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Appendix 1: Metacommunities harbouring similar mean and variance but varying 

asymmetry of the carrying capacity distribution – examples using two values of carrying 

capacity 

 

We define a metacommunity with two values of carrying capacity using three parameters: 

-    and    the carrying capacities; 

-    the proportion of communities that have carrying capacity   . 

We introduce the mean carrying capacity of metacommunities: 

                  

The squared coefficient of variation of carrying capacity    verifies: 

            
     

  
 
 

  

The standardized skewness of carrying capacity    verifies: 

   
     

         
  

We aim at building landscapes with different standardized skewness (  ) while keeping 

squared coefficient of variation (  ) and    constant. As    only depends on   , controlling    

is equivalent to controlling   . We may obtain different values of    using    and then adjust 

values of    and    to obtain the same values for    and   . The difficulty essentially lies with 

the fact that    and    must be non-negative integers. In the following, we assume, without 

loss of generality, that      . Because we want to measure Simpson diversity in 

communities, we also impose     . We look for values of    and    such that any integer 

value of    such as         can generate valid metacommunities.    can be expressed as 

a function of        and   : 
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   must be an integer for any    such as        , which is equivalent to imposing that 

                and           are integers.           being a non-zero integer 

means that there exists a strictly positive integer k such as           . Then: 

      

    
             

   has to then be an integer. For a given integer value of     , we have a set of possible 

metacommunities: 

                           
 

   
              

We now seek to extract from   metacommunities having the same variation coefficient of 

carrying capacities. A metacommunity in   with parameters   and   has the coefficient of 

variation 

       
 

  
 
 

  

We then consider a metacommunity 0 with minimal      and      and we seek 

metacommunities in   with the same   . These metacommunities verify: 

    
 

  
 
 

    
 

  
 
 

  

Thus: 

   
    

    
 
 

  

k has to be a squared integer so that we introduce q such as     . (1) implies that   verifies: 

              

so that   divides     .   can be define from  : 

  
         

 
  

We thus can provide a set of metacommunities with two only distinct values of carrying 

capacity such that    is constant for all the metacommunities and the coefficient of variation of 

all the metacommunities is also constant and verifies             . This set writes: 
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where       is the set of positive integers that divide     . This construction can easily be 

generalized to provide sets of metacommunities with only two distinct values of carrying 

capacity such that    is constant for all the metacommunities and the coefficient of variation of 

all the metacommunities is also constant and verifies              with     although 

we focus here on    . Setting      yields following possible values of  : 1, 2, 3, 6. 

Because, increasing   increases   , the set   with      allows generating metacommunities 

where the evolution of dispersal is predicted to undergo either evolutionary stable equilibrium 

or branching (Massol et al. 2011). We could generate two metacommunities (Figure A1.1) 

corresponding to following values of           : 

 

Metacommunity Q k          

1 1 1 2 14 0.5 

2 6 36 7 44 0.972973 

 

Figures 

Figure A1.1: Evolutionary scenario as a function of         as predicted by Massol et al. 

(2010).    is set to 8 and three values of dispersal cost   are explored: 0, 0.1, 0.5. The black 

zone corresponds to values of         that are not attainable because communities’ carrying 

capacity must be superior or equal to 1. Black continuous curve shows the frontier between 

dispersal ESS scenario (below the curve) and branching scenario (above the curve) in terms of 

        for    0.1 (value used in main text). The same curves (dashed lines) are reported for 

   0 and 0.5. Dots represent metacommunities generated by our method. The two 

metacommunities used in main text are tagged here with numbers. The corresponding 

parameters are indicated in Table 1 of main text.  
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Appendix 2: Sensitivity of dispersal (as a function of time) to the distribution of carrying 

capacities         and dispersal cost     – a simulation exploration 

 

The dispersal strategies obtained at evolutionary equilibrium depends on the simulation 

parameters. Figure A2.1 shows that a higher cost leads to a lower dispersal strategy in the 

ESS scenario as predicted by classic dispersal evolution theory. We also observed that higher 

cost leads to closer branches in the EB scenario. 

