	68	35	186	no	rs6959065
	9224_1_hg19_R	AAAAAACAAAGGGCGGTCGC					
9261 1 ho19	9261_1_hg19_F	GACCAAGCTCTCCATTGTCA	63	35	289	no	rs10228640
	9261_1_hg19_R	GGGATCAGGTAGCTGTAGATG	0.5	55	207		1010220010
9377 1 ho19	9377_1_hg19_F	GGCTGGCTCTGGTTAGGTC	64	35	318	no	rs1962367
	9377_1_hg19_R	AGCTCAAAGATGCCAGTGAAG	0.		510		rs140384299
9473 1 hg10	9473_1_hg19_F	ACCGCTTTGAAACCCCTACT	62	35	244	10	rs62463194
)415_1_lig12	9473_1_hg19_R	GGACTTGGGCCTTTGTGTT	02	55	244	110	1302405174
13085_1_hg1	13085_1_hg19_F	CCACCAAAGGGAAGCTTGTA	64	35	310	20	re10006168
9	13085_1_hg19_R	GCTCTGGGCCATGATCTCT	04	55	517	110	1310770108
13250_1_hg1	13250_1_hg19_F	CTCTGAACGCCTGTTCCTTC	64	35	250	20	rs61869800
9	13250_1_hg19_R	AGCAGCCTCTCCACTTGGT	04	55	250	110	1301307300
15400_1_hg1	15400_1_hg19_F	ATTGGGCTCAGATCAGGAG	66	35	650		ro670510
9	15400_1_hg19_R	GAAGAAAAGCCTTTCCCAAG	00	35	050	110	18070319
15512_1_hg1	15512_1_hg19_F	CCTTCTCACGCAAAGCTTCA	69	25	219		#077022246
9	15512_1_hg19_R	GCCCCTAATCTGCCTCCTC	08	55	210	по	18/7025540
16448_1_hg1	16448_1_hg19_F	TCCAACACATACTATACCACACG	66	45	224		me4770120
9	16448_1_hg19_R	GATGTTCTCGAGCTCCATGG	00	45	254	yes	184770150
16458_1_hg1	16458_1_hg19_F	GCGTCTGCCCAACTCTTG		25	225		
9	16458_1_hg19_R	CTGCCTGCCTGATATGACTG	04	55	223	по	18/555055
17031_1_hg1	17031_1_hg19_F	GCCCCTCCACAAGGAAACT	(1	45	512		71417(0
9	17031_1_hg19_R	AAAGGCAGATGGCTCATACC	04	45	512	yes	rs/141/60
20403_1_hg1	20403_1_hg19_F	GGCGGYGCTCTACTTCTG		25	055		11070214
9	20403 1 hg19 R	CCATTGGCTTTCACTCAGAC	64	35	256	no	rs110/8314
23548 1 hg1	23548 1 hg19 F	CCATCTGGCTCAAGCTGTC					
9	23548 1 hg19 R	AAGATGATGGGGGGAACTGC	68	35	334	no	rs12975447
24982 1 hg1	24982 1 hg19 F	TCATCTTCCGGTTAGCGACA					15110001
9	24982 1 hg19 R	CCAGTTGGCTCTTAATGCCC	64	35	226	no	rs45612231
26859_1_hg1	26859_1_hg19 F	CTAGAGCGTCAGGGATCAGG		25	270		(1) 10
9	26859_1_hg19_R	GGCGACAAACAAGCGTATCT	64	35	279	no	no SNP

Table S9: Primer sequences for deep bisulfite sequencing (universal tags in bold)

