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Figure S1. Model comparison and parameter fitting. (A) Eleven different learning algorithms were fitted to participants’ 

behavior. Goodness of fit was computed using the integrated Bayesian Information Criterion (iBIC15). A difference larger 

than 10 constitutes very strong evidence in favor of the model with lower iBIC value. The best-fitting model (‘adjusted Q 

value learning + associability + deck-specific persistence’) learns a value for taking a gamble with each of the three decks. 

Learning in the model is driven by associability-weighted prediction errors (i.e., the difference between actual and 

expected outcomes), where outcome expectations factor in previous experience with the deck and the computer’s 

number. Associability was modeled as in previous work11,12. In addition, the model tends to repeat actions recently taken 

with each deck (Deck-specific persistence, modeled as in previous work10). Because the same model without associability 

explained the data almost equally well (iBIC difference = 2), we proceeded to evaluate learning/persistence biases both 

with, and without, associability. (B) The best fitting model from Figure S1A was compared as is (‘no bias’) with four variants 

of the model, each including a different type of learning/persistence bias. Note that all models already include a baseline 

decision bias parameter. Of the four variants, the best fitting model involved a bias in learning, implemented by allowing 

two different learning rates for negative and positive prediction errors. We also tested the same biases on the model 

without associability, but these did not fit the data as well (iBIC difference between best variants of each model = 16.7 in 

favor of model with associability). (C) Individual learning rates fitted to each participants’ behavior using the best-fitting 

model from (B). Learning rates for negative prediction errors (red) and for positive prediction errors (blue) were widely 

distributed anti-correlated (rs = –0.57, p = 10–4, permutation test). Error bars: 95% CI. 
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simulated model best-fitting model(s) (10 trials) 

no learning: 1 1 1 1 1 1 1 1 1 1 1 

general persistence + no learning: 2  1 1 1 1 1 1 1 1 1 1 

deck-specific persistence + no learning: 3 3 3 3 3 3 3 3 3 3 3 

Q value learning: 4 4 4 4 4 4 4 4 4 4 4 

adjusted Q value learning: 5 5 5 5 5 5 5 5 5 5 5 

associability + adjusted Q value learning: 6 6 6 6 6 6 6 6 6 6,5 6 

general persistence + adjusted Q value learning: 7 5 5 5 5 5 5 5 5 5 5 

deck-specific persistence + adjusted Q value learning: 8 8 8 8 8 8 8 8 8 8 8 

associability + deck-specific persistence + adjusted Q value learning: 9 9 9 9 9,8 9,8 8,9 8,9 9 9 8 

Q function learning: 10 10 10 10 10 10 10 10 10 10 10 

 

simulated model best-fitting model(s) (10 trials) 

no bias: 1 1,4 1 1 1 1 1 1 1 1,4 1 

biased subjective value: 2 2,3 2 2 2 3,2 3,2 3,2 3,2 2 2,3 

biased learning: 3 3 3 3 3 3 3 3 3 3 2,3 

biased persistence: 4 1 1 1 1 1 1 1 1 1 1 

biased associability: 5 1 1 5 5 5 5 1 1 5 5 

 

Figure S2. Validation of the model comparison procedure. We used each of the models to generate 10 full experimental 

data sets (each data set comprised 41 participants, 180 trials per participant) by having each model perform the 

experiment with each of the parametrizations that best-fitted individual participants. The signal-to-noise ratio in these 

simulations was determined by setting the β parameters as those which fitted participants’ behavior the best. We then 

applied the model-comparison procedure to each simulated data set. The best-fitting models were defined as the models 

with the lowest BIC score or within 6 of the lowest BIC, since a BIC difference of 6 indicates strong evidence14. (A) 

Validation of model comparison shown in Figure S1A. The models that best-fitted the real experimental data (models 8 and 

9) best-fitted only datasets generated by these same models (20/20) and none of the data sets generated by other models 

(0/80). Note that, as expected, models, in which some parameters were poorly justified by the experimental data, were 

sometimes confused with simpler models. Algorithm 11 (‘optimal inference’) was omitted from the validation due to its 

prohibitive computational complexity, as it involves a nested slice-sampling procedure on each simulated trial. (B) 