 

Figures 

 

Figure A2.1: Dispersal distribution through time in model M1 for metacommunities 1 

and 2 (see Table 1) for different values of dispersal cost  . Panels A and C (resp. panels B 

and D) present the symmetric (resp. asymmetric) community with    0 and 0.5 respectively. 

For each panel, one simulation was performed over 20000 generations (=20000*8880 cycles, 

see main text). Iconography and other parameter values are identical to Figure 1. 
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Figure A2.2: Dispersal values under the EB scenario for different values of the 

coefficient of variation (  ) and the asymmetry (  ) of the distribution of carrying 

capacities within the metacommunity. (A)        ; (B)        ; (C)        . Blue 

(resp. grey) boxes represent the average distribution of the dispersal trait in the lower (resp. 

upper) branch over 12 replicated simulations. 
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Appendix 3: The “capacity dispersal pattern” - theoretical derivation and robustness to 

dispersal cost 

 

We explain why, in model M1, the expected average dispersal value within a community 

decreases as the carrying capacity of the considered community increases - a feature that we 

call “carrying capacity-dispersal relationship”. We do not consider the species label of 

individuals throughout this section. 

We consider the limit case of model M1 when the number of communities is infinite (i.e. 

    ). We assume that: 

- dispersal traits in the metacommunity have reached a stationary distribution at the 

metacommunity scale under which various trait values                have constant 

frequencies              with       .  

- communities have very large carrying capacities (i.e.       for all communities). 

This allows us to overlook the effects of demographic stochasticity within 

communities, which is not necessary to explain the pattern that we study here. 

-    
 

  
 is finite for all the communities (no community is infinitely larger than the 

others), so that the individual contribution of any community to the metacommunity 

structure can always be neglected. This allows us to describe the model through a 

mainland-island dynamics in which all the communities receive migrants from a 

common regional pool with structure         . 

Because a community harbours an infinite number of individuals in this limit case, we 

describe its state through the local frequencies of each dispersal type, noted             . 

In our asymptotic case in which there is no local demographic stochasticity, we look for the 

migration-selection equilibrium value            which verifies: 

                                  (3.1) 
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where        (resp.       ) is the rate of increase (resp. decrease) of the local proportion of 

dispersal type i. We derive their expression in our asymptotic case: 

 
 
 

 
              

             
     

 

             
     

 

            
             

     

 

             
     

 

 

   (3.2) 

with       (resp.      ) the average dispersal trait of the individuals in the community (resp. in 

the regional pool). 

Plugging (3.2) in (3.1) yields the system: 

                       
     

 
                  

     

 
              

     

 
   

       
    

     

 

              
     

 

  (3.3) 

which implies: 

       
     

 
                

     

 
  

             
     

 
              

               
     

 
               

In addition,                so that: 

                        
     

 
               

We define the function       for                     
     

 
               as: 

       
    

     

 

          
     

 

   

To verify the system (3.3),       must necessarily verify the equation: 

             (3.4) 

Function    verifies the following three properties: 
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  (3.5) 

The intermediate value theorem then ensures that a unique value       verifying (3.4) exists. 

This value depends on the parameter   of the considered community so that we note it 

        . The goal of this section is then to show that          is a decreasing function of  . We 

define the bivariate function        as follows: 

        
    

     

 

          
     

 

   

In particular,   verifies: 

                 (3.6) 

A differentiation of (3.6) along variable r yields: 

                                      

     
      

            

            
  (3.7) 

              
 

 
 

    
     

 

              
     

 

        

              
     

 

   

  
       

             
     

 

  is a concave function so that Jensen inequality implies: 

 
    

     

 

              
     

 

        

              
     

 

     

                (3.8) 

In addition, using (3.5) one gets: 

               
            (3.9) 

Plugging (3.8) and (3.9) in (3.7) yields 

     
      

            

            
    

In other words, the expected local dispersal value decreases with K. 
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Figure 2 of main text illustrates the capacity-dispersal pattern for metacommunity 1 and 2 for 

dispersal cost c=0.1. Similar results are obtained when using other values of dispersal cost 