CGI_ID	Primer name	Primer sequence (5'-3')	Tm (°C)	Product size (bp)				
Deep bisulfite sequencing (universal tags in bold)								
2201 1 bg10	2391_1_hg19_Ftag	CTTGCTTCCTGGCACGAGTGGAGGTTAGTATTTTTTGATTTG	56	309				
2391_1_lig19	2391_1_hg19_RM13	CAGGAAACAGCTATGACCTAAACAACAAAAACCAAACCA	50	507				
6141 1 hg19	6141_1_hg19_Ftag	CTTGCTTCCTGGCACGAGTTGAATTGTTTYGTTAGGGTT	53	360				
0141_1_ng17	6141_1_hg19_RM13	CAGGAAACAGCTATGACATCTCTTTTCCATTCCATAATTTA		500				
0224 1 hg10	9224_1_hg19_Ftag	CTTGCTTCCTGGCACGAGTGTTGGGGGTATATTTTAAAGTAAATTTTAG	54	258				
)224_1_lig1)	9224_1_hg19_RM13	CAGGAAACAGCTATGACAAAACTTAAACAAATYAACAAAAAAAA	54	250				
9261 1 hg19	9261_1_hg19_Ftag	CTTGCTTCCTGGCACGAGATTTTGATTAAGTTTTTTATTGTTA	50	250				
5201_1_lig15	9261_1_hg19_RM13	CAGGAAACAGCTATGACTCTCCTTCCAAAAATCCTTC	50	550				
9473 1 hg19	9473_1_hg19_Ftag	CTTGCTTCCTGGCACGAGTGGATTGAGGAGTGTTGATAGTTAT	56	307				
9475_1_lig19	9473_1_hg19_RM13	CAGGAAACAGCTATGACCCCATAAACTTAAACCTTTATATTTTATT	50	507				
13250 1 hg10	13250_1_hg19_Ftag	CTTGCTTCCTGGCACGAGTTTAGATTAGTTTTTGTTTATTTTGTAG	56	222				
15250_1_lig17	13250_1_hg19_RM13	CAGGAAACAGCTATGACACTCCAACAACCTCTCCACTTAAT	50	233				
15400 1 bg10	15400_1_hg19_Ftag	CTTGCTTCCTGGCACGAGTTGTTTGGTATTTTTAGTTAAATT	50	577				
15400_1_lig19	15400_1_hg19_RM13	CAGGAAACAGCTATGACATAAAATTATCCAAAAAATTTTCC	50	511				
16448 1 hg10	16448_1_hg19_Ftag	CTTGCTTCCTGGCACGAGTGGTTTTTGAGAATATTATGTT	50	342				
10440_1_lig17	16448_1_hg19_RM13	CAGGAAACAGCTATGACATATARAAAAACTAAAACATCTACC	50	542				
16458 1 bolo	16458_1_hg19_Ftag	CTTGCTTCCTGGCACGAGTGATTAGTTTGTTTGTTTGATATGATTG	18	166				
10458_1_lig19	16458_1_hg19_RM13	CAGGAAACAGCTATGACAAATAATAATAACTCTTTTACCATAACC	40	400				
17021 1 bg10	17031_1_hg19_Ftag	CTTGCTTCCTGGCACGAGGGTTTAGGGGGAGAGGTTTAGG	56	204				
17031_1_lig17	17031_1_hg19_RM13	CAGGAAACAGCTATGACCCTTAAAACTATTAATCAAATACTCCAAA	50	2)4				
20403_1_hg19	20403_1_hg19_Ftag	CTTGCTTCCTGGCACGAGATTTAAGAAGTGTTTTTTTTTT	56	260				
	20403_1_hg19_RM13	CAGGAAACAGCTATGACACTAAATCTTCTACTTCTAAATATCACACT	50	507				
23548 1 hg10	23548_1_hg19_Ftag	CTTGCTTCCTGGCACGAGGTTAGTAGGGTTTGGTTTTTAGGG	56	312				
25546_1_lig19	23548_1_hg19_RM13	CAGGAAACAGCTATGACCATAAAAAATAATAAAAAAAACTACCCC	50	512				

Table S10: Primer sequences for RNA analysis

Gene	Primer name	Primer sequence (5'-3')	Tm (°C)	Product size (bp)
mRNA analysis				
DDC2D22	9261_1_hg19_F	GACCAAGCTCTCCATTGTCA	62	289
KPS2P32	9261_1_hg19_R	GGGATCAGGTAGCTGTAGATG	63	
ICE2002	F_mRNA_IGF2BP3	GCTGAGGAGGAGATCATGAAG	59	279
IGF2BP3	R_mRNA_IGF2BP3	GAACTGAGCCTCTGGTGGTC	60	5/8
SNaPshot analysis			·	
DDC2D22	RPS2P32_SNAPSHOT_F	CACTGCCACCCTGGGCA	66	
RPS2P32	RPS2P32_SNAPSHOT_R	CTTCGCCAACGCCACCTT	65	

Table S11: Detailed description of the analyzed 17 RO-CGIs.