Validation of model comparison shown in Figure S1B. The model that best-fitted the real experimental data (model 3) only 

best-fitted (as a sole winner) datasets generated by that same model (9/10) and none of the datasets generated by other 

models (0/40). 
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Figure S3. Further analyses of BOLD and skin 

conductance responses to outcomes. Related 

to Figure 2. n = 41 participants. (A) BOLD 

response to shocks as compared to no-shock 

gamble outcomes (n = 41 participants, p < 0.05 

FWE corrected). Activated areas include the 

insula and adjacent somatosensory cortex, 

thalamus, caudate (the same area identified in 

Figure 2), and medial and lateral prefrontal 

areas. By contrast, no voxels responded to no-

shock outcomes more than to shock outcomes. 

(B) Skin conductance response to shock and 

no-shock outcomes as a function of time since 

outcome onset. The response to shocks was 

stronger than to no-shock outcomes 

(difference between outcomes 3.7, CI 1.0 to 

7.4, GLM, p = 0.007, bootstrap test) and this effect was similar in positive and negative learners (difference between 

groups 3.8, CI –4.4 to 9.6, GLM, p = 0.34, bootstrap test). Skin conductance responses were baseline-corrected by the 

average level at the first two seconds. Shaded area: 95% bootstrap CI. a.u.: arbitrary units. (C) BOLD response to shock and 

no-shock outcomes in negative learners (n = 19 participants). (D) BOLD response to shock and no-shock outcomes in 

positive learners (n = 22 participants). In (C) and (D), shaded area denotes s.e.m, and time 0 indicates outcome onset. (E) 

Effect of expectations on BOLD response to outcomes in periaqueductal gray (PAG) as a function of learning bias and 

outcome type. The pattern of activity resembles that found in the striatum (see Figure 2C). Following Linnman et al. (2012), 

GLM coefficients were taken from MNI coordinates [±4 –29 –12]. Error bars: 95% bootstrap CI, **: p < 0.002, *: p < 0.02, 

NS: p > 0.05. 
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SI Material and Methods 

Participants. 43 human volunteers (age range = 18–42 years, 30 female, 12 male, recruited 

from a participant pool at University College London) participated in the experiment. 

Inclusion criteria were based on age (minimum = 18 years, maximum = 50 years) and right-

handedness. Exclusion criteria included color blindness, neurological or psychiatric illness, 

and psychoactive drug use. Before the experiment, participants completed an 80-item 

questionnaire composed of several measures of different mood and anxiety traits1-5. Age, 

sex and mood and anxiety traits did not differ between participants later classified as 

positive and negative learners (all p > 0.1, bootstrap test). To allow sufficient statistical 

power for comparisons between two groups of participants, the sample size was set as 

roughly double the sample sizes that are recommended in the literature and that have been 

used in recent functional Magnetic Resonance Imaging (fMRI) studies of decision-making. 

Two participants failed to complete the experiment due to anxiety or discomfort and were 

excluded, leaving 41 participants in all subsequent behavioral and neural analysis. 

Participants received monetary compensation for their time (between £25 and £30). The 

experimental protocol was approved by the University of College London local research 

ethics committee, and informed consent was obtained from all participants. 

Experimental task. To test for individual differences in learning from actual painful 

outcomes compared to learning from success in preventing pain, we designed a card game, 

inspired by previous work on reward learning6,7, in which participants’ goal was to minimize 

the number of painful electrical shocks they could receive. The game consisted of 180 trials, 

divided into three 60-trial blocks. On each trial, participants were first shown which one of 

three possible decks (each having distinct color and pattern) they will be playing with. After 

a short interval (2 to 5 s, uniformly distributed), the computer drew a number between 1 

and 9 and participants had up to 2.5 s to choose whether they wanted to gamble that the 

number that they draw will be higher than the computer’s number. If participants chose to 

gamble, they avoided a shock if the number that they drew was indeed higher than the 

computer’s number, and they received a shock if it was lower (as well as in half of the trials 

in which the numbers were equal). Conversely, if participants declined the gamble, they 

received a shock with a fixed 50% probability that was known to the participants. Not 

making any choice always resulted in a shock. Feedback was provided 700 ms following each 

choice and consisted of a ‘shock’, ‘no-shock’ or ‘shock/no-shock’ visual symbol (Figure 1A) 