(Figures A3.1 and A3.2). Note that the representations in these figures are different from 

those of main text. In main text we had 100 independent simulations and compared the 

distribution of observed versus randomized statistics. Here we ran a single simulation and 

compare the observed value with a distribution of randomized values computed from the same 

observation (more details in figures legends). Figure A3.1 shows that changing the dispersal 

cost does not affect the results about dispersal pattern for the symmetric metacommunity. The 

“environmental filtering” is always significant when accounting for intraspecific variance in 

dispersal and randomizing individuals position (Figure A3.1A) and but not significant when 

overlooking intraspecific variance and randomizing only species traits (Figure A3.1B). 

Dispersal is always significantly higher in small communities that in high communities when 

accounting for intraspecific variance in dispersal and randomizing individuals position 

(Figure A3.1C) but not (or hardly) significant when overlooking intraspecific variance and 

randomizing only species traits. 

 

Figures 

 

Figure A3.1:        and the difference in average dispersal trait between small and large 

communities in the symmetric metacommunity for different values of the dispersal cost 

c. For each value of c, we performed one simulation over 20000 generation and analysed the 

final state. In each panel, we presented results for low cost (c=0) on the left and results for 

high cost (c=0.5) on the right. Dots are used to represent the observed value of the considered 

statistic at this final state, while bars present the average of 100 values of the statistic obtained 

from independent randomization of this final state. Error bars show the 3% and 97% quantiles 
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of the empirical distribution of the randomized statistic. (A):        when accounting for 

intraspecific variance in dispersal and randomizing individuals position in the 

metacommunity. (B):        when overlooking intraspecific variance in dispersal and 

permuting species dispersal values while preserving species abundances in communities. (C): 

Average dispersal in small communities minus average dispersal in large communities (  ) 

when accounting for intraspecific variance in dispersal and randomizing individuals position 

in the metacommunity. (D):    when overlooking intraspecific variance in dispersal and 

permuting species dispersal levels while preserving species abundances in communities. 
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Figure A3.2: The capacity-dispersal pattern in the asymmetric metacommunity for 

different values of dispersal cost c. The caption is exactly the same than Figure A3.1 but for 

the asymmetric community. 
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Appendix 4: Species diversity index in the neutral metacommunity – theoretical 

prediction 

 

We recall that        is the probability that two individuals sampled in the same community 

with carrying capacity    belong to different species,           is the probability that two 

individuals coming from distinct communities with carrying capacities    and    belong to 

different species and    is the probability that two individuals randomly sampled in the 

metacommunity (any individual from any community) belong to different species. 

We provide here (i) analytical expressions of       ,           and    in the neutral 

metacommunity model   . We first emphasize that    can be deduced from the      s and 

       s using the following equation: 

     
          

      
            

        

                      
          

 

      
            (4.1) 

Therefore we will focus on providing analytical expression and estimates of the      s and 

       s and use equation (4.1) to infer corresponding results for   . 

Defining the coalescence Markov chain 

The   s and the   s can be derived for any       values by considering the coalescence (i.e. 

the genealogy; Figure A4.1) of lineages associated to the sampled individuals. Two 

individuals belong to different species if and only if, going backward in time, their lineages do 

not merge into a single ancestral one before a speciation event occurs in either of them. 

Arbitrarily labelling the two lineages considered as lineage 1 and 2, the coalescence can be 

described as a Markov chain over the following states of the pair of lineages: 

 states      : the two lineages are in the same community with carrying capacity   ; 

 states         : the two lineages are in different communities, lineage 1 is in a 

community with carrying capacity    while lineage 2 is in a community with carrying 
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capacity    (it is possible to have       when the two lineages are in distinct 

community with the same carrying capacity); 

 state  : the two lineages have merged into a single one; 

 state  : one of the two lineages has undergone a speciation event. 

State   and   are absorbing states of the Markov chain. 

       is the probability that the Markov chain ends in   when starting from the initial state 

     .           is the probability that the Markov chain ends in   when starting from the 

initial states          or         .  