CGI UCSC								METHYLOME PRJEB5800	
CGI_ID	CHR	START	STOP	LENGTH	C+G-CONTENT	RATIO OBS/EXP	NUMBER CGs	MEAN METH	MEAN COVERAGE
2391_1_hg19	chr1	240656253	240656720	467	65%	0,79	39	56%	12
6141_1_hg19	chr4	144833114	144833512	398	54%	1,34	54	49%	18
9224_1_hg19	chr7	16890768	16891087	319	68%	0,7	26	58%	13
9261_1_hg19	chr7	23530434	23530690	256	65%	0,75	20	72%	15
9377_1_hg19	chr7	36010997	36011407	410	76%	0,85	50	39%	7
9473_1_hg19	chr7	52341468	52342266	798	69%	0,62	59	79%	12
13085_1_hg19	chr10	66813635	66814061	426	74%	0,77	44	76%	8
13250_1_hg19	chr10	91596974	91597792	818	67%	0,69	63	22%	10
15400_1_hg19	chr12	31405184	31405545	361	60%	0,79	26	69%	16
15512_1_hg19	chr12	49782965	49783193	228	64%	0,81	19	54%	18
16448_1_hg19	chr13	21893156	21893605	449	67%	0,92	46	79%	13
16458_1_hg19	chr13	23412207	23412623	416	72%	0,83	43	31%	11
17031_1_hg19	chr14	21191657	21191860	203	80%	0,83	27	42%	7
20403_1_hg19	chr17	15686218	15686474	256	72%	0,98	32	20%	13
23548_1_hg19	chr19	21860792	21861016	224	67%	0,89	22	59%	14
24982_1_hg19	chr20	30135076	30135292	216	64%	1,12	25	55%	20
26859_1_hg19	chrX	37026348	37026706	358	64%	0,79	29	77%	8

	RETROCOPY		ALL RETROCOPIES*	REGION -1000BP OF THE RETROCOPY			
CGI_ID	RETROCOPY	EXPRESSION RETROCOPY	TOTAL NUMBER OF RETROCOPIES	-1000bp mean meth	-1000bp mean coverage	-1000bp repeat	
2391_1_hg19	retro_GREM1	expressed strong	1	68%	15	low complexity	
6141_1_hg19	retro_SAV1	expressed weak	1	49%	51	no	
9224_1_hg19	retro_ARHGAP20	expressed weak	2	55%	54	L1	
9261_1_hg19	retro_RPS2	expressed weak	63	96%	24	ALU	
9377_1_hg19	retro_PPP1R14B	expressed weak	5	95%	75	simple repeat, L1, hAT-Charlie	
9473_1_hg19	retro_CCDC115	pseudogene	1	91%	38	low complexity, ALU, ERV1	
13085_1_hg19	retro_NEK4	pseudogene	7	89%	25	simple repeat, low complexity	
13250_1_hg19	retro_MARK2	expressed strong noOrf	32	97%	29	ERVL-MaLR, L2	
15400_1_hg19	retro_RPL13AP5	expressed weak	18	88%	38	simple repeat, ALU, TcMar-Tigger	
15512_1_hg19	retro_FGFR10P2	expressed weak	4	86%	47	ALU, L1	
16448_1_hg19	retro_GRK6	expressed weak	2	92%	42	MIR, L1	
16458_1_hg19	retro_IPMK	expressed weak noOrf	2	77%	21	ALU, ERVL	
17031_1_hg19	retro_XPO6	expressed weak	1	96%	45	TcMar-Tigger	
20403_1_hg19	retro_IL6ST	expressed weak noOrf	1	43%	24	low complexity, ALU, L1, rRNA	
23548_1_hg19	retro_MTDH	expressed weak	14	54%	65	low complexity	
24982_1_hg19	retro_MCTS1	expressed strong	1	85%	28	ALU, ERVL-MaLR	
26859_1_hg19	retro_FAM47E	expressed weak	4	76%	17	L1	

