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SI Results

Practical example analysis using the Immuno-Navigator database
Analysis of single genes
Immuno-Navigator can be accessed here. Only a brief description of an example query is given here.

For more information, we also refer to the relevant sections of the main text, and to the online
documentation of Immuno-Navigator.

We will use Foxp3 as an example query gene. On the top page, we can input the gene symbol
“Foxp3” as a query (Fig. S1A). The gene page (Fig. S1B) includes basic information and links to
external databases. Below this, there are several tabs with additional data. The “Probes” tab shows
the available probe set identifiers for this gene, as well as a boxplot showing the distribution of
values observed for this probe in each cell type. In this case, Foxp3 has only one probe set, and its
highest signals are observed in regulatory T cell (Treg) samples, which fits with the known function of
Foxp3 as master regulator in the development and function of Tregs (1, 2). Hovering over the
boxplots shows additional information, such as the cell types and median signals.

Clicking the probe set ID takes the user to a table showing PCCs between this probe and all other
probes in the dataset for all combined data and for cell types of interest (Fig. S1C). Probes can be
sorted in order of increasing or decreasing PCC values for each dataset. Under “cell type selection”, a


http://sysimm.ifrec.osaka-u.ac.jp/immuno-navigator/index.php
http://sysimm.ifrec.osaka-u.ac.jp/immuno-navigator/index.php?tab=documentation
http://sysimm.ifrec.osaka-u.ac.jp/immuno-navigator/index.php?tab=documentation

selection can be made of cell types to display in the table, using a menu in which cell types are
roughly ordered according to the hematopoietic lineage tree (Fig. S1D).

From the table, for any cell type, scatter plots can be shown for the probe of interest versus any
probe in the table (Fig. S1E). In this case, the probe of Foxp3 is shown against a probe for //2ra (also
known as Cd25), another marker for Tregs, over all data (left, with samples coloured according to
cell type) and within the Treg data only (right). The correlation between Foxp3 and Il2ra within the
Treg samples is relatively high (PCC: 0.45), but their correlation is exceptionally strong over the
entire dataset (PCC: 0.82), with Treg samples being the only samples with high signals for both
genes. This is also true for other Treg markers (such as Tnfrsf4 (also called Ox40), Gpr83, Ctla4, Ikzf4
(also called Eos)), but also genes which have so far not been reported as candidate markers. Pairwise
comparisons can also be directly accessed from the tab “Gene pair comparison” on the top page
(Fig. S1A).

The tab “Top correlated genes” shows the top positively and negatively correlated genes for the
query gene in each cell type, and the PCC values of the query gene versus the genome-wide set of
genes can also be downloaded, for all datasets. The tab “Correlation network” shows for each cell
type a small network of the query gene, its 5 most strongly correlated genes, and in turn their 5
most correlated genes (Fig. S1F). Thick edges represent significantly correlated genes. In this case,
within the Treg samples, Foxp3 is significantly correlated with //2ra (Cd25), Dst, and lkzf4 (Eos). These
genes, in turn, are highly correlated with other Treg markers, such as Nrp1, Ctla4, and Tnfrsf4 (Ox40).
On the other hand, Foxp3 has also high (though not significantly high) correlation with Nfkb1 and
Bcl3. Nfkb1 encodes a subunit of NF-kB, a key regulator of the response to various immune stimuli,
and Bcl3 encodes a transcriptional co-activator of NF-kB. These two genes are in turn connected
with Stat3, an important regulator of responses to cytokines and immune tolerance (3). Thus, the
inspection of neighboring genes in the correlation network can suggest the function of the query
gene and the presence of distinct regulatory modules. These correlation networks can also be
downloaded in the Cytoscape.js (cyjs) format (4).

Correlation Gene Set Enrichment Analysis

It is often interesting to see if a gene of interest has any bias in its correlation with a set of genes
that share some particular features. We implemented a tool, “correlation GSEA”, to detect such
biases using a modification of the widely used Gene Set Enrichment Analysis (GSEA) approach (5)
(see SI Appendix, section “Haemcode ChlP-seq analysis”). Correlations of the query gene X with the
set S of input genes are compared with those with non-input genes. Biases between them can
subsequently be quantified using “enrichment scores”, as defined in the original GSEA study. High
positive enrichment scores indicate a bias towards positive correlation between the query gene and
S, high negative enrichment scores indicate a bias towards negative correlation. These are not
exclusive; as we will show below, a regulator can have both a bias towards positive as well as
towards negative correlations with its target genes. A lack of a clear bias results in enrichment scores
close to 0.

An example of features suitable for this methodology would be DNA binding af a regulator protein,
which can be inferred from ChIP-seq data. The query gene X can be the gene encoding the protein
for which a ChlP-seq experiment was conducted (hereafter referred to as the “ChlPed regulator”),
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and the set S could be genes that appear to be bound by that regulator. Although this approach is
not limited to such inputs, below we will focus on the analysis of ChIP-seq data.