Computing transition probabilities of the coalescence Markov chain 

For any pair of states   and  , denote      the probability that the Markov chain currently in 

state   switches to state   when a birth-death cycle occurs backward in time. Note that a 

lineage is affected by the next birth-death cycle to occur backward in time only if the current 

individual representing the lineage comes from the reproduction event of this cycle (e.g. 

cycles 2 and 5 in Figure A4.1). For a Markov chain in state  , its state should not change if 

the next cycle backward in time did not produce either of the two individuals traced in state  . 

In all the following, we therefore consider transition probabilities from   to   conditionally to 

the fact that one of the two individuals representing the lineages in   comes from the 

reproduction event of the next cycle backward in time. In other words, we overlook cycles 

that do not contribute to lineages dynamics (e.g. cycles 1, 3 and 4 in Figure A4.1). 

Assume that the Markov chain is currently in state      . We first assume that lineage 1 

comes from the reproduction event of the next cycle backward in time (which occurs with 

probability 
 

 
). We denote with exponent 1 the corresponding transition probabilities. We call 

  the community in which both lineages occur in current state. Various transitions can occur: 

- Transition to state   occurs if the individual that reproduces at the next cycle 

backward in time is the individual representing lineage 2. 
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- Transition to state       (i.e. not changing state) occurs if the individual that 

reproduces at the next cycle backward in time is in   but is not the individual 

representing lineage 2.  

- Transitions to state          for any    occur if the individual that reproduces at the 

next cycle backward in time is not in   and is in a community with carrying capacity 

  . 

- Transition to state   occurs if a point speciation occurs at the next cycle backward in 

time. 

The weight an individual belonging to   in the lottery for reproduction at the next cycle 

backward in time is the sum of its local reproductive effort     and the share of the 

propagules that fall in its own patch 
      

 
.      individuals belongs to   and participate in 

the lottery: the individual representing lineage 2 and      other individuals. In addition to 

those individuals in  , all the individuals occupying other communities also participate in the 

lottery with a per capita weight of 
      

 
. There are      such individuals. Among them, 

     individuals come from communities with carrying capacity    for     where    is the 

number of such communities.          individuals come from communities with carrying 

capacity    (community   has been removed). 

We can then identify the weight of events of interest in the lottery for reproduction:  

- “the individual that reproduces is the one representing lineage 2” has weight     

    
      

 
. 

- “the individual that reproduces is another individual from   ” has weight    

           
      

 
 . 

- “the individual that reproduces is not from   and is from a community with carrying 

capacity   ,    ” has weight          
      

 
; 
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- “the individual that reproduces is not from   and is from a community with carrying 

capacity   ” has weight              
      

 
. 

If speciation occurs during the cycle, with probability  , which of this event actually occurs 

does not matter as the transition will be to   state in any case. The lottery is considered only if 

speciation does not occur, which has probability    . Transition probability then writes: 

        
     

            
       

  

                   
      

           
      

 
 

           
      

 
        

      

 

  

               

   

       
    

                   
      

    
      

 

           
      

 
        

      

 

  

               
       

    

                   
      

        
      

 

           
      

 
        

      

 

  

        
       

  

                   
      

    
      

 

           
      

 
        

      

 

  

Other transitions, provided that lineage 1 is the one coming from the reproduction at the next 

cycle backward in time, are not possible and have probability 0. 

We denote with exponent 2 the transition probabilities when assuming that lineage 2 is the 

one coming from the reproduction event. Similar analysis than above yields: 
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Other transitions have probability 0. 

The unconditional transition probability      can be retrieved from the transition 

probabilities conditionally on which lineage comes from the reproduction at next cycle 

backward in time as follows:          
      

 . This yields the unconditional transition 

probabilities: 

            

                  
           

      

 
 

           
      

 
        

      

 

  

               

   

                

   

 
 

 
     

    
      

 

           
      

 
        

      

 

  

                     
        

      

 

           
      

 
        

      

 

  

              
    

      

 

           
      

 
        

      

 

  

Assume that Markov chain is currently in state          with      . We call    (resp. 

  ) the community in which the individual representing lineage 1 (resp. lineage 2) occurs at 

current state.  

