## Role of extracellular cysteine residues in the adenosine $A_{2A}$ receptor

Elisabetta De Filippo, Vigneshwaran Namasivayam, Lukas Zappe, Ali El-Tayeb, Anke C. Schiedel, and Christa E. Müller

PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany

corresponding author:

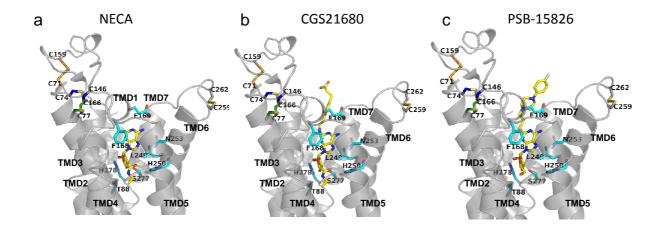
C. E. Müller, christa.mueller@uni-bonn.de, phone +49 228 732301; fax +49 228 732567

## **Table of Contents**

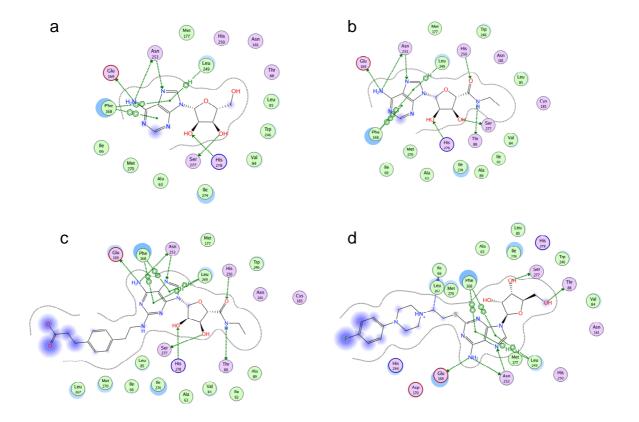
| Page       | Topic                                                                                                                                                                     |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S2         | Supplementary Table 1: Summary of main findings of the current study on the $A_{2A}AR$ and comparison with the results of a mutagenesis study on the related $A_{2B}AR$ . |
| <b>S</b> 3 | Supplementary Table 2: Relevance of extracellular disulfide bonds for A <sub>2A</sub> AR binding and activation by structurally diverse agonists.                         |
| S4         | Supplementary Figure 1: Binding modes of agonists in A <sub>2A</sub> AR                                                                                                   |
| S5         | Supplementary Figure 2: 2D interaction diagram for the human A <sub>2A</sub> AR with selected agonists                                                                    |

**Supplementary Table 1**. Summary of main findings of the current study on the  $A_{2A}AR$  and comparison with the results of a mutagenesis study on the related  $A_{2B}AR$ .

| Disulfide bond<br>number                                                                   | A <sub>2A</sub> AR                                                                                                                                                                                             | <b>A<sub>2B</sub>AR</b> [11]                                                                    |  |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
|                                                                                            | All three disulfide bonds are important for the response of the physiological agonist adenosine                                                                                                                |                                                                                                 |  |
| I<br>C71 <sup>2.69</sup> -C159 <sup>45.43</sup>                                            | Required for adenosine potency<br>→ potency of adenosine similar to that at the A <sub>2B</sub> AR<br>Not required for NECA, PSB-15826, CGS21680 binding and<br>function                                       | Not required for binding and function of<br>NECA and BAY60-6583<br>(Adenosine not investigated) |  |
| II<br>C74 <sup>3.22</sup> -C146 <sup>45.30</sup>                                           | Efficacy reduced or abolished<br>Virtually no activation by adenosine and PSB-15826<br>Reduced efficacy by NECA and CGS21680<br>→ N-ethylcarboxamido group acts as anchor in the orthosteric<br>binding pocket | It cannot be formed<br>(no cysteine residue in ECL1)                                            |  |
| III<br>C77 <sup>3.25</sup> -C166 <sup>45.50</sup><br>conserved in<br>most class A<br>GPCRs | Essential for adenosine potency (efficacy unchanged)<br>→ potency of adenosine similar to that at the A <sub>2B</sub> AR<br>No significant impact on other investigated agonists                               | Essential for antagonist binding (PSB-603) and<br>for agonist potency (NECA and BAY60-6583)     |  |


**Supplementary Table 2**. Relevance of extracellular disulfide bonds for A<sub>2A</sub>AR binding and

activation by structurally diverse agonists.


| Disruption of<br>disulfide bond |                     | Adenosine                  | NECA           | PSB-15826       | CGS21680      |
|---------------------------------|---------------------|----------------------------|----------------|-----------------|---------------|
|                                 |                     |                            | (carboxamido-  | (2-substituted, | (carboxamido- |
|                                 |                     |                            | sugar)         | uncharged)      | sugar; 2-sub- |
|                                 |                     |                            | -              |                 | stituted,     |
|                                 |                     |                            |                |                 | negatively    |
|                                 |                     |                            |                |                 | charged)      |
| S-S bond                        | No. I - C159        | <b>PS</b>                  |                |                 |               |
| Binding                         |                     | n.t.                       | +++ (biphasic) | +               | +             |
| Function                        | Potency             |                            | +              | ++              | +             |
|                                 | Efficacy            | No change                  | ±              | ±               | ±             |
| Binding                         |                     | n.t.                       | -              | ±               | ±             |
| Function                        | Potency             | No activation              | +              | No activation   | ++            |
|                                 | Efficacy            |                            | -              |                 | -             |
| S-S bond                        | No. III – C1        | .66S                       |                |                 |               |
|                                 |                     |                            |                |                 |               |
| Binding                         |                     | n.t.                       | ±              | (-)             | ±             |
| Binding<br>Function             | Potency             | n.t.<br>                   | ±<br>±         | (-)<br>±        | ±<br>±        |
|                                 | Potency<br>Efficacy |                            |                |                 |               |
| Function                        | Efficacy            |                            | ±<br>±         | ±               | ±             |
| Function S-S bonds Binding      | Efficacy            | <br>±                      | ±<br>±         | ±               | ±             |
| Function<br>S-S bonds           | Efficacy            | <br>±<br>II – C159S + C146 | ±<br>±<br>S    | ±<br>-          | ±<br>±        |

**definition**: + (increase), - (decrease)

- no change (< 2-fold):  $\pm$
- 2-10-fold: + or -
- 11-30-fold: ++ or --
- > 30-fold: +++ or ---



**Supplementary Fig S1** Binding modes of agonists in A<sub>2A</sub>AR. Crystallographic binding poses of the agonist (a) NECA, (b) CGS21680 and (c) PSB-15826 in the binding pocket of A<sub>2A</sub>AR (represented as grey ribbon) are shown. All ligands are shows as sticks with carbons in yellow. The sidechains of important residues in the binding pocket are shown as sticks with carbons in cyan. The cysteine residues involved in disulfide bonds are shown as sticks and the carbon atoms are color coded as follows: Cys71<sup>2.69</sup>-Cys159<sup>45.43</sup> orange, Cys74<sup>3.22</sup>-Cys146<sup>45.30</sup> blue and Cys77<sup>3.25</sup>-Cys166<sup>45.50</sup> green.



**Supplementary Fig S2** 2D interaction diagram for the human A<sub>2A</sub>AR with selected agonists. (a) adenosine, (b) NECA, (c) CGS21680, and (d) PSB-15826.