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SI Results 

Practical example analysis using the Immuno-Navigator database 

Analysis of single genes 

Immuno-Navigator can be accessed here. Only a brief description of an example query is given here. 

For more information, we also refer to the relevant sections of the main text, and to the online 

documentation of Immuno-Navigator.  

We will use Foxp3 as an example query gene. On the top page, we can input the gene symbol 

“Foxp3” as a query (Fig. S1A). The gene page (Fig. S1B) includes basic information and links to 

external databases. Below this, there are several tabs with additional data. The “Probes” tab shows 

the available probe set identifiers for this gene, as well as a boxplot showing the distribution of 

values observed for this probe in each cell type. In this case, Foxp3 has only one probe set, and its 

highest signals are observed in regulatory T cell (Treg) samples, which fits with the known function of 

Foxp3 as master regulator in the development and function of Tregs (1, 2). Hovering over the 

boxplots shows additional information, such as the cell types and median signals.  

Clicking the probe set ID takes the user to a table showing PCCs between this probe and all other 

probes in the dataset for all combined data and for cell types of interest (Fig. S1C). Probes can be 

sorted in order of increasing or decreasing PCC values for each dataset. Under “cell type selection”, a 

http://sysimm.ifrec.osaka-u.ac.jp/immuno-navigator/index.php
http://sysimm.ifrec.osaka-u.ac.jp/immuno-navigator/index.php?tab=documentation
http://sysimm.ifrec.osaka-u.ac.jp/immuno-navigator/index.php?tab=documentation
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selection can be made of cell types to display in the table, using a menu in which cell types are 

roughly ordered according to the hematopoietic lineage tree (Fig. S1D).  

From the table, for any cell type, scatter plots can be shown for the probe of interest versus any 

probe in the table (Fig. S1E). In this case, the probe of Foxp3 is shown against a probe for Il2ra (also 

known as Cd25), another marker for Tregs, over all data (left, with samples coloured according to 

cell type) and within the Treg data only (right). The correlation between Foxp3 and Il2ra within the 

Treg samples is relatively high (PCC: 0.45), but their correlation is exceptionally strong over the 

entire dataset (PCC: 0.82), with Treg samples being the only samples with high signals for both 

genes. This is also true for other Treg markers (such as Tnfrsf4 (also called Ox40), Gpr83, Ctla4, Ikzf4 

(also called Eos)), but also genes which have so far not been reported as candidate markers. Pairwise 

comparisons can also be directly accessed from the tab “Gene pair comparison” on the top page 

(Fig. S1A). 

The tab “Top correlated genes” shows the top positively and negatively correlated genes for the 

query gene in each cell type, and the PCC values of the query gene versus the genome-wide set of 

genes can also be downloaded, for all datasets. The tab “Correlation network” shows for each cell 

type a small network of the query gene, its 5 most strongly correlated genes, and in turn their 5 

most correlated genes (Fig. S1F). Thick edges represent significantly correlated genes. In this case, 

within the Treg samples, Foxp3 is significantly correlated with Il2ra (Cd25), Dst, and Ikzf4 (Eos). These 

genes, in turn, are highly correlated with other Treg markers, such as Nrp1, Ctla4, and Tnfrsf4 (Ox40). 

On the other hand, Foxp3 has also high (though not significantly high) correlation with Nfkb1 and 

Bcl3. Nfkb1 encodes a subunit of NF-κB, a key regulator of the response to various immune stimuli, 

and Bcl3 encodes a transcriptional co-activator of NF-κB. These two genes are in turn connected 

with Stat3, an important regulator of responses to cytokines and immune tolerance (3). Thus, the 

inspection of neighboring genes in the correlation network can suggest the function of the query 

gene and the presence of distinct regulatory modules. These correlation networks can also be 

downloaded in the Cytoscape.js (cyjs) format (4).  

Correlation Gene Set Enrichment Analysis 

It is often interesting to see if a gene of interest has any bias in its correlation with a set of genes 

that share some particular features. We implemented a tool, “correlation GSEA”, to detect such 

biases using a modification of the widely used Gene Set Enrichment Analysis (GSEA) approach (5) 

(see SI Appendix, section “Haemcode ChIP-seq analysis”). Correlations of the query gene X with the 

set S of input genes are compared with those with non-input genes. Biases between them can 

subsequently be quantified using “enrichment scores”, as defined in the original GSEA study. High 

positive enrichment scores indicate a bias towards positive correlation between the query gene and 

S, high negative enrichment scores indicate a bias towards negative correlation. These are not 

exclusive; as we will show below, a regulator can have both a bias towards positive as well as 

towards negative correlations with its target genes. A lack of a clear bias results in enrichment scores 

close to 0. 

An example of  features suitable for this methodology would be DNA binding af a regulator protein, 

which can be inferred from ChIP-seq data. The query gene X can be the gene encoding the protein 

for which a ChIP-seq experiment was conducted (hereafter referred to as the “ChIPed regulator”), 
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and the set S could be genes that appear to be bound by that regulator. Although this approach is 

not limited to such inputs, below we will focus on the analysis of ChIP-seq data. 

Here, we present the analysis of 104 ChIP-seq data sets provided in the Heamcode database (6) (see 

SI Materials and Methods section “Haemcode ChIP-seq analysis”). For each experiment, we 

calculated GSEA enrichment scores between the ChIPed regulator and its target genes, using the 

expression data of the same cell type as used for the ChIP-seq experiment. Fig. S14 shows an 

overview of the results (Fig. S14A), as well as a few example cases with distinct tendencies (Fig. 

S14B-E). A complete list of positive and negative enrichment scores are also shown in Table S5. 

Roughly, we can distinguish 3 broad classes. 

A first class is regulators with a bias towards positive correlation with their target genes. This 

tendency was frequently observed: as a rough illustration, in 46 out of 102 Haemcode datasets a 

positive enrichment score > 0.2 was obtained. Factors Elf1, Foxo1, and Ets1 in Tregs (marked in red 

in Fig. S14A) show a high positive enrichment score, indicating a relatively strong bias towards 

positive correlation with target genes (see also cumulative distribution plots in Fig. 5 in the main 

text). Stat1 and Nfkb1 in cDC cells show a similar tendency towards positive correlation (marked in 

Fig. S14A; see also Fig. S13 for the cumulative distribution plots). As an illustration, the enrichment 

score plot for Stat1 in cDC cells is shown in Fig. S14B. The high positive enrichment score (0.52) 

reflects a strong tendency for Stat1-bound genes to have positive correlation with the Stat1 gene 

expression in cDC cells.  

In a second group of cases, no clear bias towards either positive or negative correlation was seen. As 

described in the main text of this paper, Foxp3 expression in Tregs follows this pattern (see also 

cumulative distribution plots in Fig. 5 in the main text). Fig. S14C shows the enrichment plot for 

Foxp3 in Treg cells. The positive (0.114) and negative (-0.012) scores are low, reflecting a lack of 

correlated expression between Foxp3 and Foxp3-bound genes in Tregs. In contrast, as described in 

the main text (see also Fig. S13A), Foxp3 does tend to have positive correlation with its target genes 

when seen over the combined data for all cells (enrichment score: 0.225). This correlation is caused 

by Foxp3 and its target genes both having high expression in Treg cells, even though they lack 

correlation within the Treg-derived data. 

Plotting the positive enrichment score of each ChIPed regulator in the cell type that was used for the 

ChIP experiment versus that over the combined data, we could identify several additional regulators 

following a similar pattern to that of Foxp3 in Tregs (Fig. S15). Examples include E2f1, Hif1a, Maff in 

cDCs, Junb, Sfpi1, C/EBPβ, and Atf3 in macrophages, Foxp3 in Tregs, and Stat6 in Th2 cells.  

A third pattern is shown in Fig. S14D. Here, PU.1 (encoded by Sfpi1) shows a weak enrichment 

towards both positive correlation as well as towards negative correlation of expression with its 

target genes in macrophage cells. This pattern was observed for a limited number of TFs, including 

C/EBPβ in macrophages, and to a lesser degree in cDC cells (see also Fig. S13C). These factors are 

known to have genome-wide widespread binding in these cell types, and have been described to 

pre-bind regulatory regions of stimulus-induced and -repressed genes even before stimulation (7). 

One possible explanation for the bias towards both positive and negative correlation is therefore 

that the binding of these factors prepares a scaffold for stimulus-dependent activators and 

repressors to bind to after stimulation of the cells, resulting in both positive and negative correlation 
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of expression with the query gene. In addition, there was a strong bias towards positive correlation 

of expression between PU.1 and its target genes when considering the combined expression data of 

all cell types (Fig. S14E). This correlation is caused by PU.1 having high expression in macrophages 

and cDC cells, a pattern which is also observed for PU.1 target genes. This is similar to our 

observations for Foxp3 and its targets in Tregs. 

One pattern which was not present in our data is regulators with a strong shift towards negative 

correlation of expression with target genes. This might reflect the absence of regulators with a 

strong, exclusively repressive function in the Haemcode dataset. In addition, as also noted in the 

main text, strong negative correlations of expression appear to be in general rare compared to 

positive correlations.  

Several studies have reported binding of TFs to sites which might not have a direct role in 

transcriptional regulation, or which might be “non-functional” (see (8) for a general review). 