Here, we present the analysis of 104 ChIP-seq data sets provided in the Heamcode database (6) (see
SI Materials and Methods section “Haemcode ChiIP-seq analysis”). For each experiment, we
calculated GSEA enrichment scores between the ChlPed regulator and its target genes, using the
expression data of the same cell type as used for the ChIP-seq experiment. Fig. S14 shows an
overview of the results (Fig. S14A), as well as a few example cases with distinct tendencies (Fig.
S14B-E). A complete list of positive and negative enrichment scores are also shown in Table S5.
Roughly, we can distinguish 3 broad classes.

A first class is regulators with a bias towards positive correlation with their target genes. This
tendency was frequently observed: as a rough illustration, in 46 out of 102 Haemcode datasets a
positive enrichment score > 0.2 was obtained. Factors EIf1, Foxol, and Etsl in Tregs (marked in red
in Fig. S14A) show a high positive enrichment score, indicating a relatively strong bias towards
positive correlation with target genes (see also cumulative distribution plots in Fig. 5 in the main
text). Statl and Nfkb1 in cDC cells show a similar tendency towards positive correlation (marked in
Fig. S14A; see also Fig. S13 for the cumulative distribution plots). As an illustration, the enrichment
score plot for Statl in c¢DC cells is shown in Fig. S14B. The high positive enrichment score (0.52)
reflects a strong tendency for Statl-bound genes to have positive correlation with the Statl gene
expression in cDC cells.

In a second group of cases, no clear bias towards either positive or negative correlation was seen. As
described in the main text of this paper, Foxp3 expression in Tregs follows this pattern (see also
cumulative distribution plots in Fig. 5 in the main text). Fig. S14C shows the enrichment plot for
Foxp3 in Treg cells. The positive (0.114) and negative (-0.012) scores are low, reflecting a lack of
correlated expression between Foxp3 and Foxp3-bound genes in Tregs. In contrast, as described in
the main text (see also Fig. S13A), Foxp3 does tend to have positive correlation with its target genes
when seen over the combined data for all cells (enrichment score: 0.225). This correlation is caused
by Foxp3 and its target genes both having high expression in Treg cells, even though they lack
correlation within the Treg-derived data.

Plotting the positive enrichment score of each ChlPed regulator in the cell type that was used for the
ChIP experiment versus that over the combined data, we could identify several additional regulators
following a similar pattern to that of Foxp3 in Tregs (Fig. S15). Examples include E2f1, Hifla, Maff in
cDCs, Junb, Sfpil, C/EBPB, and Atf3 in macrophages, Foxp3 in Tregs, and Stat6 in Th2 cells.

A third pattern is shown in Fig. S14D. Here, PU.1 (encoded by Sfpil) shows a weak enrichment
towards both positive correlation as well as towards negative correlation of expression with its
target genes in macrophage cells. This pattern was observed for a limited number of TFs, including
C/EBPB in macrophages, and to a lesser degree in cDC cells (see also Fig. S13C). These factors are
known to have genome-wide widespread binding in these cell types, and have been described to
pre-bind regulatory regions of stimulus-induced and -repressed genes even before stimulation (7).
One possible explanation for the bias towards both positive and negative correlation is therefore
that the binding of these factors prepares a scaffold for stimulus-dependent activators and
repressors to bind to after stimulation of the cells, resulting in both positive and negative correlation
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of expression with the query gene. In addition, there was a strong bias towards positive correlation
of expression between PU.1 and its target genes when considering the combined expression data of
all cell types (Fig. S14E). This correlation is caused by PU.1 having high expression in macrophages
and cDC cells, a pattern which is also observed for PU.1 target genes. This is similar to our
observations for Foxp3 and its targets in Tregs.

One pattern which was not present in our data is regulators with a strong shift towards negative
correlation of expression with target genes. This might reflect the absence of regulators with a
strong, exclusively repressive function in the Haemcode dataset. In addition, as also noted in the
main text, strong negative correlations of expression appear to be in general rare compared to
positive correlations.

Several studies have reported binding of TFs to sites which might not have a direct role in
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transcriptional regulation, or which might be “non-functional” (see (8) for a general review).
However, such reports are often based on the analysis of only a few gene expression samples. Our
data and tools, on the contrary, allow a more thorough analysis, based on large numbers of samples
from the relevant cell type, covering a wide range of conditions. Our results partly confirm the
apparent widespread “non-functional”
fraction of bound genes lack clear correlation of expression with the ChlPed regulator. At the same

time, our results suggest an alternative interpretation for some of these reports: for a subset of

binding: in most of the ChIP-seq datasets a substantial

regulators that lack correlation in the relevant cell type, we did observe correlation of expression
over the combined data of all cell types. This reflects the regulator and its target genes being
expressed in the same cell types together. Such regulators might be more relevant in the
establishment and maintenance of cell type identity, rather than in regulation of expression
following stimulation. Indeed, several of the regulators which showed this tendency are generally
regarded as so-called “master regulators” or “pioneer factors” (Fig. S15), and play a key role in the
differentiation and establishment of cell type identity. Further over-expression or knock-down using
RNAI of such TFs in these cell types might have only little effect on target gene expression once the
cell type has been fully developed. Although such binding events might appear to be “non-
functional”, they obviously are not.