accompanied, when appropriate, by electrical stimulation (the drawn number was not 

shown). Trials in which no choice was made (less than 1% of trials) were excluded from all 

subsequent analyses. Critically, participants were told that each of the three decks 

contained a different proportion of high and low numbers, and thus, they had to learn by 

trial and error how likely a gamble was to succeed with each of the decks. Unbeknownst to 

participants, one deck contained a uniform distribution of numbers between 1 and 9 (‘even 

deck’), one deck contained more 1’s than other numbers (‘low deck’), making gambles 30% 

less likely to succeed, and one deck contained more 9’s than other numbers (‘high deck’), 
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making gambles 30% more likely to succeed. In the first 15 trials, the computer drew the 

numbers 4, 5, and 6 three times each, and the other numbers once each. To make sure that 

all participants take a gamble in approximately 50% of trials, in each subsequent set of 15 

trials, the numbers that the computer drew three times were increased by one (e.g., [4, 5, 6] 

 [5, 6, 7]) if participants took two thirds or more of the gambles against these numbers in 

the previous 15 trials, or decreased by one if participants took a third or less of the gambles. 

Participants’ decks were pseudorandomly ordered while ensuring that the three decks were 

matched against similar computers’ numbers and that no deck appeared in successive trials 

more than the other decks.  

Electrical stimulation. Participants underwent an established individual pain titration 

procedure8,9 with a Digitimer DS7a electric stimulator (Welwyn Garden City, UK). Following a 

brief overview of the equipment and titration process, an electrode was placed on the back 

of the participant’s left hand. Titration began with a low-current electric shock (0.1 mA) and 

participants were asked to rate their experience of pain on a visual 22-point scale (ranging 

from 0 = no sensation to 5 = mildly painful to 10 = intolerable). The initial rating was 

followed by a series of shocks, increasing in small milliamp increments. Subjective ratings of 

pain were collected after each shock until a rating of 6 was reached. The final shock 

intensity was then used throughout the experiment. Habituation to stimulation over the 

course of the experiment, as measured by how participants rated the shock again at the end 

of the experiment, was generally mild (mean rating change –0.12). Absolute shock 

intensities and levels of habituation did not differ significantly between participants later 

classified as positive and negative learners (p > 0.1, bootstrap test). 

Pre-task training. Before performing the experiment, to familiarize participants with the 

basic structure of the task, participants received training outside the scanner without 

electrical shock feedback. Training consisted of 60 trials involving a single ‘even’ deck and 

visual feedback indicating the number that participants drew.  

Post-task questionnaire. Following the experiment, participants were asked to rate each 

deck as to whether it contained mostly low or mostly high numbers on a visual 22-point 

scale (ranging from 0 = only low numbers to 1 = only high numbers). Rating confirmed that 

participants learned the task well (low deck 0.22 CI 0.17 to 0.29; even deck 0.43 CI 0.37 to 

0.47; high deck 0.81 CI 0.74 to 0.86), and the ratings did not differ between participants 

later classified as positive and negative learners (p > 0.1, bootstrap test). No participant 

reported being aware that the computer’s numbers were adjusted to the participant’s 

choices.  

Propensity to gamble. To compute a participant’s propensity to take or avoid gambles, we 

fitted to participant’s decisions a logistic regression model comprised of three terms: an 

intercept, the computer’s numbers (scaled to range between –1 (for the number 9) and 1 

(for the number 1)), and the participant’s deck (-1 for low, 0 for even and 1 for high). 

Propensity to gamble was then computed by applying the logistic function to the intercept 
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alone and scaling the result to range between –1 and 1. This measure indicates the 

participant’s tendency to take or avoid gambles when the odds of winning and losing are 

equal (i.e., when playing with the even deck against the number 5).  

Learning algorithms. To determine what learning algorithm participants used to perform the 

task, we compared five different algorithms in terms of how well they explained 

participant’s choices. In all algorithms, the probability of taking each gamble was modeled 

by applying the logistic function to a term that represented available evidence.  