However, such reports are often based on the analysis of only a few gene expression samples. Our 

data and tools, on the contrary, allow a more thorough analysis, based on large numbers of samples 

from the relevant cell type, covering a wide range of conditions. Our results partly confirm the 

apparent widespread “non-functional” binding: in most of the ChIP-seq datasets a substantial 

fraction of bound genes lack clear correlation of expression with the ChIPed regulator. At the same 

time, our results suggest an alternative interpretation for some of these reports: for a subset of 

regulators that lack correlation in the relevant cell type, we did observe correlation of expression 

over the combined data of all cell types. This reflects the regulator and its target genes being 

expressed in the same cell types together. Such regulators might be more relevant in the 

establishment and maintenance of cell type identity, rather than in regulation of expression 

following stimulation. Indeed, several of the regulators which showed this tendency are generally 

regarded as so-called “master regulators” or “pioneer factors” (Fig. S15), and play a key role in the 

differentiation and establishment of cell type identity. Further over-expression or knock-down using 

RNAi of such TFs in these cell types might have only little effect on target gene expression once the 

cell type has been fully developed. Although such binding events might appear to be “non-

functional”, they obviously are not. 

In summary, in combination with ChIP-seq (or similar) data, our correlation GSEA analysis can be 

useful in interpreting different types of regulatory binding events.  

This approach is made available on the Immuno-Navigator website (“correlation GSEA”). In our tool, 

the user can give as input one query gene X, and a set S of genes for which to extract the correlation 

with gene X. In addition, a cell type can be specified. The tool subsequently extracts the correlation 

values between query X and all genes in S in the expression data of the specific cell type. Graphs are 

generated visualizing the biases in correlation values between the input and non-input. Enrichment 

scores and associated p values (based on a Kolmogorov-Smirnov test; not discussed here) are also 

shown. Resulting output files are made available for download. 
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Analysis LPS-inducible genes in dendritic cells 

Here we describe the application of Correlation Network Hub Prediction (CNHP) on 345 genes with 

induction of expression 4 hours after lipopolysaccharide (LPS) stimulation in mouse dendritic cells 

(DCs), which is a relatively well studied system for which several regulators of importance are known.  

Fig. S12A shows the genes that are frequently highly correlated with the LPS-inducible input genes in 

conventional DC (cDC)-derived expression data. Here, only genes with the annotation term “nucleic 

acid binding transcription factor activity” are shown. Several known regulators of the response to 

LPS are highly correlated with the input genes, such as STAT and IRF family members, NF-κB subunits 

(Nfkb2, p: 1e-83; Rel, p: 1e-73; Relb, p:1e-52; Nfkb1, p: 1e-19), Junb (p: 1e-61), and Cebpb (p: 1e-71). 

The promoter regions of the input genes are strongly enriched for binding sites for several of these 

transcription factors, further supporting the CNHP result (Fig. S12B). Thus, the frequently correlated 

genes might reveal potential regulators (not restricted to only transcription factors) of the input 

genes. For many of the frequently correlated genes in the cDC data, similarly high correlations are 

found in the data obtained from macrophages and to a lesser extent from plasmacytoid dendritic 

cells (pDCs) and monocytes (Fig. S12A). This suggests that in these four closely related cell types, 

similar patterns of expression correlation are present. A similar pattern can be seen in mature B cells 

as well. Although B cells are part of the adaptive immunity, they are also antigen presenting cells, a 

function which they share with DCs and macrophages. This might explain a partly shared regulatory 

network between these cell types. In contrast, relatively unrelated cell types, such as the 

Megakaryocyte-Erythroid Progenitor (MEP) cells show little similarity.  

A final observation is that some genes have a high degree of correlation in the data of many cell 

types, while the correlation of other genes is restricted to one or a few cell types. For example, Stat1 

and Irf7 are highly correlated with the input set of LPS-inducible genes in macrophages, cDCs, 

mature B cells, and pDCs, but also in CD4+ T cells, CD8+ T cells, Tregs, hematopoietic stem cells 

(HSCs), Pre-B cells, and a number of other cell types. In contrast, correlation of Batf2 with these LPS-

inducible genes appears to be specific to macrophages and cDCs. This suggest that the role of Stat1 

as regulator of the response to pathogens might be more general, while that of Baft2 is restricted to 

a few cell types. In relation with this, we also refer to Figure 4 and the modes of expression 

correlation that we described above.  

 

Analysis of Foxp3-dependent and -independent genes 

In this section, we present two additional analyses that can be easily performed using the data in 

Immuno-Navigator. As input for this analysis, we use sets of Foxp3-dependent, Foxp3-amplified, and 

Foxp3-independent genes, as defined in the work by Gavin and colleagues (9). Such sets of genes are 

typical input sets to analyse using our data. Note that these gene sets are independent from the 

ChIP-seq based Foxp3-bound target gene set described in the main text of this study. 

In a study on the differentiation of Treg cells, Gavin and colleagues uncovered sets of genes with 

varying dependence on Foxp3. For this, they used gene expression data of CD25+ Foxp3- CD4+ T cells 

(referred to as “T25”), Foxp3null-expressing T cells (“TFN”, which actively transcribe a non-functional 

Foxp3null allele, yet lack Foxp3 protein), regulatory T cells (referred to as “TR”), ad naïve T cells (“TN”) 
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in thymus and in peripheral lymphoid organs. They used hierarchical clustering and manual curation 

to define 16 sets of genes (see Fig. 3 and Supplementary Fig. 5 in the paper by Gavin et al.).  

For the sake of brevity, we limit the discussion here to the peripheral gene clusters containing 

Foxp3-dependent (cluster P3), Foxp3-amplified (cluster P4), and Foxp3-independent (cluster P7) 

genes. Although the clusters reported by Gavin et al. contain both genes with induced and repressed 

expression in presence in Treg cells (compared to naïve T cells), here we focussed only on the 

induced genes within each cluster. Set P3 contained 124 genes, set P4 72 genes, and set P7 63 genes. 

In the first analysis, we used correlation GSEA to investigate the correlation of expression of these 

three sets of genes with the expression of Foxp3 within Treg-derived samples. In the secondly 

analysis, we used CNHP to find genes that are highly correlated in Treg cells with each gene set. 

Correlation of expression with Foxp3 in Treg cells 

Using the correlation GSEA function of the Immuno-Navigator database, we obtained the correlation 

of expression data for Foxp3 versus all genes in the mouse genome in Treg-derived samples. Using 

this data, we evaluated whether genes in clusters P3, P4, and P7 tend to have correlated expression 

with Foxp3 or not. Results are summarized in Fig. S16A.  

We observed that, as expected, genes in clusters P3 and P4 tend to be positively correlated with 

Foxp3 expression in Tregs (Fig. S16A). Intuitively more surprising is the observation that the Foxp3-

independent genes in P7 too tend to have positive correlation with Foxp3 expression. However, P7 

might include genes whose induction during Treg cell differentiation precedes, or regulates, that of 

Foxp3. Alternatively, P7 might also include genes which are Foxp3-independent yet are regulated by 

the same mechanism that controls Foxp3 induction. Both cases can explain the tendency towards 

positive correlation of expression. A third possibility is that the classification in Gavin et al. was not 

completely accurate, and P7 includes a considerable amount of Foxp3-dependent genes. Since the 

classification is based on only a small number of samples, we can not rule out this last alternative. 

In combination with the results presented by Gavin et al., the above observations support the key 

role of Foxp3 in Treg cells. A relatively large number of genes were shown to be Foxp3-dependent or 

Foxp3-amplified by Gavin et al. Here we showed that these genes indeed have correlation of 

expression with Foxp3, in a collection of 240 samples obtained from Treg cells. However, on the 

other hand, correlation values between Foxp3 and these genes are in general relatively low (typically 

PCC values < 0.4). In addition, as described in the main text, we observed that the expression of 

genes that are bound by Foxp3 in Tregs is not necessarily correlated with Foxp3 expression. Together 

with the weak correlation observed even between Foxp3-dependent genes and Foxp3, these results 

support the existence of additional regulatory mechanisms that are independent of, or 

supplementary to, Foxp3-mediated regulation. 

Correlation Network Hub Prediction of the gene clusters 

We used the above three gene sets as input for our CNHP function. Fig. S16B-D shows the 10 top-

scoring genes for each set. Below, we present and discuss some of the observations we could make.  

In general, as in the results presented in Fig. 6 of the main text, high-scoring genes typically 

contained several known genes of importance, in addition to several genes with no known function 

in Treg cells. These genes might present valuable candidates for further analysis. 
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For the Foxp3-dependent genes (cluster P3), high-scoring genes include known genes of importance 

(Icos; rank 17, and Nrp1; rank 22), as well as genes which were also high-scoring in the analysis of 

Treg-specific genes (see Fig. 6; Fam129a, Tiam1, Lclat1, etc). Il1rl1 (rank 10; encodes the Il33 

receptor ST2) has recently been reported to be especially induced in effector Treg cells and in 

colonic Treg cells, and to be essential for the development and maintenance of Treg cells in visceral 

adipose tissue (10, 11). 

For the Foxp3-amplified genes (cluster P4), high-scoring genes include several of the known genes of 

importance in Treg cells, including Il2ra (Cd25), Ctla4, Tnfrsf4 (Ox40), Irf4 (rank 17), Prnp (rank 21), 

Cd83 (rank 22), Dusp4 (rank 28), Icos (rank 37), Socs2 (rank 41), and Ikzf4 (rank 44).  

Here too, Tiam1 (rank 7) is found to have correlated expression with many of the P4 genes. As 

mentioned in the main text, Tiam1 has been shown to be important in the activation of LFA-1 

through TCR-signaling. Vav2 (rank 8), too, is known to play a role in TCR-signaling (12, 13). 

While high-scoring genes in the P3 and P7 cluster show correlation only in Treg-derived samples (Fig. 