We first assume that lineage 1 is the one involved and derive the transition probability from 

this situation. Various transitions can occur: 

- Transition to state   occurs if the individual that reproduces at the next cycle 

backward in time is the individual representing lineage 2. The weight of this event in 

the lottery is    
      

 
. 

- Transition to state       occurs if the individual that reproduces at the next cycle 

backward in time is in    but is not the individual representing lineage 2. The weight 

of this event in the lottery is          
      

 
. 
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- Transitions to state          for          occur if the individual that reproduces at 

the next cycle backward in time is in a community with carrying capacity    (which 

cannot be the community of either individuals representing lineage 1 or 2 in current 

state). The weight of this event in the lottery is          
      

 
. 

- Transition to state          occurs if the individual that reproduces at the next cycle 

backward in time is either in    or in another a community with carrying capacity   . 

The weight of this event in the lottery is                 
      

 
  

        
      

 
. 

- Transition to state          occurs if the individual that reproduces at the next cycle 

backward in time is in a community with carrying capacity    that is not   . The 

weight of this event in the lottery is              
      

 
. 

- Transition to state   occurs if a point speciation occurs at the next cycle backward in 

time. 

Transition probabilities conditionally to the fact that lineage 1 is the one coming from the 

reproduction event at next cycle backward in time then writes: 
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Similary, we derive the transition probabilities conditionally to the fact that lineage 2 comes 

from the reproduction event at the next cycle backward in time: 

           
     

               
  

           
      

 

           
      

 
        

      

 

  

                  

     

  
         

      

 

           
      

 
        

      

 

  

                  
       

           
      

 
          

      

 

           
      

 
        

      

 

  

                  
  

             
      

 

           
      

 
        

      

 

  

           
  

     
      

 

           
      

 
        

      

 

  

We can then derive the unconditional probabilities: 
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Assume that Markov chain is currently in state         . We call    (resp.   ) the 

community where the individual representing lineage 1 (resp. lineage 2) occurs at current 

state.  

We first assume that lineage 1 is the one involved and derive the transition probability from 

this situation. Various transitions can occur: 

- Transition to state   occurs if the individual that reproduces at the next cycle 

backward in time is the individual representing lineage 2. The weight of this event in 

the lottery is    
      

 
. 

- Transition to state       occurs if the individual that reproduces at the next cycle 

backward in time is in    but is not the individual representing lineage 2. The weight 

of this event in the lottery is          
      

 
. 

- Transitions to state          for     occur if the individual that reproduces at the 

next cycle backward in time is in a community with carrying capacity    (which 

cannot be the community of either individuals representing lineage 1 or 2 in current 

state). The weight of this event in the lottery is          
      

 
. 

- Transition to state          occurs if the individual that reproduces at the next cycle 

backward in time is either in    or in another a community with carrying capacity    

that is not   . The weight of this event in the lottery is                 

      

 
          

      

 
. 
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- Transition to state   occurs if a point speciation occurs at the next cycle backward in 

time. 

Transition probabilities conditionally to the fact that lineage 1 is the one coming from the 

reproduction event at next cycle backward in time then writes: 

           
     

               
  

       

                   
 

           
      

 

           
      

 
        

      

 

  

                  

   

  
         

                   
 

         
      

 

           
      

 
        

      

 

  

                  
  

         

                   
      

           
      

 
          

      

 

           
      

 
        

      

 

  

           
       

  

                   
 

          
      

 
 

           
      

 
        

      

 

  

Similarly, we derive the transition probabilities conditionally to the fact that lineage 2 an then 

the unconditional transition probabilities: 

               

                
           

      

 

           
      

 
        

      

 

  

                  

   

                   

   

 
 

 

         
      

 

           
      

 
        

      

 

  

                        
           

      

 
          

      

 

           
      

 
        

      

 

  

            
     

      

 

           
      

 
        

      

 

  

Limit transition probabilities when      

We are interested in situations where the number of communities is very large (i.e.     ). 