Algorithm 1 (‘no learning’) is oblivious to previous experience with the decks, and it 

computes the evidence as 𝛽 + 𝛽′𝑁𝑡, where 𝑁𝑡 is the computer’s number at trial t, scaled 

between –1 and 1 as above, 𝛽′ is an inverse temperature parameter, and 𝛽 is a decision bias 

parameter.  

Algorithm 2 (‘no learning + general persistence’) tends to repeat recently taken actions10. To 

this end, it maintains a persistence variable 𝑝𝑎 for each action 𝑎 (‘gamble’ and ‘decline’). 𝑝𝑡
𝑎 

is set to one when the action is taken, and decays exponentially through multiplication by a 

free parameter 𝜆 otherwise. The evidence is then computed as 𝛽 + 𝛽′𝑁𝑡 + 𝛽′′∆𝑝𝑡, where 

∆𝑝𝑡 = 𝑝𝑡
gamble

− 𝑝𝑡
decline, and 𝛽′′ is a free parameter that controls persistence strength.  

Algorithm 3 (‘no learning + deck-specific persistence’) tends to repeat actions recently taken 

with each deck. Thus, it maintains a persistence variable 𝑝𝑡
𝑑,𝑎 for each deck-action pair 

(𝑑, 𝑎), and the evidence is computed with respect to the current deck as 𝛽 + 𝛽′𝑁𝑡 +

𝛽′′∆𝑝𝑡
𝑑𝑡 , where ∆𝑝𝑡

𝑑𝑡 = 𝑝𝑡
𝑑𝑡,gamble

− 𝑝𝑡
𝑑𝑡,decline. 

Algorithm 4 (‘Q value learning’) tracks the expected outcome of gambles with each deck d 

by means of a Q value as follows: 𝑄𝑡+1
𝑑𝑡 = 𝑄𝑡

𝑑𝑡 + 𝜂𝛿𝑡, where 𝛿𝑡 = 𝑟𝑡 − 𝑄𝑡
𝑑𝑡  is the difference 

between the actual (𝑟𝑡) and expected (𝑄𝑡
𝑑𝑡) outcome of a gamble (i.e., the outcome 

prediction error, ignoring the effect of the computer’s number), 𝑟𝑡 = 1 stands for shock, 

𝑟𝑡 = −1 stands for no shock, and 𝜂 is a learning rate parameter. The evidence is then 

computed as 𝛽 + 𝛽′𝑁𝑡 + 𝛽′′𝑄𝑡
𝑑𝑡 .  

Algorithms 5 (‘adjusted Q value learning’) is similar to algorithm 4, except that prediction 

errors are computed with respect to expectations that also factor in the computer’s 

number: 𝛿𝑡 = 𝑟𝑡 − 𝑄𝑡
𝑑𝑡 −

𝛽′

𝛽′′
𝑁𝑡. This way, the algorithm learns more about the decks from 

outcomes that are more surprising (i.e., from no-shock outcomes of gambles taken against 

higher numbers, and from shock outcomes of gambles taken against lower numbers). 

Algorithm 6 (‘adjusted Q value learning + associability’) is similar to algorithm 5, except that 

learning is modulated by an associability variable 𝛼𝑡
𝑑, computed as a running average of the 

absolute value of recent prediction errors for each deck (i.e., 𝛼𝑡+1
𝑑𝑡 = 𝛼𝑡

𝑑𝑡 + 𝜂′(|𝛿𝑡| − 𝛼𝑡
𝑑𝑡)), 

where 𝜂′ is the associability update rate11,12. Thus, Q values were updated as 𝑄𝑡+1
𝑑𝑡 = 𝑄𝑡

𝑑𝑡 +
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𝛼𝑡
𝑑𝑡𝜂𝛿𝑡. Associability was initialized as a free parameter in between 0 and the maximal 

possible prediction error.  

Algorithm 7 (‘adjusted Q value learning + general persistence’) is similar to algorithm 5, 

except that it tends to repeat recent actions similarly to algorithm 2. Thus, it computes the 

evidence as 𝛽 + 𝛽′𝑁𝑡 + 𝛽′′𝑄𝑡
𝑑𝑡 + 𝛽′′′∆𝑝𝑡. 