S16B,D), in contrast, for P4 there is correlation in Treg-derived as well as in CD4 T cell-derived data 

(Fig. S16C). Since genes in the cluster P4 are Foxp3-amplified (see Gavin et al.), it might suggest that 

the differential expression of these genes is already partly established even in absence of Foxp3, and 

thus perhaps shared with Foxp3- CD4+ T cells. 

In the Foxp3-independent genes (cluster P7), the top scoring gene is Tiam1, which was highly scoring 

also in P3 and P4. Again, we observe a certain overlap between high-scoring genes of other clusters, 

and for the Treg-specific gene set described in the main paper. Igf1r (rank 4), like Itgb8 (rank 8), 

plays a role in focal adhesion, and several integrins have been shown to directly interact with Igf1r.  

General data analysis approach 
Fig. S22 shows a summary of the main steps in the processing and treatment of data before the 

populating of the Immuno-Navigator database. Input data consists of biological data (here: gene 

expression data), supplemented with prior knowledge of the biological system and experimental 

platform(s) of interest. Publicly available biological samples are processed (removal of duplicated 

samples, etc) and normalized in a standard way. Sample annotations include biological and 

experimental variables which at this stage will be used for assessing data quality and for batch effect 

reduction, in addition to their ultimate use in the cell type-specific analysis of the gene expression 

data. Using prior knowledge and reasonable assumptions, a number of indicators of data quality are 

defined. The indicators used in our study are described in SI Appendix, section “Evaluation of batch 

effect reduction”, and include general as well as system- (consistency with hematopoietic lineage 

tree) and platform-specific  (correlation between probe pairs representing the same gene) measures. 

Importantly, these measures are completely independent of batch annotations or batch effect 

reduction methods, and are defined over the entire dataset (e.g. based on the genome-wide data, 

not just a small subset of genes). Using these indicators, sample annotations, and quality indicators, 

an exploratory analysis of batch effects in the data is conducted, and its quality is assessed.  

In a next step, batch effects in the data are reduced, guided by the provided biological (here: cell 

type) and experimental (here: studies as proxy for batches) variables for each sample. The quality of 

the obtained batch-treated data is again assessed, and compared with the original data’s quality. As 
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described in this paper, for this study we found a general improvement of the gene expression 

correlation data after batch treatment. If quality is judged not to be sufficient or shows additional 

room for improvement, additional processing might be undertaken. Obviously, this step should not 

involve “tuning” of the data to the quality indicators. If batch effects appear to be weak, there might 

be cases in which the untreated data is sufficient for analysis.  

Finally, the obtained data is processed for populating the database (or further downstream analysis). 

In the present study, this involved, among other, processing of probe-to-gene annotations and cell 

type-specific expression data for populating a SQLite database, as well as pre-computing lists of top 

correlated genes, enriched GO annotations, etc. The final data is made accessible using a three-tier 

database architecture, in which various tools and supporting data are integrated into a user-friendly 

interface.  

This general workflow is applicable to various omics data, biological systems, or species, provided 

batch information is available. 

Assessment of the presence of batch effects 

Principal Component Analysis 

There exist a number of exploratory methods for assessing the presence of batch effects in biological 

data (14). One exploratory analysis is principal component analysis (PCA) followed by the plotting of 

samples marked by batch identifiers or by cell type. We  performed PCA on a random selection of 

3000 probes over all 3,434 samples, for the data before and after treatment of batch effects. Figure 

1A in the main text shows all samples of the untreated data plotted according to the first 2 principal 

components (PC), with color codes indicating cell types. Fig. S3 shows similar plots for PC1-PC3 (Fig. 

S3A), and PC2-PC3 (Fig. S3C). As also described in the main text, the association between PCs and 

biological variables is not so clear, especially for PC2. PC1 appears to be associated with cell types of 

the myeloid lineage, and PC3 appears to separate to some degree progenitor cells from non-

progenitor cells. PC1, PC2, and PC3 explain 19.0%, 10.8% and 7.4% of variance in the untreated data, 

respectively. 

For the batch-treated data, we refer to Fig. 1B in the main text (for PC1-PC2), to Fig. S3B (for PC1-

PC3), and to Fig. S3D (PC2-PC3). PC1, PC2, and PC3 explain 34.0%, 14.1% and 8.0% of variance in the 

data after batch effect reduction, respectively. As described in the main text, the PC1 divides cell 

types of the myeloid lineage (negative values), of the lymphoid lineage (positive values), and 

progenitor cells (intermediate values). PC2 is roughly associated with the degree of maturation of 

cells, with progenitor cells (such as hematopoietic stem cells, common lymphoid progenitors, 

common myeloid progenitors, megakaryocyte-erythroid progenitors) having high values, and more 

specialized cell types having lower values. PC3 of the separates especially mature B cells (large 

negative values) and to a lesser degree also Pre-B cells from the other cell types. 

Hierarchical clustering of samples 

A second exploratory analysis is to cluster samples according to their similarity, and label them with 

their “batch” identifiers (in this case the study by which the samples were published), and by 

biological variables (in this case: cell types). In the ideal case (when no batch effects are present), 

clustering of samples should result in samples for the same cell type forming clusters. In the 
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presence of significant batch effects, however, samples produced by the same study form clusters. 

Note however that the situation is complicated by the fact that in our case batches and biological 

variables are heavily confounded (e.g. many studies focus on one particular cell type). 

Because of the high number of studies (261) used in this analysis, it is hard to give a comprehensive 

overview of the batch effects over the entire dataset. Here we therefore briefly focus on the data for 

regulatory T cells (Tregs) only. Figures S4A and S4B show the clustering of samples before and after 

batch effect reduction, respectively. In the original data, samples are clearly clustered according to 

the batch (study) in which they were published. After batch treatment, samples from different 

studies are distributed much more evenly over the dendrogram, although some clustering by study 

still remains. Similar observations were made for other cell types. 

Evaluation of batch effect reduction 
As discussed in the main text, we found in general a tendency for probe pairs with high correlation in 

the raw data to be also correlated in the batch-processed data. On the level of correlated gene pairs 

too, we observed a significantly high overlap between the untreated and batch-treated data (Table 

S2). For example, in the macrophage (MΦ) data, the untreated and treated expression data contain 

each significantly positively 2,575,478 correlated gene pairs, of which 240,041 are shared. Although 

this represents only 9.3% of the gene pairs of the treated data, this is about 9.1 times more than the 

overlap one would expect at random (26,448 pairs, 1.0%). In all cell types, similarly high overlap was 

observed. Nevertheless, the shared number of correlate gene pairs was typically just 10 to 25% 

(range 5.5 to 32.6%; mean: 18.0%) of the total correlated gene pairs in each data set. In other words, 

although there is a significant overlap, there is also a considerable discrepancy between the 

untreated and batch-treated correlated gene pairs.  

Here we present a number of results that indirectly indicate that batch effect reduction improved 
the estimated gene expression correlation. In brief, we show that after batch effect reduction: 

1. Correlation values were more consistent between cell types. 

2. Related to the above, the number of gene pairs that were found to be significantly 
correlated in the data of multiple cell types was increased. 

3. Clustering of cell types according to similarity of their correlation data resulted in a 
clustering that was more consistent with the known hematopoietic lineage tree. 

4. Genes with shared functional annotations were more frequently found to be highly 
correlated. 

5. Probe pairs representing the same gene were more frequently highly correlated, compared 
to probe pairs representing different genes. 

Below, each of these results is described in more detail. 
  

Overlap in significantly correlated gene pairs between cell types 

Although each of the cell types included in our dataset has its own distinct features and role in the 

immune system, it is reasonable to assume that many biological pathways are shared between them. 

Under the assumption that correlation of gene expression reflects (directly and indirectly) biological 

pathways, we would therefore expect to observe a considerable amount of overlap in significantly 
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correlated gene pairs between different cell types. We found that treatment of batch effects 

resulted in an increase in consistency between cell types: Firstly, gene pairs that have highly 

correlated expression in multiple cell types increased in number after batch-treatment (Table S4). 

On the other hand, gene pairs that were found to be correlated in the data of only a single cell type 

decreased in number. Note that PCC thresholds were set in such a way that the number of 

significantly correlation gene pairs would be the same in the untreated and treated data, and that 

the above observations can thus not be explained simply by a change in the number of significantly 

correlated gene pairs. Secondly, batch effect reduction increased the overlap in correlated gene 

pairs between pairs of cell types in 183 (72%) out of the 253 cell type combinations (Fig. S6). These 

results are likely to reflect a reduction of spurious correlations observed in only one cell type, caused 

by batch effects. 

Clustering of cell types by similarity of co-expression between pairs of probes 

Blood cells differentiate from hematopoietic stem cells through a number of progenitor states into 

cells of the lymphoid and myeloid lineage. It is reasonable to assume that neighboring cell types in 

this lineage tree are defined by more similar biological pathways than distal ones. When we 

performed hierarchical clustering of cell types by their similarity of PCC values (see Materials and 

Methods section), the clustering is improved in the batch-treated data (Fig. S7B) compared with the 

raw data (Fig. S7A); roughly, 3 big clusters are formed, dominated by progenitor cells, by lymphoid 

cell types, and by myeloid cell types, respectively. On the other hand, for the untreated data, the 

clustering of cell types fits less well with the known lineage tree. 

Correlation between gene pairs with shared functional annotations 

Under the assumption that that genes with shared functions are expected to have correlated 

expression more often than gene pairs with unrelated functions, we compared the correlation 

between genes with shared Gene Ontology (GO) terms with the correlation between unrelated 

genes. Similar approaches have been proposed, such as a “GO score”, comparing genes with shared 

GO annotations with genes lacking shared annotations (15). 