We still assume that there are a distinct number of carrying capacity levels in the 
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metacommunity, and for level   , we introduce    
  

 
. We also assume that the speciation 

rate verifies:        
    
      . The corresponding asymptotic transition probabilities are 

reported in table A4.1. 

Transitions from        states. Table A4.1 shows that as soon as the Markov chain reaches a 

       state, it stays among        states on a large time period. We assume this period to be 

long enough to ensure that that the Markov chain reaches a quasi-stationary distribution 

among        states. This distribution is derived by searching the stationary distribution of the 

Markov chain when neglecting rare transitions (i.e. with probabilities   
 

 
 ). We call this 

stationary distribution   and define     as the probability of          under    The      

must verify for any    : 

    

 
                 

   
                 

        

 
                 

   
                 

         

Using analytical expressions reported in table A4.1, this rewrites: 

    

       

                    
 

       
                    

 
   

                        

    
       

                    
 

       
                    

 
   

                             

One can verify that the stationary probability writes 

                                                           

where   is a normalizing constant. The expression of     implies that the two lineages have 

probabilistically independent positions in the metacommunity under the stationary 

distribution. Denoting   the random variable indicating the carrying capacity of the 

community occupied by a lineage in the stationary distribution     verifies: 

                    

with: 
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We compute    using            : 

                                  

              
 

                          

                                       

                                 
 

  
  

   
 

                                
  

We recall that    is the coefficient of variation in carrying capacities. We then derive a full 

expression of        : 

        
                          

                                
  

We simplify the expression by introducing the effective number of migrants   
        

   
: 

        
    

  

      

            
   

And we obtain the expression for    : 

     
    

  

      

            
  

    

  

      

            
   

We now consider the rare transition events that bring the Markov chain out of an   state. We 

derive the transition probabilities from a given          state conditionally to the fact that the 

Markov chain leaves an   state. This means that we only focus on the terms that were 

neglected in table A4.1. These probabilities are obtained by expanding these terms to order 
 

 
 

instead of order 1 (see Table A4.2). We then average the transition probabilities of Table A4.2 

over the stationary distribution   of possible starting states in   to obtain transition 

probabilities from the   state as a whole toward the other states (i.e.          ). We note 

this average   . 
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Transitions from      states. When the Markov chain is in a state       it can either leave 

this state toward the state   or toward a   state. When conditioning on the fact that the 

Markov chain leaves the state      , the probability that it goes to   is: 

        

              

 

   

                    

  
           

                    

 
 

  
        

   

 
 

   
  

Importantly, this probability does not depend on   .  

Simplifying the state space in the coalescence Markov chain when      

Because (i) when the coalescence Markov chain is in a          state, it reaches a stationary 

distribution over        states before switching to another state and (ii) when the coalescence 

is on a       states, the transition probabilities to other states do depend on   , the state space 

of the coalescence Markov chain can be simplified by considering only four states of interest: 

- an   state in which both lineages are in distinct communities; the actual position of the 

lineages then follows the stationary distribution  . The transition probabilities to the 

other states are computed by averaging transition probabilities over  ; 

- a   state in which both lineages are in the same community; there is no need to 

precisely follow what is the carrying capacity of this community as it does not affect 

the transition probabilities out of this state; 

-   and   state are defined as above. 

Transition from   state to  ,   and   can be computed by taking the expectations of the 

transition probabilities presented in Table A4.2 over a well chosen distribution of         . 

This distribution is not directly the stationary distribution  , but the stationary distribution 

conditionally to leaving  state, which we call  .     is therefore the probability of being in 

         when leaving   state. 
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where     is the probability of leaving F-state when in state         . As we mentioned 

before,     is small, and using probabilities derived in Table A4.1, one can show that: 

    
 

    
      

  

      
 

  

      
     

 

 
   

Therefore: 

     
  

 

 
 

  
      

 
  

      
 

      
  

      
 

       
 

 
   

Define         
 

  the non-centered moment of carrying capacity distribution. These 

quantities relate to centered moments used in main text as follows:      ;    

          and          
            . 

Going back to the calculus of    : 
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Note that under   the position of the two lineages when leaving F-state are not independent 

anymore. The analytical expressions of the transition probabilities are provided in Table A4.3. 

