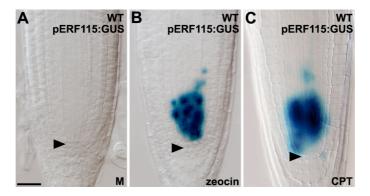

Supplemental Figure S1. $RCH1::TOP1\beta$ RNAi-mediated down-regulation of $TOP1\beta$ had no visible effect on WT but caused a rootless phenotype in $top1\alpha$.

A, qRT-PCR analysis of $TOP1\alpha$ and $TOP1\beta$ transcription in roots of WT and three different $RCH1::TOP1\beta$ RNAi transgenic lines (R-1, R-2 and R-3). Note that the $RCH1::TOP1\beta$ RNAi transgene specifically and significantly reduced the expression of endogenous $TOP1\beta$ in the WT background. Transcript levels of $TOP1\alpha$ and $TOP1\beta$ in WT roots were set to 1. Error bars represent standard deviation (SD) from three independent experiments. **, P < 0.01, t-test. B, Phenotype of 10-day-old WT and R-1 seedlings. No visible difference between WT and R-1 seedlings were observed, in agreement with the $top1\beta$ null mutant phenotype. Scale bar, 1 cm. C, Root tip of an R-1 seedling. Root cells were counterstained (in red) with propidium iodide (PI) and imaged with confocal microscopy. PI is excluded from entering live cells but penetrated into dead cells. Arrowheads point to the quiescent center (QC). Scale bar, 25 μ m. D and E, Seedling phenotypes of two additional transgenic lines expressing the $RCH1::TOP1\beta$ RNAi transgene in $top1\alpha$. Scale bar, 1 cm.


Supplemental Figure S2. Expression of WT $TOP1\alpha$ under the control of its native promoter $(TOP1\alpha::TOP1\alpha)$ fully complemented the root growth defect of $top1\alpha$. A, Phenotypes of 10-day-old WT, $top1\alpha$, and $top1\alpha$ $TOP1\alpha::TOP1\alpha$ seedlings. Scale bar, 1cm. B, Time-course analysis of root lengths of WT, $top1\alpha$, and $top1\alpha$ $TOP1\alpha::TOP1\alpha$ seedlings. Measurements were performed on the indicated days. Error bars represent SD (N > 20). Bars with different letters are significantly different at P < 0.01, t-test.

Zhang et al-Figure S3

Supplemental Figure S3. Zeocin induces preferential death of SSCs in the Arabidopsis root.

A and B, Root tips of WT seedlings, which were mock-treated for 24 h (A) or treated with 13 μ M zeocin for 24 h (B). Root cells were counterstained (in red) with PI and imaged with confocal microscopy. PI outlined live cells but penetrated into dead cells. Arrowheads point to the quiescent center (QC). Scale bar, 25 μ m.

Supplemental Figure S4. Similar *ERF115* expression patterns were observed in a previously reported *pERF115:GUS* transgenic line.

A to C, Expression (stained in blue) of *pERF115:GUS* (Heyman et al., 2013) in root tips of WT seedlings, which were treated for 24 h with mock (A), 13 μ M zeocin (B) or 100 nM CPT (C). Scale bar, 50 μ m.

Zhang et al – Table S1

Experiments / Primer names	Sequences (5' to 3')	Materials
Genotyping		
top1α-LP	ACTGTGGAACCATTCTGATGC	
top1α-RP	ACGAAAACAAAACCCTCAAGG	
top1β-LP	TTCCCAGAGTGTTTTTGCATC	
top1β-RP	GGTAAGAAATGGGAAAGCAGG	
LBb1.3	ATTTTGCCGATTTCGGAAC	
Cloning		
300CDS-PF	ATACTCGAGATGGGCACTGAAACAGTTTC	35S::ΤΟΡ1α
300CDS-PR	GGGACGGCGAGAATCTGTACTC	
300LIC27-PF	TAGTTGGAATAGGTTCATGGGCACTGAAACAGTTTC	TOP1α::TOP1α
300LIC27-PR	AGTATGGAGTTGGGTTCCATCTTACGACAAACAGAGG	
300promoter-Acc65I-PF	TTGGGTACCGTTCGTTGAGGCCAGTTTC	
300promoter-Xhol-PR	ATACTCGAGTCCCGAAAGAACAACGTTG	
SHR-PF	CATGGTACCAGAAGCAGAGCGTGGGGTTTC	SHR::ΤΟΡ1α
SHR-PR	CATCTCGAGTTTTTTTTTAATGAATAAGAAAATGAATAGAAGAAAGGG	
SCR-PF	CATGGTACCGTCCGTGTCTCATCGCGTAG	SCR::ΤΟΡ1α
SCR-PR	CATCTCGAGGGAGATTGAAGGGTTGTTGGTC	
300-3M-F	CACGTCTAAGATCAGCTACCTGGATCC	TOP1α N871S
300-3M-R	GGATCCAGGTAGCTGATCTTAGACGTG	
300promoterF	TTGGGTACCGTTCGTTGAGGCCAGTTTC	TOP1α::GUS
300promoterR	ATACTCGAGTCCCGAAAGAACAACGTTG	
310promoterF	TTGGGTACCTGGATTCCGTAGGGTTATTG	TOP1β::GUS
310promoterR	ATACTCGAGCCAACAAGGCAAGTTATTCAC	
RCH-PF	GTAATACGACTCACTATAGGGCGAATTGGGTACCCGAGTTTCAGATGTTTCTATTAAATAAG	RCH1::TOP1β RNAi
RCH-PR	TATTGTTCCAGGGAAAGCCTGTTGACTTACTCGAGAATCGGCATTTGCAAAGACATAAGAGT	
310RNAI-F	TTTCATTTGGAGAGGACACGGGGCCCCCCCCCGAGTAAGTCAACAGGCTTTCCC	
310RNAI-R	ACGATCGGGGATCCCCCGGGCTGCAGAAATGGTCATGACGGGTACG	
310RNAI-2F	CTTCATCTTCGTACCCGTCATGACCATTTCTGCAGCCCATGTCCTCAACGGTTCAG	
310RNAI-2R	GCCAAATGTTTGAACGATCGGGGATCGGATCCTAAGTCAACAGGCTTTCCCTG	
ERF115-PF-3K	CATGGTACCTCCACACTCTCAACACTGTAC	ERF115::GUS
ERF115-PR	CATCTCGAGCTTTGCTAAAATCTTTAAACC	1
ERF115-cdsLICPF	TAGTTGGAATAGGTTCATGGCGAATTCAGGAAATTATGG	ERF115-SRDX
ERF115-SRDXPR	AGTATGGAGTTGGGTTCTTAAGCGAAACCCAAACGGAGTTCTAGATCCAGATCGAGAAAACCAGAATT AGGAGG	
aRT-PCR		
TOP1α-qPF	AATGGAACGAGACATGCATAC	
TOP1α-qPR	GCAAACTTCTCCAAAAGAGACT	1
TOP1β-qPF	TACTTGGAAAGAACCATATG	
TOP1β-qPR	TTCTCATACTTCTCTTTGTC	1
RBR-qPF	GTTTTCCGCAGCGTTTATGT	
RBR-qPR	CCGGTCGTTTCTTACAGGAC	1
EF1a-gPF	TGAGCACGCTCTTCTTCA	
EF1a-qPR	GGTGGTGGCATCCTTGTTACA	1

Supplemental Table S1. List of primers used in this study.