 Algorithm 8 (‘adjusted Q value learning + deck-specific persistence’) is similar to algorithm 

5, except that it tends to repeat actions recently taken with each deck similarly to algorithm 

3. Thus, it computes the evidence as 𝛽 + 𝛽′𝑁𝑡 + 𝛽′′𝑄𝑡
𝑑𝑡 + 𝛽′′′∆𝑝𝑡

𝑑𝑡. 

Algorithm 9 (‘adjusted Q value learning + deck-specific persistence + associability’) is similar 

to algorithm 8, except that learning is modulated by associability as in algorithm 6. 

 Algorithm 10 (‘Q function learning’) learns a two-parameter logistic function for each deck, 

consisting of an intercept 𝑎𝑡+1
𝑑𝑡 = 𝑎𝑡

𝑑𝑡 + 𝜂𝛿𝑡, and a slope 𝑏𝑡+1
𝑑𝑡 = 𝑏𝑡

𝑑𝑡 + 𝜂′𝑁𝑡𝛿𝑡, where 𝛿𝑡 is 

computed by applying the logistic function to  𝑎𝑡
𝑑𝑡 + 𝑏𝑡

𝑑𝑡𝑁𝑡 and subtracting this quantity 

from 0 in the case of a shock outcome or from 1 in the case of a shock outcome. These 

update equations constitute a simplification of the Iteratively Reweighted Least Squares 

(IRLS) maximum likelihood estimation for logistic regression13. The evidence is then 

computed as 𝛽 + 𝛽′(𝑎𝑡
𝑑𝑡 + 𝑏𝑡

𝑑𝑡𝑁𝑡).  

Algorithm 11 (‘optimal inference’) makes full use of all available evidence given what 

participants knew about the task. On each trial, the algorithm infers the maximum a 

posteriori solution for the logistic function corresponding to each deck, given all previously 

observed outcomes and Gaussian priors on the intercept and slope variables (intercept prior 

mean = 0 and slope prior mean = 2.29, which fit the training deck; intercept and slope 

variance determined by free parameters). The evidence is then computed as in Algorithm 

10. This algorithm was implemented by estimating through slice sampling13 on each trial the 

Bayesian logistic regression solution given all previously observed gamble outcomes.  

Learning/persistence biases. After identifying the best-fitting learning algorithms (Algorithm 

8: ‘adjusted Q value learning + deck-specific persistence’ and Algorithm 9: ‘adjusted Q value 

learning + deck-specific persistence + associability’), we tested whether the algorithms’ 

ability to explain participants’ choices would be improved by implementing a 

learning/persistence bias in favor of gambling or declining a gamble. The models already 

include a decision bias parameter that allows them to favor either gambling or declining to 

begin with, but a learning/persistence bias can make such a tendency evolve over time. 

Thus, we compared the basic algorithm (‘no bias’) to four variants of the same algorithm, 

each of which involves a different type of additional bias. Variant 1 (‘biased subjective 

value’) is allowed to weight shock and no-shock outcomes differently by means of a 

subjective value bias parameter 𝜓. Thus, rt is set as √𝜓 for no-shock outcomes and as −
1

√𝜓
 

for shock outcomes, such that 𝜓 reflects the ratio between the subjective value of no-shock 
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and shock outcomes. Variant 2 (‘biased learning’) is allowed to learn at a different rate from 

shock and no shock outcomes. Therefore, this variant includes two learning rate 

parameters, one for shock outcomes (η–) and one for no-shock outcomes (η+). Variant 3 

(‘biased persistence’) allows differential persistence in gambling and declining. Therefore, 

this variant includes two persistence decay parameters, one for gambling and one for 

declining. Variant 4 (‘biased associability’, for Algorithm 9 only) is allowed to update 

associability at a different rate following shock and no shock outcomes. Therefore, this 

variant includes two associability update rate parameters, one for gambling and one for 

declining. Variant 2 of Algorithm 9 turned out to be the best-fitting model (see Model fitting 

and Model comparison below), and thus, individually fitted positive and negative learning 

rate parameters were used to classify participants as positive (η+ > η–) and negative (η+ < η–) 

learners. 

Model fitting. To fit the parameters of the different learning algorithm to participants’ 

choices, we used a hierarchical expectation-maximization approach13. We first modeled 

each of the parameters using some initial prior distribution at the group level. We then 

sampled 100,000 random parameterizations from these priors, computed the likelihood of 

observing participants’ choices given each parametrization, and used the computed 

likelihoods as importance weights61 to resample (and accordingly reparameterize) the 

group-level prior distributions. These steps were iteratively repeated until convergence. 