Computing the       and         

From the transition probabilities of Table A4.3, we obtain that: 

1) the probability that two lineages starting in an   state undergo speciation before 

merging when going backward in time does not depend on the carrying capacities of 

the initial communities (i.e. at present time) and verifies: 

                    
     

            
 

where    are transition probabilities conditionally to changing state in the four state space 

        provided in table A4.3. 
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Considering that: 

                               
    

      
 

    

      
       

                                
    

      
      

     
            

      
                             

                          

                                 

One obtains a rather simplified version of   :  

   
             

 

             
 
                 

 

   
                              

  

   
 

  
   
 

 
   

 
   

              
 

   
            

            
  

  (4.2) 

2) the probability that two lineages starting in   state undergo speciation before merging 

when going backward in time does not depend on the carrying capacities of the initial 

community (i.e. at present time) and verifies: 

               
          

            
 

   
 

   
    (4.3) 

Note that    and    still depend on parameters d, c through  . The impact of carrying 

capacity distribution can be summarized in its three lowest moments   ,    and   . 
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We report in Figure A4.2 the values of     and     for metacommunities with parameters 

identical to the examples of main text except for asymmetry that we vary. 

Implications for    

When     , equation (2.1) becomes: 
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Tables 

Table A4.1: Summary of transition probabilities of the coalescence Markov chain when 

     and      is finite.   follows Landau notation. 

Starting state Ending state Analytical expression 

      

    
 

 
   

      
           

                    
   

 

 
   

        or 

         

 

 

          

                    
   

 

 
   

         
          

                    
   

 

 
   

  
   

                    
   

 

 
   

         

    
 

 
   

        
 

 
   

        
 

 
   

         
 

 

          

                    
    

 

 
  

         
 

 

          

                    
    

 

 
  

         

 

 
 
                      

                    
 

                      

                    
  

  
 

 
   

         
 

 

          

                    
   

 

 
   

         
 

 

          

                    
   

 

 
   



36 
 

    
 

 
   

         

    
 

 
   

        
 

 
   

         or 

         

 

 

          

                    
   

 

 
   

         
                      

                    
   

 

 
   

    
 

 
   

 

  



37 
 

Table A4.2: Analytical expression of transition probabilities out of a given          

state when conditioning on leaving the        states in asymptotically large 

metacommunity. o follows Landau notation. 

Starting state Ending state Analytical expression 
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Table A4.3 Transition probabilities of the asymptotic coalescence Markov chain in the 

simplified state space. 

Starting state Ending state Analytical expression 
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Figures 

 

Figure A4.1: Birth-death cycles and backward dynamics of a lineage within a single 

community. The same community (grey ellipse) is represented at five consecutive birth-death 

cycles (labelled from 1 to 5 forward in time). The bottom picture of the community represents 

the resulting community at present time. Individuals are represented as filled blue and red 

circles. Crosses represent death events. Black thin arrows represent replacement of the dead 

individual by a neighbour. In this simple example, only one community is considered and 

only neighbours can replace dead individuals (no immigration). A death-birth cycle is thus 

depicted as the combination of a cross and the associated thin black arrow. A lineage is traced 

back in time from the present. Red dots represent an arbitrarily chosen individual at present 

time and its ancestors. Red arrows represent the dynamics backward in time of the tracked 

lineage. We did not represent speciation on this cartoon, although it can happen at any time 

step. 
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Figure A4.2: Comparing neutral predictions of    and    with simulations of model 

M0. (A): neutral predictions obtained from equation (4.3) about    in small (left bars) and 

large (right bars) communities, when applied to metacommunity 1 (dark grey bars) and 2 

(light grey bars). Black dots represent the estimated    s (see Appendix 5) averaged over 100 

simulations of model M0 at stationary state. (B): neutral predictions obtained from equation 

(4.2) about    among small (left), between small and large (middle) and among large (right) 

communities, when applied to metacommunity 1 (dark grey bars) and 2 (light grey bars). 

