Supplementary Information

Surfactant-free synthesis of octahedral $ZnO/ZnFe_2O_4$ heterostructure with ultrahigh and selective adsorption capacity of malachite green Jue Liu¹, Min Zeng^{*1} & Ronghai Yu^{*1}

¹School of Materials Science and Engineering, Beihang University, Beijing 100191, China. Correspondence and requests for materials should be addressed to M. Z. (min_zeng@buaa.edu.cn) or to R. Y. (rhyu@buaa.edu.cn).

Figure S1 | SEM image of the octahedral precursor with an average size of about 200 nm.

Figure S2 | XRD pattern of the octahedral precursor.

Figure S3 | Fourier transform IR (FTIR) spectra of the octahedral precursor.

Figure S4 | TGA curve of the weight loss from room temperature to 800 °C.

Figure S5 | The temporal evolution of UV spectra of MG solution (0.5 $g \cdot L^{-1}$)

Figure S6 | The temporal evolution of UV spectra of MO solution (10 mg \cdot L⁻¹)

Figure S7 | The temporal evolution of UV spectra of RhB solution (10 $\text{mg}{\cdot}\text{L}^{\text{-1}})$

Adsorbent	Maximum capacity	Reference
	$(mg \cdot g^{-1})$	
MgO	1205.23	Mater. Lett., 2015, 141, 267
Activated carbon	75.08	Ind. Eng. Chem. Res., 1997, 36, 2207
Zeolitic imidazole framework-67	2430	Chemosphere, 2015, 139, 624
Carboxylate group functionalized	49.45	J. Mol. Liq., 2015, 206, 151
multi-walled carbon nanotubes		
<i>rht</i> anionic metal–organic framework	502	Chem. Commun., 2014, 50, 14674
Boron Nitride Spheres	324	ACS Appl. Mater.
		Interfaces, 2015, 7, 1824
Oxidized multiwalled carbon nanotubes	57.6	RSC Adv., 2015,5, 38939
Hematite-reduced graphene oxide hybrid	438.8	RSC Adv., 2015,5, 17336
materials		
AA-IA-APT hydrogel	2433	Chem. Eng. J., 2014, 257, 66
Carboxylate functionalized PAN	1038	Fiber Polym., 2014, 15, 2272
(PAN/NaOH/NaHCO ₃) nanofibers		
Zeolite-reduced graphene oxide	48.6	Ind. Eng. Chem. Res., 2014, 53,
		13711
Sodium alginate-coated Fe ₃ O ₄ nanoparticles	47.84	Int. J. Bio. Macromol., 2014, 69, 447
Acid-activated sintering process red mud	336.4	Appl. Clay. Sci., 2014, 93, 85
Titanium peroxide powder	251.38	Appl. Surf. Sci., 2014, 292, 576
NiO nanoflakes	142.08	Chem. Eng. J., 2014, 239, 141
porous carbon nanosphere	1455	J. Hazard. Mater., 2013, 262, 256
Aminopropyl functionalized magnesium	334.80	J. Hazard. Mater., 2011, 192, 62
phyllosilicate clay		
Metal-organic framework MIL-100(Fe)	266	J. Mater. Chem., 2012,22, 7449
ZnO/ZnFe ₂ O ₄ heterostructures	4983	In this work

Table S1 Maximum adsorption capaci	ity of MG on various adsorbents
--------------------------------------	---------------------------------

malachite green (MG)	rhodamine (RhB)	methyl orange (MO)
C ₂₃ H ₂₅ ClN ₂	C ₂₈ H ₃₁ ClN ₂ O ₃	C ₁₄ H ₁₄ N ₃ SO ₃ Na
<i>Mw</i> : 364.92	<i>Mw</i> : 479.01	<i>Mw</i> : 327.33
<i>Charge</i> : positive	Charge: positive	<i>Charge</i> : negative
CHB	OH O O O O O O O O O O O O O O O O O O	CHE NA ⁺

 Table S2 | Chemical information of the selected dyes

Figure S7 | XRD pattern of the ZnO/ZnFe₂O₄ product obtained by thermal annealing at 500 °C with a ramping rate of 5 °C \cdot min⁻¹.

Figure S8 | Pore size distribution of the ZnO/ZnFe₂O₄ product obtained by thermal annealing at 500 °C with a ramping rate of 5 °C \cdot min⁻¹.

Figure S9 | The colors change of the MG solutions for Sample 1 and Sample 2 after 24 h contact.