We mapped all child annotations in the GO annotation to each of their parent nodes. Next, we made 

a selection of GO annotations that contained between 4 and 20 associated mouse genes. Gene pairs 

associated with each of these GO annotations we regarded as being functionally related.  

On the other hand, we made a set of functionally unrelated gene pairs as follows: we selected all GO 

annotation terms with at most 500 associated genes. Randomly, a large amount of gene pairs were 

selected, rejecting any gene pairs associated with a shared GO term. 

PCC values were calculated for all functionally related gene pairs, and all functionally unrelated gene 

pairs. Finally, we calculated the fraction of functionally related gene pairs having a PCC higher than 

99% of the PCCs of the functionally unrelated gene pairs.  

Results are summarized in Fig. S8, and show that after reduction of batch effects, the correlation of 

expression between functionally related gene pairs is increased relative to that between functionally 

unrelated gene pairs. We found an improvement in the batch-treated data in 22, 22, and 18 out of 

24 cell types, for the Biological Process, Molecular Function, and Cellular Component GO 

annotations, respectively. 
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Correlation of same-gene probe sets 

As a final measure, we used the correlation between pairs of probes representing the same gene. A 

considerable portion of mouse genes are represented by more than one probe set on the Affymetrix 

GeneChip Mouse Genome 430 2.0 platform.  Although the interpretation of such probe sets 

mapping to the same gene is not always straightforward (16), it is reasonable to assume that, on 

average, probe sets representing the same gene should have a higher tendency to be positively 

correlated than probe sets representing different genes.  

Comparing the distribution of PCC values of all same-gene probe pairs (35,164 probe pairs, 

representing 10,556 genes that have multiple probes) with that of different-gene probes (for probes 

representing 35,164 randomly selected gene pairs), we found that for all cell types there was a 

relative increase of correlation between same-gene probes in the batch-treated data (Fig. S9). It 

should be stressed that batch effect reduction was performed on the probe intensity data, 

completely independent of probe-to-gene mapping data. 

As an example, Figure S10A shows the distribution of PCC values over all untreated samples 

obtained from macrophages, for both randomly selected pairs of probe representing different pairs 

of genes (black), and for all pairs of probes representing the same gene (red lines). Clearly, even in 

the untreated data, same-gene probe pairs tend to be more positively correlated, in general. Figure 

S10B shows the same histogram for the batch-treated macrophage data. Compared with the 

untreated data, the variance in PCC values for randomly selected pairs of probes has strongly 

decreased. For the same-gene probes too, the variance has decreased, but a subset of probe pairs 

continue to show high positive correlation. As a result, batch reduction results in a relative increase 

in correlation between same-gene probes as compared to probes representing different genes. We 

evaluated this relative increase using Receiver operating characteristic (ROC) curves. The ROC curves 

for the macrophages data, before (black) and after (red) batch treatment (Fig. S10C) show an 

increased distinction between same-gene probe PCCs and the PCCs of randomly selected probes. 

Similar improvements were seen in the data for all cell types (Fig. S9). 

SI Materials and Methods 

RNA-seq analysis of CD25pos and CD25neg T cells 
High-throughput sequencing of RNA (RNA-seq) was conducted for CD25pos T cells, unstimulated 

CD25neg T cells, PMA-stimulated CD25neg T cells, and anti-CD3-stimulated CD25neg T cells. C57BL/6 

mice (Female, from 5-6weeks) were purchased from CLEA Japan. CD4+ T cells were isolated from 

splenic and lymph nodes as previously described (1). CD8-B220-CD16/32-NK1.1-CD4+CD25+ T cells 

(Treg cells) and CD8-B220-CD16/32-NK1.1-CD4+CD25−CD44low T cells (Tconv cells) were purified by 

sorting with a cell sorter (MoFlo; Beckman Coulter). For in vitro TCR stimulation of cells, plates 

coated with anti-CD3 (1 µg/mL) and anti-CD28 (1 µg/mL) for 6 h or phorbol 12-myristate 13-acetate 

(20 ng/mL) and ionomycin (1 µM) for 2 h with recombinant IL-2 for Treg or without recombinant IL-2 

for Tconv were used. Anti-Il2ra (PC61), anti-CD4 (RM4.5), anti-CD44 (IM7), anti-CD8a (53-6.7), anti-

B220 (RA3-6B2), anti-CD16/32 (2.4G2), and anti-NK1.1 (PK136) were obtained from BD PharMingen, 

Biolegend, or eBioscience. Anti-CD3 (2C11) and anti-CD28 (37.51) were used for in vitro T-cell 

stimulation. Mouse recombinant IL-2 was a gift from Shionogi Co. Total RNAs  were extracted from 

sorted cells using Trizol (Qiagen), and were subjected to TruSeq library prep kit (Illumina), and read 
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by Hiseq2000 (Illumina). Sequencing data have been deposited in the DNA Data Bank of Japan (DDBJ) 

under accession number DRA004105. Obtained sequences were mapped to the mouse genome 

(mm9) by tophat2 (17).  

Treg-specific genes were defined as follows. The number of reads aligned to each gene was counted, 

and normalized using DESeq (18). Genes with high preferential expression in Tregs defined as genes 

with a sufficiently high tag count in the CD25pos sample (higher than the median non-zero tag count, 

308.7), and the tag count in the CD25pos sample should be at least 2-fold higher than that in any of 

the CD25neg samples. From this set, genes induced (>2-fold enrichment) upon stimulation of CD25neg 

cells by PMA or anti-CD3 were removed. This resulted in a set of 248 genes (Refseq IDs). 

ChIP-seq analysis in Tregs and DCs 
For the analysis of Foxp3 binding in Tregs, ChIP-seq data for Foxp3 binding in Treg cells was obtained 

from DDBJ accession number DRA003955. Obtained sequences were mapped to the mouse genome 

(mm9) by bowtie2 (19), and peak-called by FindPeaks (20). Peaks with at least a 7-fold stronger 

signal in the ChIP sample than in the input sample were retained, and from those the 25% with the 

highest score were selected. Finally, 1,300 genes were associated with at least one of these peaks 

(region -100kb to +100kb around transcription start site). Results were consistent when other 

thresholds were used.  

For Elf1 and Ets1 (21), and Foxo1 (22) binding in Tregs, ChIP-seq reads were obtained from NCBI 

Genome Expression Omnibus (GEO), access numbers GSE40684 and GSE40657. Mapping, peak 

calling, and selection of target genes were performed as described above. For Elf1, Ets1, and Foxo1, 

2252 1278, and 2868 bound genes were obtained, respectively. 

For PU.1, C/EBPβ, Nfkb1, and Stat1 binding in DCs before and after stimulation with LPS, ChIP-seq 

data was obtained from GEO accession number GSE36104. Peak scores were used as reported in the 

original study (7), with scores above 26.9 regarded as significant. For each transcription factor, target 

genes were defined as genes with significant peaks in the region -5kb to +5kb around their 

transcription start site in at least one of the ChIP-seq samples for the transcription factor. Thus, 8758, 

7143, 500, and 618 bound genes were obtained for PU.1, C/EBPβ, Nfkb1, and Stat1, respectively. 

Haemcode ChIP-seq analysis 
We obtained target genes for a collection of 104 TFs and DNA-binding proteins from the Haemcode 

database (6). Haemcode contains, among others, ChIP-seq peak data obtained from publicly 

deposited ChIP-seq data, processed using a consistent analysis pipeline. Haemcode also provides 

annotation files in which ChIP peaks are assigned to candidate target genes, based on the overlap 

between peaks and genes or the distance between them. We collected target genes for the 104 TFs 

and DNA-binding proteins for which data was available for cell types present in our database. This 

covered 61 different factors, and 14 different cell types. Table S5 shows an overview of the data.  

For each factor, cell type, and study, we defined target genes using the Haemcode annotation data, 

as follows: target genes should overlap with a ChIP-seq region peak, or the distance between the 

gene and the peak should be at most 100 kbs. Genes meeting this condition were regarded as 

targets, and other genes as non-targets.  



14 

 

From our database, we collected the expression correlation data for the gene encoding the ChIPed 

regulator in the cell type used for the ChIP-seq experiment. As measure for the bias in correlation 

between the CHIPed regulator and its targets we calculated “enrichment scores”, similar to those 

used in Gene Set Enrichment Analysis (GSEA) (5). In brief, genes are sorted by their correlation with 

the ChIPed regulator. Enrichment scores are subsequently calculated by going through the sorted list 

of genes, increasing a running-sum score whenever a target gene is encountered, and decreasing it 

when a non-target gene is encountered. The maximum and minimum of this running-sum score are 

used as a measure for the bias in correlation between the ChIPed regulator and its targets as 

compared to the non-targets. For a more detailed description about GSEA and enrichment scores, 

we refer to (5). 

Enrichment scores were analysed for all 104 datasets (see SI Appendix, section “Correlation Gene Set 

Enrichment Analysis”). 

FACS sorting and CpG methylation analysis of Foxp3+ Itgb8+ T cells 
FITC-conjugated anti-CD45RA (HI100) mAb and V500-conjugated anti-CD4 (RPA-T4) mAb were 

purchased from BD Biosciences. PE-conjugated anti-FoxP3 (236A/E7) mAb and purified anti-Itgb8 

(416922) were purchased from eBioscience and R&D Systems respectively. Anti-Itgb8 mAb was 

biotinylated by Biotin Labeling Kit - NH2 (Dojindo).  

Human CD4+ T cells were enriched from PBMCs of healthy donors by using BD IMag system. 