Finally, to obtain the best-fitting parameters for each individual participant, we computed a 

weighted mean of the final batch of 100,000 parametrizations, in which each 

parameterization was weighted by the likelihood it assigned to the individual participant’s 

choices. Learning rate parameters were modeled with beta distributions (initialized with α = 

1, β = 1), inverse temperature and variance parameters were modeled with gamma 

distributions (initialized with k = 3, θ = 3), the bias parameter was modeled with a normal 

distribution (initialized with μ = 0 and σ = 1), and the subjective-value bias parameter was 

modeled with a log-normal distribution (initialized with μ = 0 and σ = 1). 

Model comparison. To compare between pairs of models, in terms of how well each model 

accounted for participants’ choices, we estimated the log Bayes factor14 by means of an 

integrated Bayesian Information Criterion15 (iBIC). We estimated the evidence in favor of 

each model (ℒ) as the mean likelihood of the model given 100,000 random 

parameterizations drawn from the fitted group-level priors13. We then computed the iBIC by 

penalizing the model evidence to account for model complexity as follows: iBIC =

−2 lnℒ + 𝑘 ln 𝑛, where k is the number of fitted parameters and n is the number of 

participant choices used to compute the likelihood. Lower iBIC values indicate a more 

parsimonious model fit.  

fMRI data acquisition. Whole-brain T2*-weighted echo-planar imaging (EPI) data were 

acquired using a Siemens Trio 3T scanner, using a 32-channel headcoil. The sequence 

chosen was selected to minimize dropout in the striatum, anterior cingulate and 

amygdala16. Each volume contained 37 slices of 3-mm isotropic data; echo time = 30 ms, 
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repetition time = 2.56 s per volume, echo spacing of 0.5 ms, slice tilt of −30° (T > C), Z-shim 

of −0.4 mT/m ms, ascending slice acquisition order. The mean number of volumes acquired 

per partcipant was 867 (the total number of volumes acquired varied depending on 

participants’ choice times). To account for T1 saturation effects, the first six volumes of each 

session, taken before the experiment was started, were discarded. 

Structural MRI data acquisition. Magnetic Transfer (MT) maps, which are particularly 

suitable for structural measurements of subcortical regions17, were calculated from a multi-

parameter protocol based on a 3D multi-echo fast low angle shot (FLASH) sequence18. Three 

co-localized 3D multi-echo FLASH datasets were acquired in sagittal orientation with 1 mm 

isotropic resolution (176 partitions, field of view (FOV) = 256 × 240 mm2, matrix 

256 × 240 × 176) and non-selective excitation with predominantly proton density weighting 

(PDw: TR/α = 23.7 ms/6°), T1 weighting (18.7 ms/20°), and MT weighting (23.7 ms/6°; 

excitation preceded by an off-resonance Gaussian MT pulse of 4 ms duration, 220° nominal 

flip angle, 2 kHz frequency offset). The signals of six equidistant bipolar gradient echoes (at 

2.2 ms to 14.7 ms echo time) were averaged to increase the signal-to-noise ratio. Semi-

quantitative MT parameter maps, corresponding to the additional saturation created by a 

single MT pulse, were calculated by means of the signal amplitudes and T1 maps19, 

eliminating the influence of relaxation and B1 inhomogeneity20. 

Field maps. Whole-brain field maps (3-mm isotropic) were acquired to allow for subsequent 

correction in geometric distortions in EPI data at high field strength. Acquisition parameters 

were 10-ms/12.46-ms echo times (short/long respectively), 37-ms total EPI readout time, 

with positive/up phase encode direction and phase-encode blip polarity −1. 