	REGION +1	ANCESTRAL GENE			
					ANCESTRAL GENE NUMBER
CGI_ID	+1000bp mean meth	+1000bp mean coverage	+1000bp Repeat	ANCESTRAL GENE	CGIs
2391_1_hg19	87%	28	ALU, MIR	GREM1	1
6141_1_hg19	72%	53	ERVL-MaLR, hAT-Charlie	SAV1	1
9224_1_hg19	50%	22	simple repeat	ARHGAP20	1
9261_1_hg19	84%	27	low complexity, ALU, scRNA, hAT-Charlie	RPS2	1
9377_1_hg19	96%	25	MIR, hAT-Charlie	PPP1R14B	1
9473_1_hg19	59%	76	L1	CCDC115	1
13085_1_hg19	90%	48	ALU	NEK4	1
13250_1_hg19	94%	48	L1, hAT-Charlie	MARK2	2
15400_1_hg19	94%	59	low complexity	RPL13AP5	2
15512_1_hg19	96%	30	ALU, L1	FGFR1OP2	1
16448_1_hg19	80%	35	L1	GRK6	3
16458_1_hg19	79%	37	ALU, ERVL-MaLR	ІРМК	1
17031_1_hg19	63%	35	ERV1	ХРО6	1
20403_1_hg19	55%	31	ALU	IL6ST	1
23548_1_hg19	85%	37	simple repeat, L2	мтрн	1
24982_1_hg19	88%	20	MIR	MCTS1	0
26859_1_hg19	86%	17	ALU	FAM47E	1

Sample	Peak area	A mat / G pat	ratio	G pat / A mat	ratio
child Trio III DNA G allele	52038	0.40	1	2.47	1
child Trio III DNA A allele	21063	0.40	1	2.47	1
child Trio III cDNA G allele F	14005	0.24	0.95	2.01	1 1 9
child Trio III cDNA A allele F	4816	0.34	0.85	2.91	1.18
child Trio III cDNA G allele R	22161	0.22	0.56	4.20	1 79
child Trio III cDNA A allele R	5048	0.23	0.56	4.39	1.78

Interpretation of a Phred Quality Score:

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

Strategy of genomic primer design

1. Align all sequences of retrocopies using geneious (<u>http://www.geneious.com/</u>; last accessed 09.01.2016).

2. Download GenBank file of the region of interest including information of SNPs, repeats and exon-intron.-structure (<u>http://www.ensembl.org/</u>; last accessed 09.01.2016) and align to the alignment.

3. Design primers (length around 20bp) manually in regions where are mismatches between the sequences (3' sequence of the primer), and without a SNP inside the primer sequence.

4. Check primers by using the Human BLAT Search (<u>https://genome.ucsc.edu/cgi-bin/hgBlat?command=start;</u> last accessed 09.01.2016).

5. Check primer using UCSC In-Silico PCR (<u>https://genome.ucsc.edu/cgi-bin/hgPcr?hgsid=468504943_qb7OtRiFVIjXoCcd5pnKaAL842Mx</u>; last accessed 09.01.2016) for annealing temperature and single PCR product.

6. Check primer using bisearch (<u>http://bisearch.enzim.hu/?m=genompsearch</u>; last accessed 10.01.2016) for single PCR product.

Strategy of bisulfit primer design

1. Align all bisulfit sequences of retrocopies using geneious (<u>http://www.geneious.com/;</u> last accessed 09.01.2016). For convertion of the genomic sequence to bisulfit we used <u>http://www.zymoresearch.com/tools/bisulfite-primer-seeker</u> (last accessed 10.01.2016)

2. Download GenBank file of the region of interest including information of SNPs, repeats and exon-intron.-structure (<u>http://www.ensembl.org/</u>; last accessed 09.01.2016) and align to the alignment.

3. Design primers (length around 25bp) manually or try to use MethPrimer (http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi; last accessed 10.01.2016) in regions where are mismatches between the sequences (3' sequence of the primer), and without a SNP and CpG.dinucleotides inside the primer sequence.

4. Check primers by using the Human BLAT Search (<u>https://genome.ucsc.edu/cgi-</u>

<u>bin/hgBlat?command=start;</u> last accessed 09.01.2016).

5. Check primer using UCSC In-Silico PCR (<u>https://genome.ucsc.edu/cgi-bin/hgPcr?hgsid=468504943_qb7OtRiFVIjXoCcd5pnKaAL842Mx</u>; last accessed 09.01.2016) for annealing temperature.

6. Check primer using bisearch (<u>http://bisearch.enzim.hu/?m=genompsearch</u>; last accessed 10.01.2016) for single PCR product.