Enriched Th cells were stained with anti-Itgb8 mAb for 30 min on ice. After washing, cells were 

incubated with streptavidin-labeled APC (BD Biosciences) and other antibodies for 30 min.  FoxP3 

staining was performed after fixation by Foxp3 / Transcription Factor Staining Buffer Set 

(eBioscience) and FoxP3+Itgb8+ cells were sorted by FACSAriaII. 

All donors provided written informed consent before sampling according to the Declaration of 

Helsinki. The present study was approved by the institutional ethics committees of Osaka University. 

Methods and primers for CpG methylation analysis were previously described (23). Briefly, genomic 

DNA was subjected to bisulfite treatment using MethylEasy Xceed (Human Genetic Signatures), 

followed by PCR amplification of target regions and subcloning into pTAC-1 plasmid in DynaExpress 

TA PCR Cloning Kit (BioDynamics Laboratory Inc). 16 colonies per region were amplified with the 

Illustra TempliPhi Amplification Kit (GE Healthcare) and sequenced. 

LPS-induced genes in mouse DCs 
A set of genes induced in GM-CSF-induced bone marrow-derived DCs by LPS was defined as follows. 

RNA-seq data for mouse DCs before and 4 hours after LPS stimulation was obtained from the DDBJ 

Sequence Read Archive; accession number DRA001131 (24). Reads were mapped to the mouse 

genome (mm10) using Tophat and Bowtie (19, 25). Uniquely mapped tags with at most 2 

mismatches were counted per mouse Refseq gene, and converted to reads per million reads per 

kilobase (RPKM). Genes with at least a 5-fold induction of expression 4 hours after stimulation and at 

least one sample with an RPKM value higher than the genome-wide median RPKM were defined to 

be significantly induced. This resulted in a set of 449 Refseq IDs, representing 345 unique genes. 
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Construction of Shuffled Data 
It is not hard to see that batch effects increase absolute values of PCCs. Fig. S18 shows a toy example 

of two probes which are not correlated in reality, measured in 2 batched of 10 samples each (Fig. 

S18A). Adding batch effects to the batches (in this case a simple shift; increasing values for both 

probes in batch 1 and decreasing them in batch 2) results in an apparent strong (in this case positive) 

correlation between the two probes (PCC for Fig. S18A: 0.079; for Fig. S18B: 0.854). It is therefore 

not surprising to observe that absolute PCC values are decreased after treatment of batch effect (see 

also Fig. 2A in main text, and Fig. S5). 

For our analysis, we defined “significant” correlations using a false discovery rate (FDR) measure, 

comparing correlation values obtained from the actual data, with those obtained from artificial data. 

However, it is reasonable that some batch effect remains even in the batch-treated data. Because of 

this, the PCC values in this batch-treated data are still likely to be to some degree biased towards 

extreme values. To prevent this from inflating the number of significantly correlated probe pairs, we 

constructed our artificial data in a way that would preserve batch effects that might still be present 

in the batch-treated data. We did this using “batch-guided” shuffling, as follows:  

1. For each cell type, we collected all batch-treated samples, along with their corresponding 

batch index (identifier for the study they were published by). 

2. For each probe, values were randomly shuffled one batch at the time: 

a. if a batch contained at least 5 samples for the cell type of interest: values for the 

probe were shuffled within the batch. 

b. if the batch contained less than 5 samples for the cell type of interest: a 

corresponding number of values were randomly sampled from all values of this 

probe over all batches. 

This approach assures that if some particular batch contains extreme values, these extreme values 

will also be preserved in the artificial data. Note that in the absence of batch effects this approach is 

essential identical to random shuffling of data per probe, regardless of batch indices.  

Using the same toy example as above, we illustrate the effect of this “batch-guided” shuffling. Fig. 

S18C shows the scatter plot of the samples in the toy example with batch effects (see Fig. S18B) 

after default random shuffling regardless of batch indices. Fig. S18D shows the scatter plot of the 

same samples after batch-guided shuffling. The PCCs are 0.152 and 0.810, respectively. In the latter 

case, batch effects have been largely preserved, leading to PCCs with higher absolute values, similar 

to those observed in the original batch-affected data (Fig. S18B). 

Application of Correlation Network Hub Prediction on Random Sets of Genes 
In order to evaluate the behavior of CNHP further, we ran it on sets of randomly selected genes of 

different sizes. We randomly selected sets of genes of size 10, 20, 30, 40, 50, 100, 150, 200, 300, 400, 

and 500 and used these as input for 23 cell types (not for multipotent progenitor cells, for which we 

could not find a suitable FDR-based PCC threshold; see main text) and for the combined data. We 

repeated this 10 times (2640 runs in total), and for each input size we recorded the minimum p value 

for the gene with the most significant frequency of correlation with the input set of genes. Fig. S19 

shows for each input size and dataset the lowest p value (-log10 values) we observed (see also main 

text for the estimation of the p values). Overall the lowest p value observed was 3.9e-8, suggesting 
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that in general a p value threshold of 1e-10 is a reasonable choice for genuine analyses. There were 

no clear tendencies in minimum p values with regard to the size of the input gene set or the number 

of samples in the dataset.  

Robustness of Results of Correlation Network Hub Analysis 
In order to evaluate the robustness of the CNHP results, we performed CNHP on the set of genes 

that are induced in mouse dendritic cells (DCs) after lipopolysaccharide (LPS) stimulation (see main 

text). We considered all genes with a high level of correlation with the input genes (p value < 1e-10) 

as a reference set for “highly correlated genes”, and all genes with a low level of correlation with the 

input genes (p value > 0.01) as a reference set for “non-correlated genes”. We then ran the same 

analysis on smaller input sets by removing randomly parts of the original input gene set (removing 

5%, 10%, …, 95% of the genes; 20 runs each). For each run, we checked how many of the reference 

“highly correlated genes” and “non-correlated genes” were highly correlated (p value < 1e-10) with 

the genes in the smaller input gene sets.  

Figure S20 shows box plots of the fraction of “highly correlated genes” that were retained for each 

input set size. The plot shows that the retention rate first drops slowly when only 5 to about 50% of 

the original input set is randomly removed. The retention rate then drops more rapidly as the input 

gene sets become smaller. Importantly, more than half of the “highly correlated genes” could be 

retained even when 75% of the original input was removed. On the other hand, not a single “non-

correlated” gene was reported as “highly correlated” in any of the runs we performed. 

In another analysis, we gradually added randomly selected (non-input) genes to the original input. 

We did this in several steps (5%, 10%, …, 100% of the original input set size; 20 runs for each level). 

For each run, we checked how many of the reference “highly correlated genes” and “non-correlated 

genes” were highly correlated (p value < 1e-10) with the genes in the noisy input sets. 

Figure S21 shows box plots of the fraction of “highly correlated genes” that were retained for each 

level of randomly selected genes added. Retention rates drop linearly in function of the amount of 

noise added. However, even when 100% noise is added, retention rates are still above 85%. This 

suggest that CNHP is rather robust against noise, as long as a set of biologically meaningful genes is 

included in the input set. Here too, not a single “non-correlated” gene was reported as “highly 

correlated” in any of the runs we performed. 

Transcription factor binding sites  
From the Jaspar database (26) we prepared a set of 543 PWMs, including the DNA binding motifs for 

mammalian transcription factors, as well as core promoter motifs. For each PWM, a threshold score 

was set in a way that results in about one predicted binding site per 5kb of the mouse genome 

(mm10). For each Refseq gene, the region -500 to +200 relative to its transcription start site was 

scanned using the set of PWMs and their corresponding threshold scores. Predicted transcription 

factor binding sites (TFBSs) for each gene can be downloaded from Immuno-Navigator. 

In addition, for each gene, the TFBSs that are enriched in the promoters of the top 100 most highly 

correlated genes in each cell type have been pre-calculated and are available in the database. Our 

approach for TFBS enrichment prediction takes into account GC content biases in the promoter 
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regions (27). For a more detailed description we refer to the section “TFBS enrichment analysis” 

below. 

TFBS enrichment analysis 
Vertebrate promoters can be roughly classified into CpG island-associated promoters and non-CpG 

island promoters (28, 29). Obviously, the presence or absence of predicted transcription factor 

binding sites (TFBSs) in promoter sequences is affected by the overall GC content and CpG scores of 

a DNA sequence. A number of studies have reported better performance in the prediction of 

enrichment of TFBSs when taking into account the GC content and CpG scores of the input 

sequences  (27, 30). 

We extracted the genomic sequences from position -500 to +200 relative to all Refseq transcription 

start sites (obtained using the UCSC Table Browser) (31). Next, we divided these sequences into 7 

bins of 100 bps, and in each bin calculated the GC content and the CpG score. These values were 

combined into a single matrix, on which we applied PCA. Using the two first principal components 

we classified promoters into two clusters using k-means clustering (k=2). These two clusters 

correspond to 17,847 promoters with high GC content and high CpG scores, and 15,225 promoters 

with low GC content and low CpG scores.  

We used the above classification in order to reduce biases in the TFBS enrichment analysis caused by 

GC content and CpG scores of promoter sequences under investigation. For each position weight 

matrix (PWM) p, we calculated the fraction of sequences containing a hit for p among the high GC 

content promoters (frp,high) and the low GC content promoters (frp,low). For each set of promoter DNA 

sequences D in which to predict enriched TFBSs, we count the number of sequences that contain a 

hit for p (hp,D). We also look up the number of sequences in D that were classified in the high GC 

content class (nhigh) and in the low GC content class (nlow), respectively. Finally, using the binomial 

distribution, we calculated the probability of observing hp,D or more hits for p in a set of nhigh high GC 

content and nlow low GC content sequences, given frp,high and frp,low. This probability was corrected for 

multiple testing using the Bonferroni correction, and PWMs with a corrected p value < 0.01 were 

considered as significantly enriched in the input set D. 