Physiological monitoring. During scanning sessions, peripheral measurements of 

participants’ pulse, breathing and skin conductance were made together with scanner slice 

synchronization pulses using Spike2 data acquisition system (Cambridge Electronic Design 

Limited, Cambridge UK). The cardiac pulse signal was measured using an MRI compatible 

pulse oximeter (Model 8600 F0, Nonin Medical, Inc. Plymouth, MN) attached to the 

participant’s left index finger. The respiratory signal, thoracic movement, was monitored 

using a pneumatic belt positioned around the abdomen close to the diaphragm. Skin 

conductance was recorded on the tips of the left middle and ring fingers using EL509 

electrodes (Biopac Systems Inc., Goleta, CA, USA) and 0.5%-NaCl electrode paste (GEL101; 

Biopac). Constant voltage (2.5 V) was provided by a custom-build coupler, whose output 

was converted to an optical pulse with a minimum frequency of 100 Hz at 0 μS to avoid 

aliasing, and then converted to a digital signal (Micro1401, CED, Cambridge, UK). 

Temperature and relative humidity of the experimental room was kept at 20 °C and 50%. 

fMRI preprocessing. The following pre-statistics processing was applied in SPM12 (Wellcome 

Trust Centre for Neuroimaging) using default settings: slice-timing correction, motion 

correction, field-map-based distortion correction, co-registration with structural MRI and 

normalization to MNI space, spatial smoothing using a Gaussian kernel of 8.0 mm Full-Width 
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at Half Maximum (FWHM), and high-pass temporal filtering with a cutoff frequency of 

0.0078 Hz. 

fMRI General Linear Model (GLM). To examine BOLD responses to the different decks, as 

well as the representation of prediction error signals, we performed a GLM analysis using 

SPM12 that included separate regressors indicating onsets of the appearance of the low, 

even and high decks, the computer’s number draw, the participant’s decision, and the four 

different types of outcomes (shock or no-shock outcomes of taken or declined gambles). In 

addition, the GLM included parametric regressors indicating the computer’s number when 

number was drawn, the participants’ choice at the time of decision, and the participant’s 

prediction errors at gamble outcomes. Prediction errors were computed by applying the 

learning model, instantiated with mean group parameters, to the participant’s sequence of 

stimuli and outcomes. Mean group parameters were used in line with previous work21-27 in 

order to regularize individual estimates, which are otherwise noisy, as well as to ensure that 

a participant’s behavioral data do not bias the results of the participant’s GLM analysis. This 

latter concern is particularly relevant to studies of individual differences in fMRI, in which 

different parameterizations of the model will return different results for the same fMRI 

dataset. Thus, when using individual parameterizations, it is uncertain whether inter-

individual differences in the results are due to differences in brain activity or due to 

differences in the parameterization of the model. The GLM also included 18 regressors for 

cardiac and respiratory phases to correct for physiological noise28 and 6 motion parameters 

regressors to correct for motion-induced noise. In addition to this primary GLM, to test 

whether the BOLD response to outcomes reflected both previous experience with the decks 

and the computer’s numbers, we used an additional GLM with similar regressors but 

including two parametric regressors at gamble outcome onset, one indicating the Q value of 

the current deck as derived from the model, and another one indicating the number drawn 

by the computer, orthogonalizing in turn the two regressors with respect to one another. 

Group-level significance of prediction error GLM coefficients was tested with FWE 

correction for the volume of the striatum, or, when examining BOLD response in a region of 

interest as a whole, by averaging the coefficients extracted from all voxels that comprise the 

region and then using a bootstrap test, Bonferroni-corrected for the number of regions. 

Anatomical regions of interest were identified using MNI coordinates provided with SPM12 

by Neuromorphometrics, Inc. (Somerville, MA, USA) under academic subscription. Statistical 

brain maps were imaged using MRIcroGL (http://www.mccauslandcenter.sc.edu/mricrogl/) 

and overlaid on high-resolution anatomical images provided with the software. 

fMRI time course analysis. To assess the time course of the effects of different components 

of the prediction error on the BOLD response to outcomes, we regressed the preprocessed 

BOLD signal (averaged across the functionally defined striatal ROI) for each time point from 

2 s prior to outcome onset to 8 s following outcome onset against the model-derived deck Q 

value and the number drawn by the computer. The BOLD signal was upsampled to 100 Hz to 

allow averaging across trials with disparate fMRI acquisition timings. Both the BOLD signal 
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and the regressors were z-scored. The two regressors were orthogonalized with respect to 

one another. The regression was performed separately for each type of outcome and for 

each functional MRI run (each run corresponded to an experimental block), and regression 

coefficients were averaged across runs.       