Black dots represent the estimated    s (see Appendix 5) in small and large communities 

averaged over 100 simulations of model M0 at stationary state. In both panels, error bars show 

corresponding 95% confidence intervals. 
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Figure A4.3 Predicted neutral diversity patterns as a function of the variance and 

asymmetry of carrying capacity distribution. Using     8 and    0.1 (values of main 

text), we computed the neutral predictions for    (panel A) and    (panel B) for several 

values of the coefficient of variation    and standardized asymmetry    of the carrying 

capacity distributions. Values corresponding to metacommunities 1 and 2 are indicated with 

dots.  
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Appendix 5:      ,         and    in simulated metacommunities – estimates and 

robustness to dispersal cost 

 

The aim of this appendix is to provide methods for estimating      ,         and    in a 

simulated metacommunity (neutral or not). 

Building estimates 

We consider a community   with carrying capacity   . We label individuals from 1 to    in 

 .        can be estimated using: 

        

          
  
   
   

  
   

        
 

 

with 

-        when    is true, 0 otherwise 

-    is a random variable designating the species of the  th individual in community A. 

      is clearly unbiased and can be quickly calculated by noting that: 

        
            

   

        
 

where: 

- S is the total number of species in community    

-     is the number of individuals belonging to species l in community  . 

An unbiased estimate of        with lower variance can then be obtained by averaging the 

      over all communities   with carrying capacity   . We use this estimate, called   
     , 

in each of our simulations. 

We now consider two communities A and B with carrying capacities    and   . We label 

individuals from 1 to    in community A and from 1 to    in community  .           can be 

estimated using: 
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        is clearly unbiased and can be quickly calculated by noting that: 

          
       

 
   

    
 

where: 

- S is the total number of species when pooling communities   (carrying capacity   ) 

and   (carrying capacity   ) together 

-     (resp.    ) is the number of individuals belonging to species l in community   

(resp.  ).  

An unbiased estimate of           with lower variance can then be obtained by averaging 

        over all the pairs   and   with carrying capacities    and    respectively. We use 

this estimate, noted   
        , in each of our simulations. 

For each example of metacommunity (symmetric or asymmetric) considered in main text, we 

ran 100 independent simulations. For each run, we computed   
     . From the 100 

independent values of   
     , we computed         and         the empirical mean and the 

empirical variance of   
     . 

We use the central limit theorem and approximate the true variance of   
      by its empirical 

estimate         to get a confidence interval of       : 

                      
       

    
  

and         is an unbiased estimator of       . 

We obtain confidence intervals and estimates for the other indices using the same approach. 

We use equation (4.1) to obtain an estimate of   : 
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Confidence intervals are obtained using the same method than for         and           . 

Robustness of patterns to dispersal cost 

We compared estimates of         and            to neutral predictions in simulations 

presented in Figure A2.1. Contrary to Figure 4 of main text, we did not perform 100 

replicates. We simply look instead at the temporal trajectory of patterns in time on a single 

simulation. Results are in line with those shown in main text. In the symmetric 

metacommunity (Figure A5.1A and A5.2A), the         took similar average (and also 

instantaneous) values for    and   , and so did the            (Figure A5.1B and A5.2B). 

Temporal variance of estimates precludes clear conclusion about diversity being lower than 

neutral expectation though. In the asymmetric metacommunity, we retrieved that            

fluctuates around the neutral prediction and is consistently lower than            and 

           which are both consistently higher than neutral prediction.            is 

consistently smaller than             

 

Figures 

 

Figure A5.1: Temporal trajectory of species diversity patterns in simulations of Figure 

A2.1. (A): every 200
th

 generation, we computed         (blue circles) and         (red 

squares) in the symmetric metacommunity. (B): every 200
th

 generation, we computed 

            (blue circles) and            (purple squares) and            (red triangles) in 

the symmetric metacommunity. (C): same as (A) with asymmetric metacommunity. (D): same 

as (B) with asymmetric metacommunity.     in all panels. 
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Figure A5.2: Temporal trajectory of species diversity patterns in simulations of Figure 

A2.1. Legend as in Figure A5.1.       in all panels. 
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