GO annotations and GO term enrichment.  
For each gene, associated GO terms are included in Immuno-Navigator. In addition, enriched GO 

terms in the top 100 most correlated genes in each cell type are available. GO term enrichment was 

estimated using a hypergeometric distribution and Bonferroni correction for multiple testing. GOslim 

annotations can be used for filtering results of CNHP. 
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SI Tables 
 Cell type Abbreviation sample count 

1 CD4 T cells CD4 634 

2 Macrophages MΦ 601 

3 Mature B cells  - 384 

4 CD8 T cells CD8 323 

5 Regulatory T cells Treg 240 

6 hematopoietic stem cells HSC 236 

7 conventional dendritic cells cDC 216 

8 Pre-B cells - 94 

9 Granulocyte-macrophage progenitors GMP 82 

10 Common myeloid progenitors CMP 74 

11 Mature NK cells - 68 

12 Double Positive cells DP 65 

13 Mast cells - 61 

14 Type 1 helper T cells Th1 51 

15 memory T cells Tmem 47 

16 Monocytes - 38 

17 Common lymphoid progenitors CLP 36 

18 Type 2 helper T cells Th2 35 

19 Plasmacytoid dendritic cells pDC 28 

20 Pro-B cells - 28 

21 Megakaryocyte-erythroid progenitors MEP 27 

22 Natural killer T cells NKT 24 

23 Common dendritic cell progenitors CDP 22 

24 Multipotent progenitor cells MPP 20 

 Total  3,434 

Table S1: Final count of samples per cell type included in this study and in the database. 
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Data set or 

cell type 

Gene pairs 

before 

treatment 

Gene pairs 

after 

treatment 

Gene pairs 

shared 

(observed) 

Gene pairs 

shared 

(expected) 

Fold 

enrichment 

Percentage 

shared (%) 

Combined 1,920,557 1,920,557 345,182 14,704 23.5 18.0 

CD4 2,009,223 2,009,223 430,558 16,093 26.8 21.4 

MΦ 2,575,478 2,575,478 240,041 26,443 9.1 9.3 

Mature B 2,934,765 2,934,765 700,198 34,335 20.4 23.9 

CD8 3,071,390 3,071,390 413,689 37,606 11.0 13.5 

Treg 3,395,245 3,395,245 1,078,507 45,955 23.5 31.8 

HSC 1,269,071 1,269,071 208,280 6,420 32.4 16.4 

cDC 2,748,539 2,748,539 278,675 30,116 9.3 10.1 

Pre-B 2,450,745 2,450,745 742,093 23,944 31.0 30.3 

GMP 3,374,613 3,374,613 568,447 45,398 12.5 16.8 

CMP 3,349,175 3,349,175 1,046,023 44,717 23.4 31.2 

Mature NK 2,678,781 2,678,781 903,851 28,607 31.6 33.7 

DP 3,031,810 3,031,810 760,249 36,643 20.7 25.1 

Mast 3,216,178 3,216,178 422,503 41,236 10.2 13.1 

Th1 2,260,888 2,260,888 332,115 20,377 16.3 14.7 

Tmem 2,597,571 2,597,571 240,206 26,898 8.9 9.2 

monocyte 2,715,329 2,715,329 585,837 29,393 19.9 21.6 

CLP 1,886,671 1,886,671 204,328 14,190 14.4 10.8 

Th2 574,163 574,163 51,349 1,314 39.1 8.9 

pDC 2,259,353 2,259,353 254,739 20,350 12.5 11.3 

Pro-B 552,209 552,209 30,314 1,216 24.9 5.5 

MEP 575,317 575,317 50,042 1,319 37.9 8.7 

NKT 679,041 679,041 101,665 1,838 55.3 15.0 

CDP 806,882 806,882 263,131 2,595 101.4 32.6 

Table S2: Table showing the overlap between significantly correlated gene pairs in the untreated and batch-

treated gene expression data. For the combined data and for each cell type’s data, the number of significantly 

positively correlated gene pairs are shown in the untreated data, as well as in the data from which batch 

effects have been reduced. Note that we selected PCC thresholds so that the number of gene pairs would be 

the same in the untreated data as in the treated data. In addition, the observed number of shared correlated 

gene pairs, the number expected at random, the fold increase (observed vs expected), and the percentage of 

shared gene pairs (shared pairs vs total pairs in treated data) is shown. Cell type abbreviations are as in Table 

S1. 
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Rank PWM ID Motif name Hits in input Hits expected Fold enrichment P-value 

1 MA0105.1 NFKB1 52 25.9 2.01 8.8e-06 

2 MA0107.1 RELA 42 18.4 2.28 2.1e-05 

Table S3: Significantly enriched regulatory motifs in the promoter sequences of the 100 genes with the highest 

correlation with Jmjd3 in macrophage samples. For significantly enriched motifs, the PWM ID, motif name, the 

observed and expected number of hits in the 100 promoter sequences is shown. There is a strong enrichment 

for NF-κB binding motifs (“NFKB1” and “RELA”). 

 

Shared in x cell 

types 

Untreated 

data 

Batch-treated 

data 

Fold 

enrichment 

1 17,225,773 14,761,149 0.95 

2 4,828,296 4,243,716 0.98 

3 2,084,875 1,975,279 1.05 

4 1,111,558 1,125,073 1.12 

5 661,501 715,661 1.20 

6 421,602 485,707 1.28 

7 280,150 343,279 1.36 

8 191,257 245,731 1.43 

9 130,765 177,722 1.51 

10 89,559 128,039 1.59 

11 60,635 91,881 1.68 

12 40,211 64,772 1.79 

13 25,909 45,583 1.95 

14 16,081 31,177 2.15 

15 9,200 20,552 2.48 

16 5,253 12,852 2.72 

17 2,849 7,626 2.97 

18 1,487 4,047 3.02 

19 637 1,912 3.33 

20 245 834 3.78 

21 93 338 4.04 

22 28 109 4.32 
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23 10 25 2.78 

Total number of 

correlated gene 

pairs in cell type-

specific data 27,187,974 24,483,064 1.00 

Table S4: Table showing the number of significantly positively correlated gene pairs in 1, 2, …, 23 cell types, for 

untreated gene expression data, and data after treatment of batch effects. The fold enrichment column shows 

the relative enrichment after batch effect treatment, taking into account the total number of correlated gene 

pairs observed in both datasets (shown at the bottom). 

ChIPed factor 
GEO accession 

number 

Cell type in 

Immuno-Navigator 

Positive enrichment 

score 

Negative 

enrichment score 

Ascl2 GSE52840 CD4 0.050 -0.010 

Atf3 GSE54414 Macrophage 0.132 -0.003 

Batf GSE39756 CD4 0.238 -0.005 

Batf GSE40918 CD4 0.340 -0.001 

Batf GSE52773 cDC 0.095 -0.030 

Batf GSE54191 CD8 0.218 -0.001 

Cbx7 GSE36658 HSC 0.104 -0.003 

Cbx8 GSE36658 HSC 0.081 -0.002 

Cebpa GSE21512 Macrophage 0.220 -0.052 

Cebpa GSE50565 Macrophage 0.280 -0.035 

Cebpb GSE21512 Macrophage 0.123 -0.092 

Ctcf GSE36099 cDC 0.149 0.000 

Ctcf GSE40918 CD4 0.248 0.000 

Ctcf GSE44637 Mature B 0.131 -0.001 

Ctcf GSE48086 Mast 0.212 0.000 

E2f1 GSE36099 cDC 0.051 -0.063 

E2f4 GSE36099 cDC 0.018 -0.062 

Ebf1 GSE19971 Pro-B 0.136 0.000 

Ebf1 GSE35857 Mature B 0.192 0.000 

Ebf1 GSE35915 Mature B 0.289 -0.003 

Egr1 GSE36099 cDC 0.171 -0.009 

Egr2 GSE36099 cDC 0.176 -0.002 

Egr2 GSE49366 CD4 0.262 -0.016 

Elf1 GSE40684 Treg 0.293 -0.011 
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Ep300 GSE40463 Th1 0.163 -0.001 

Ep300 GSE40463 Th2 0.152 -0.003 

Ep300 GSE40918 CD4 0.268 0.000 

Erg GSE48086 Mast 0.160 -0.003 

Ets1 GSE40684 Treg 0.455 0.000 

Ets2 GSE36099 cDC 0.062 -0.126 

Fli1 GSE20898 Th2 0.071 -0.001 

Fli1 GSE48086 Mast 0.407 0.000 

Fos GSE48086 Mast 0.115 -0.017 

Fosl2 GSE40918 CD4 0.069 -0.012 

Foxo1 GSE40656 Treg 0.437 0.000 

Foxo1 GSE46525 CD4 0.403 -0.001 

Foxp3 GSE40684 Treg 0.114 -0.012 

Gata2 GSE26031 HSC 0.213 -0.001 

Gata2 GSE42518 Mast 0.381 0.000 

Gata3 GSE20898 CD4 0.325 0.000 

Gata3 GSE20898 CD8 0.301 -0.001 

Gata3 GSE20898 DP 0.127 -0.021 

Gata3 GSE20898 Treg 0.205 0.000 

Gata3 GSE20898 NKT 0.313 -0.002 

Gata3 GSE20898 Th1 0.146 -0.010 

Gata3 GSE20898 Th2 0.168 -0.004 

Gfi1 GSE42518 Mast 0.209 -0.001 

Hif1a GSE36099 cDC 0.136 -0.040 

Hoxb4 GSE34014 HSC 0.050 -0.050 

Ikzf1 GSE38200 Pre-B 0.170 -0.012 

Irf1 GSE36099 cDC 0.137 -0.017 

Irf4 GSE39756 Mature B 0.222 -0.018 

Irf4 GSE39756 CD4 0.148 -0.020 

Irf4 GSE40918 CD4 0.298 -0.005 

Irf4 GSE54191 CD8 0.181 -0.031 

Irf8 GSE53311 cDC 0.134 -0.052 

Jun GSE54191 CD8 0.253 0.000 

Junb GSE38377 Macrophage 0.090 -0.105 
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Junb GSE52773 cDC 0.161 -0.004 