fMRI functional connectivity analysis. To examine functional connectivity with striatal and 

amygdala areas in which responses to outcomes were modulated by expectations, we fit a 

GLM that included as regressors the preprocessed BOLD signal from three areas: 1. Striatal 

area where responses to no-shock outcomes were modulated by expectations (p < 0.05 FWE 

small-volume corrected). 2. Amygdala area where responses to shock outcomes were 

modulated by expectations (p < 0.05 FWE small-volume corrected). 3. Average gray matter 

signal. Thus, the coefficients fitted to the first two regressors reflected functional 

connectivity specific to either the striatal or amygdala ROI, accounting for variance shared 

between these regressors as well as with the global gray-matter signal. The GLM also 

included 18 physiological regressors and 6 motion parameters regressors to correct for 

these sources of noise.  

fMRI response to decks. To examine the similarity between the BOLD response to the even 

deck and the BOLD response to the low and high decks, we computed for each participant 

the Euclidean distance between the vector of gray-matter GLM coefficients for the even 

deck and the GLM coefficients for the low (Deven/low) and high (Deven/high) decks. We then 

computed the even deck similarity index as 
Deven/low−Deven/high

Deven/low+Deven/high
. A similarity index of 1 

indicated identity to the high deck and a value of –1 indicated identity to the low deck. 

 Skin conductance analysis. We tested the effect of outcomes on skin conductance using 

SCRalyze (http://scralyze.sourceforge.net), which employs a GLM for event-related evoked 

skin conductance responses29. Skin conductance time series were filtered with a 

bidirectional first order Butterworth band pass filter with cut-off frequencies of 5 and 

0.0159 Hz, and then modeled using the same GLM used for the fMRI analysis.  

Voxel-based morphometry. To compute gray matter density maps, we segmented the MT 

maps into different tissue classes – gray matter, white matter and non-brain voxels 

(cerebrospinal fluid, skull) – and then normalized the tissue maps to MNI space using the 

Dartel algorithm in SPM12 with default settings. Subsequently, the tissue maps were scaled 

by the Jacobian determinants from the final normalization step, so as to preserve the total 

volume of tissue in each structure30, and then smoothed by convolution with an isotropic 

Gaussian kernel of 3 mm FWHM.  

Learning biases prediction. To predict participants’ learning biases (η+ minus η–), we used 

gray matter density data from the 6,315 voxels that comprised the striatum (corresponding 

to the caudate, putamen and accumbens labels in the MNI atlas) as 6,315 predictors in a 

regularized linear regression model. Predictions were generated in a 5-fold cross validation 

scheme, predicting the learning biases of each fifth of the participants using a regression 
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model that was fitted to the rest of the participants31. Regularization was performed using 

the Least Absolute Shrinkage and Selection Operator (LASSO) method32. We used 5 different 

settings of the LASSO shrinkage factor (1, 0.1, 0.01, 0.001, 0.0001) and found that 0.0001 

yielded the highest correlation between predicted and actual values. We corrected for 

multiple comparisons using a permutation test, in which the null distribution was generated 

by permuting the vector of actual learning biases 10,000 times, and applying the same 

procedure described above to predict each permuted vector with each of the 5 shrinkage 

factors while taking the highest correlation coefficient found for each permutation. To 

ensure that predictions did not simply reflect global effects of participant age, sex or whole-

brain gray matter volume, we regressed all variance that could be explained by these 

variables out of the predicted learning biases.  

Statistical analysis. Since many of the variables of interest were not normally distributed, we 

report non-parametric statistics throughout the manuscript. Bias-corrected and accelerated 

bootstrapping33 with 10,000 samples was used to generate 95% confidence intervals and to 

test the significance of differences between two vectors or between a single vector and 

zero. Randomization tests34 with 10,000 permutations were used to test significance of 

correlations. All correlation coefficients denote Spearman rank correlations, except for the 

correlation between predicted and actual learning biases which denotes Pearson linear 

correlation, since learning biases were predicted using a linear regression model. All non-

directional tests are two tailed and all directional tests are one tailed. All data analysis was 

performed using MATLAB (Mathworks, Natick, MA, USA). 
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