Junb GSE54191 CD8 0.150 0.000 

Jund GSE54191 CD8 0.082 0.000 

Ldb1 GSE26031 HSC 0.130 0.000 

Lmo2 GSE48086 Mast 0.369 0.000 

Maf GSE47528 CD4 0.160 0.000 

Maff GSE36099 cDC 0.107 -0.021 

Med1 GSE44288 Pro-B 0.153 0.000 

Meis1 GSE48086 Mast 0.177 -0.008 

Men1 GSE53831 CD4 0.349 0.000 

Mitf GSE48086 Mast 0.274 -0.001 

Pax5 GSE38046 Mature B 0.259 -0.002 

Polr2a GSE54414 Macrophage 0.057 -0.084 

Pou2f2 GSE21512 Mature B 0.369 0.000 

Rel GSE36099 cDC 0.334 -0.003 

Rela GSE16723 Macrophage 0.196 -0.015 

Rela GSE36099 cDC 0.210 -0.005 

Rela GSE48759 Macrophage 0.150 -0.099 

Relb GSE36099 cDC 0.363 -0.010 

Runx1 GSE29515 HSC 0.132 -0.001 

Runx1 GSE48086 Mast 0.260 0.000 

Runx3 GSE48591 cDC 0.109 -0.060 

Runx3 GSE50131 CD8 0.283 -0.002 

Sfpi1 GSE21512 Mature B 0.239 -0.021 

Sfpi1 GSE21512 Macrophage 0.091 -0.143 

Sfpi1 GSE21614 Pro-B 0.062 -0.010 

Sfpi1 GSE38377 Macrophage 0.072 -0.154 

Sfpi1 GSE48086 Mast 0.221 0.000 

Sfpi1 GSE48759 Macrophage 0.096 -0.126 

Sfpi1 GSE52773 cDC 0.209 -0.005 

Smad3 GSE21614 Pro-B 0.197 -0.001 

Stat1 GSE33913 Macrophage 0.119 -0.097 

Stat1 GSE38377 Macrophage 0.097 -0.155 

Stat1 GSE40463 Th1 0.209 -0.007 
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Stat3 GSE27161 cDC 0.169 0.000 

Stat3 GSE36099 cDC 0.235 -0.002 

Stat3 GSE39756 CD4 0.235 -0.001 

Stat4 GSE22104 Th1 0.120 -0.019 

Stat5b GSE27161 cDC 0.159 -0.010 

Stat6 GSE22104 Th2 0.093 -0.017 

Stat6 GSE38377 Macrophage 0.294 -0.010 

Tal1 GSE26031 HSC 0.263 0.000 

Tal1 GSE48086 Mast 0.312 0.000 

Tbx21 GSE33802 Th1 0.229 0.000 

Tbx21 GSE40623 Th1 0.155 0.000 

Tcf3 GSE48086 Mast 0.237 0.000 

Table S5: Overview of the Haemcode-derived ChIP-seq data sets. For the 104 dataset included in this study, 

the table shows the ChIPed factor, the GEO accession number of the ChIP-seq data, the cell type used for the 

ChIP-seq experiment and for the correlation analysis, and the positive and negative enrichment scores 

observed in that cell type.  

 

Cell type PCC threshold Probe pairs Gene pairs Estimated FDR 

Combined data 0.620144 5999920 2924148 0* 

CD4+ T cells 0.4 3498181 2032548 0 

MΦ 0.4 5583890 3171592 0 

mature B 0.416098 5999961 3429280 0 

CD8+ T cells 0.403383 5999994 3316318 0 

Treg 0.45861 5999972 3867165 8.28E-07 

HSC 0.4 1888398 1411692 0 

cDC 0.442626 5999973 3497173 0 

Pre-B 0.479065 5999915 3321256 0.000541 

GMP 0.518508 5999971 4394763 0.001781 

mast 0.569727 5999908 4157054 0.009424 

CMP 0.542823 5999954 4296330 0.000253 

mature NK 0.543069 5999931 3595759 0.000541 

DP 0.535053 5999909 3969803 0.002391 

Th1 0.589866 5999903 3447620 0.003128 

memory T cell 0.583928 5999934 3857087 0.005891 
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monocyte 0.680278 5999932 4228912 0.001371 

CLP 0.639097 3859400 2870687 0.01 

Th2 0.721279 1031368 761586 0.009999 

pDC 0.706806 4647635 3349858 0.01 

Pro-B 0.744162 1070121 818861 0.01 

MEP 0.764744 1191676 881400 0.009999 

NKT 0.778883 1320326 956253 0.01 

CDP 0.792533 1458158 1092179 0.009999 

MPP NA NA NA NA 

Table S6: This table shows for each dataset the PCC threshold used, the number of probe pairs with higher PCC 

values than this threshold, the number of gene pairs with PCC values higher than this threshold, and the 

estimated false discovery rate (FDR). (*: for the combined dataset the threshold was decided using randomly 

shuffled data in which batch information was not used; see also section “Construction of Shuffled Data”).  
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SI Figures 

 

Fig. S1. Example of single gene analysis using Immuno-Navigator. (A) Top page with several tabs and a gene 

search function. (B) Gene page for the gene Foxp3. A short description, IDs and external references are shown, 

as well as the “Probes” tab, showing the high expression of this gene in Treg samples. (C). Top correlated 

probes page. In this case, the probes are sorted by their correlation with the Foxp3 probe in the Treg samples. 

(D) The “cell type selector” menu allows the user to select which cell types to show in the table. Black: cell 
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types that are currently included in Immuno-Navigator; Green: selected cell types; Grey: cell types which are 

not yet included in Immuno-Navigator. (E) Scatter plots of the probe of Foxp3 (X axis) and the probe for Il2ra (Y 

axis) over all samples in the database (left) and the Treg samples only (right). For the scatter plot of all samples, 

colours reflect cell types. Moving the mouse over a sample displays the corresponding cell type. Treg samples 

are indicated. (F) Correlation network for Foxp3 in the Treg samples. Thick edges represent significant 

correlations; thin edges represent high (top 5) but not significant correlations. The central blue node is the 

query gene, black nodes are the top 5 correlated genes of the query gene, and grey nodes represent their top 

5 correlated genes, respectively. (G) Motif enrichment result page. In this case, enriched motifs are shown for 

the top 100 genes with highest correlation with the gene Ifit1, over all macrophage samples. 

 

 

Fig. S2: Simplified representation of the hematopoietic lineage tree, indicating cell types which are currently 

included in our dataset (marked in green).  
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Fig. S3: Principal Component Analysis of gene expression data before and after batch effect reduction. Scatter 

plots are shown for all samples in the untreated data (A: PC1 vs PC3, C: PC2 vs PC3), and in the batch-treated 

data (B: PC1 vs PC3, D: PC2 vs PC3) . Shapes and colors reflect cell types (see legend of Fig. 1 in the main text of 

the paper). 
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Fig. S4: Hierarchical clustering of Treg samples before (A) and after (B) batch effect reduction. Color codes 

below the dendrogram represent studies (different color for each study). Please note that because of the high 

number of studies some colors are hard to distinguish.  
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Fig. S5: Treatment of batch effects strongly changes gene expression correlation. (A) The distribution of PCC 

values in the entire set of 3,434 gene expression samples (“Combined” dataset) before (left) and after (right) 

batch effect reduction. (B) Boxplots show the distribution of PCC values observed in all data sets (combined 

data, and each cell type’s data separately) before (blue) and after (red) batch effect treatment. In all datasets, 

batch effect treatment resulted in decrease of variance in PCC values, and a reduction of extremely high 

(positive and negative) PCC values.  

 

Fig. S6: Overlap in positively correlated gene pairs in all datasets (combined data and cell type-specific data). 

(A) Table showing the number of shared significantly positively correlated gene pairs between all datasets in 
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the untreated data. A color code (white: low; red: high) is used to improve readability. (B) Same as (A) for the 

data after batch effect reduction. (C) Fold difference in the number of overlapping gene pairs between the 

batch-treated and untreated data. This shows the counts shown in (B) divided by those of (A). Here too a color 

code is used (red: higher overlap in the batch-treated data, blue: higher overlap in the untreated data). In 183 

(72%) out of the 253 cell type combinations an increase in overlap was observed. 

 
Fig. S7. Hierarchical clustering of cell types according to their similarity in gene pair correlation of expression 

values. Cluster dendrograms are shown for the untreated expression data (A) and for the data after batch 

effect reduction (B). Cell types are marked as follow: blue: progenitor cell types; green: lymphoid cell types; 

orange: myeloid cell types. 



34 

 

 

Fig. S8: Evaluation of batch effect reduction on correlation of expression between functionally similar genes. 

For each dataset (24 cell types), the fraction of functionally related gene pairs with high correlation is shown. 

High correlation was defined as correlation higher than that of 99% of functionally unrelated gene pairs. The 

fractions are shown for untreated (blue) and batch-treated (orange) data, for Biological Process (A), Molecular 

Function (B), and Cellular Component (C) GO annotations. Green dots indicate datasets in which an 

improvement was observed in the batch-treated data. 

 

Fig. S9: Treatment of batch effects results in a relative increase of correlation between probe set pairs 

representing the same gene, in macrophage data. Differences in correlation between probe pairs representing 

the same gene, and probe pairs representing different genes were measured using Area Under the Curve (AUC) 
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values of ROC curves. The barplots in this figure show for all cell types the AUC values of these ROC curves, for 

untreated (blue) and batch-treated (orange) data. In all datasets an improvement was observed after batch 

effect reduction. 

 
Fig. S10. Reduction of batch effects results in a relative increase of correlation between probe set pairs 

representing the same gene, in macrophage data. (A) Histograms for the distribution of PCC values in the raw, 

untreated, macrophages gene expression data. The histogram shows the distribution of PCC values for random 

probe pairs representing different genes (black), and for probe pairs representing the same gene (red). (B) 

Similar histogram for the batch-treated macrophage data. (C) ROC curve for PCC values in macrophage-derived 

expression data, between pairs of probes mapped to the same gene, and between randomly selected probes 

not mapped to the same gene, before (black line) and after (red line) bath reduction treatment. After batch 

reduction, probe pairs representing the same gene are relatively more positively correlated (see also Fig. S9). 

“x”: PCC threshold.  
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Fig. S11: The relationship between correlation in cell type-specific data and in the combined data. For gene 

pairs with significant positive correlation in 0, 1, 2,…, 23 cell types (X axis), the fraction of gene pairs that was 

also significantly positively correlated in the combined data (Y axis) is shown. For example, of gene pairs that 

are significantly correlated in 6 cell types, about 10% is also correlated in the data of all cell types combined 

together. 
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Fig. S12 Example analysis of genes induced after LPS stimulation of DCs. (A) Result of CNHP. Rows 

represent genes, and columns represent cell types. The first column shows the rank of genes as 

sorted by their enrichment score in cDC expression data. The second column shows gene symbols. In 

this case, only genes associated with the GOslim annotation GO:0001071 (“nucleic acid binding 

transcription factor activity”) are shown. Genes are sorted by enrichment of high correlations with 

the input genes in the cDC data, and only the top 10 enriched genes are shown. A colour code is 

used to represent the degree of enrichment (-log10 p value; blue: no enrichment; red: high 

enrichment). Values above 10 are considered to be significant. Cell type abbreviations are as in Table 

S1. (B) Motif enrichment analysis of the LPS induced genes. The top 10 regulatory motifs with 

significant enrichment in the input genes is shown. Several IRF and STAT family motifs are enriched, 

supporting the result shown in (A). 
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Fig. S13. Relationship between transcription factor binding and correlation of expression. (A) For four genes 

encoding transcription factors (Foxp3, Elf1, Ets1, and Foxo1) the cumulative distribution of correlation of 

expression is shown between the transcription factor and its target genes (black line) and non-target genes 

(red line) over the combined gene expression data (all cell types). The X axis represents the PCC. All four 

transcription factors showed higher correlation with their target genes than with their non-target genes. For 

the corresponding plots for correlation of expression in the Treg-derived samples only we refer to Fig. 5 in the 

main text. (B) and (C): Similar plots for four transcription factors (PU.1, C/EBPβ, Nfkb1, and Stat1) in dendritic 

cells. For all four regulators, higher correlation was observed with target genes than with non-target genes 

over the combined expression data (all cell types, B). In the cDC-derived data (C), however, higher correlation 

with target genes was observed only for Nfkb1 and Stat1, and not for PU.1 and C/EBPβ). 
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Figure S14: Large-scale analysis of expression correlation between regulators and their target genes. For 104 

ChIP-seq dataset included in Haemcode and a few additional datasets included in this paper, we analysed the 

correlation of expression between the ChIPed factor and its target genes in the relevant cell types. (A) Scatter 

plot of positive and negative enrichment scores. Each point represents a ChIP-seq experiment for a specific 

factor in a specific cell type. High positive/negative scores reflect enrichment of target genes towards high 

positive/negative correlation of expression with the ChIPed factor. A number of datasets discussed in the 

paper are indicated. Note that the scales of the X and Y axes are different. (B) Enrichment plot of genes bound 

by Stat1 in cDC cells. Positive and negative enrichment scores are indicated. (C) As in (B), for Foxp3 target 

genes in Treg cells. (D) Cumulative distribution of PCC values for correlation with the Sfpi1 gene (encoding 

PU.1) are shown for PU.1-bound and non-bound genes in macrophages. Below the corresponding enrichment 

plot is shown. (E) Same as in (D) for correlation with Sfpi1 over the combined set of expression data for all cell 

types in our dataset. 



40 

 

 

Figure S15:  Comparison of the correlation bias observed in cell type-specific data, and in the combined data 

for all cell types. Enrichment scores are shown for the same datasets as shown in Fig. S14. The X axis shows the 

bias in correlation between each regulator and its targets in the cell type used for the ChIP experiment. The Y 

axis shows the bias in the combined data for all cell types. Several Treg-derived datasets are indicated. In the 

upper left part of the plot, the indices 1 to 10 indicate regulators that have a similar pattern as Foxp3 in Tregs. 

Namely, these regulators lack correlation of expression with target genes in the cell type used for the ChIP-

experiment, yet have correlation of expression when seen over the entire dataset. Details about these 

regulators are shown in the table at the right. 
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Fig. S16: Analysis of correlation of expression of Foxp3-dependent, Foxp3-amplified, and Foxp3-independent 

gene sets. (A) Correlation of expression with Foxp3 in Treg-derived samples. For Foxp3-dependent (P3), Foxp3-

amplified (P4), and Foxp3-independent (P7) genes, the cumulative distribution of PCC values in the Treg-

derived data is shown (black line). The red line represents genes not in each cluster. For all three sets, 

increased positive correlations with Foxp3 were observed. P values for the difference in distribution is included 

in each graph (based on the Kolmogorov-Smirnov test). (B-D) Tables showing the top 10 genes with the highest 

correlation score (rank 1 to 10) for Foxp3-dependent (P3, B), Foxp3-amplified (P4, C), and Foxp3-independent 

(P7, D) gene sets. Scores are shown in 23 cell types, and in the combined dataset. Genes are sorted by their 

score in Treg-derived data. A color code represents the score (-log10 p value; blue: no enrichment; red: high 

enrichment). Cell type abbreviations are as in Table S1. 
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Fig. S17. Heatmap of 248 genes with Treg-specific expression. Columns represent RNA-seq-based expression 

levels of 248 genes in CD25pos, and unstimulated and stimulated CD25neg T cells. 
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Fig. S18: Toy example of two probes measured in 2 batches (blue points: batch 1; red points: batch 2). (A) 

Without batch effects. (B) The same points with a simple batch effect added to both batches. (C) Toy example 

of (B) subjected to random shuffling, and (D) “batch-guided” shuffling. For (C), colors have been removed, as 

batch information is lost by the shuffling. In (D) colors are as in (A) and (B), and illustrate that batch effects 

have been preserved. The PCC values are 0.079 for (A), 0.854 for (B), 0.152 for (C) and 0.810 for (D), 

respectively. 

 

Fig. S19: Observed minimum p value (-log10 values) per dataset (columns; sorted by decreasing number of 

samples) per input set size (rows). Values are color coded to improve interpretability. We refer to Table S1 for 

cell type abbreviations. 

 

Fig. S20: Box plots showing the retention rates of “highly correlated genes” in function of the fraction of genes 

that were removed from the input (in percentages of the original set size). 
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100 3.61 4.03 3.37 4.62 5.10 4.36 4.86 4.59 5.72 4.42 5.16 4.25 5.37 4.12 4.68 5.18 5.13 4.73 4.86 5.18 5.12 4.41 5.55 4.41 NA

150 4.25 4.27 4.94 4.24 4.81 4.54 5.92 4.48 4.79 4.20 4.54 4.64 4.60 6.28 4.81 4.69 5.55 5.09 4.43 4.80 5.79 4.31 4.31 4.09 NA

200 4.46 4.27 6.50 4.62 5.50 5.31 4.86 6.00 4.59 4.86 4.38 4.96 5.09 6.14 4.83 4.62 4.99 6.48 3.96 5.34 6.39 4.62 4.24 4.72 NA

300 4.39 4.47 5.23 4.90 4.21 4.09 4.73 3.92 5.27 7.41 4.06 4.61 4.25 4.85 4.81 4.59 5.20 5.60 4.23 4.22 5.34 4.31 4.31 4.61 NA

400 3.84 4.23 5.06 5.38 4.45 5.47 4.59 4.00 5.35 4.73 4.83 5.04 5.16 4.66 4.84 4.95 4.49 4.95 4.51 5.39 4.81 4.78 4.51 4.35 NA

500 4.60 4.92 3.91 4.17 4.21 5.13 4.41 4.69 4.71 5.78 4.03 5.39 4.39 6.70 4.65 4.61 5.90 4.76 4.88 4.69 5.26 5.14 4.88 4.41 NA
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Fig. S21: Box plots showing the retention rates of “highly correlated genes” in function of the level of randomly 

selected genes added to the input gene set (in percentages of the original set size). 
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Fig. S22: Flowchart summarizing the general strategy of our data processing approach, from the collection of 

input data to the population of a three-tier database. A description of the main steps is given in SI Appendix, 

section “General data analysis approach”. 

 