In summary, in combination with ChIP-seq (or similar) data, our correlation GSEA analysis can be
useful in interpreting different types of regulatory binding events.

This approach is made available on the Immuno-Navigator website (“correlation GSEA”). In our tool,
the user can give as input one query gene X, and a set S of genes for which to extract the correlation
with gene X. In addition, a cell type can be specified. The tool subsequently extracts the correlation
values between query X and all genes in S in the expression data of the specific cell type. Graphs are
generated visualizing the biases in correlation values between the input and non-input. Enrichment
scores and associated p values (based on a Kolmogorov-Smirnov test; not discussed here) are also
shown. Resulting output files are made available for download.



Analysis LPS-inducible genes in dendritic cells

Here we describe the application of Correlation Network Hub Prediction (CNHP) on 345 genes with
induction of expression 4 hours after lipopolysaccharide (LPS) stimulation in mouse dendritic cells
(DCs), which is a relatively well studied system for which several regulators of importance are known.

Fig. S12A shows the genes that are frequently highly correlated with the LPS-inducible input genes in
conventional DC (cDC)-derived expression data. Here, only genes with the annotation term “nucleic
acid binding transcription factor activity” are shown. Several known regulators of the response to
LPS are highly correlated with the input genes, such as STAT and IRF family members, NF-kB subunits
(Nfkb2, p: 1e-83; Rel, p: 1e-73; Relb, p:1e-52; Nfkb1, p: 1e-19), Junb (p: 1e-61), and Cebpb (p: 1e-71).
The promoter regions of the input genes are strongly enriched for binding sites for several of these
transcription factors, further supporting the CNHP result (Fig. S12B). Thus, the frequently correlated
genes might reveal potential regulators (not restricted to only transcription factors) of the input
genes. For many of the frequently correlated genes in the ¢DC data, similarly high correlations are
found in the data obtained from macrophages and to a lesser extent from plasmacytoid dendritic
cells (pDCs) and monocytes (Fig. S12A). This suggests that in these four closely related cell types,
similar patterns of expression correlation are present. A similar pattern can be seen in mature B cells
as well. Although B cells are part of the adaptive immunity, they are also antigen presenting cells, a
function which they share with DCs and macrophages. This might explain a partly shared regulatory
network between these cell types. In contrast, relatively unrelated cell types, such as the
Megakaryocyte-Erythroid Progenitor (MEP) cells show little similarity.

A final observation is that some genes have a high degree of correlation in the data of many cell
types, while the correlation of other genes is restricted to one or a few cell types. For example, Statl
and Irf7 are highly correlated with the input set of LPS-inducible genes in macrophages, cDCs,
mature B cells, and pDCs, but also in CD4+ T cells, CD8+ T cells, Tregs, hematopoietic stem cells
(HSCs), Pre-B cells, and a number of other cell types. In contrast, correlation of Batf2 with these LPS-
inducible genes appears to be specific to macrophages and cDCs. This suggest that the role of Statl
as regulator of the response to pathogens might be more general, while that of Baft2 is restricted to
a few cell types. In relation with this, we also refer to Figure 4 and the modes of expression
correlation that we described above.

Analysis of Foxp3-dependent and -independent genes

In this section, we present two additional analyses that can be easily performed using the data in
Immuno-Navigator. As input for this analysis, we use sets of Foxp3-dependent, Foxp3-amplified, and
Foxp3-independent genes, as defined in the work by Gavin and colleagues (9). Such sets of genes are
typical input sets to analyse using our data. Note that these gene sets are independent from the
ChlP-seq based Foxp3-bound target gene set described in the main text of this study.

In a study on the differentiation of Treg cells, Gavin and colleagues uncovered sets of genes with
varying dependence on Foxp3. For this, they used gene expression data of CD25+ Foxp3- CD4+ T cells
(referred to as “Tas”), Foxp3™'-expressing T cells (“Try”, which actively transcribe a non-functional
Foxp3™" allele, yet lack Foxp3 protein), regulatory T cells (referred to as “Tr”), ad naive T cells (“Tn”)



in thymus and in peripheral lymphoid organs. They used hierarchical clustering and manual curation
to define 16 sets of genes (see Fig. 3 and Supplementary Fig. 5 in the paper by Gavin et al.).

For the sake of brevity, we limit the discussion here to the peripheral gene clusters containing
Foxp3-dependent (cluster P3), Foxp3-amplified (cluster P4), and Foxp3-independent (cluster P7)
genes. Although the clusters reported by Gavin et al. contain both genes with induced and repressed
expression in presence in Treg cells (compared to naive T cells), here we focussed only on the
induced genes within each cluster. Set P3 contained 124 genes, set P4 72 genes, and set P7 63 genes.

In the first analysis, we used correlation GSEA to investigate the correlation of expression of these
three sets of genes with the expression of Foxp3 within Treg-derived samples. In the secondly
analysis, we used CNHP to find genes that are highly correlated in Treg cells with each gene set.

Correlation of expression with Foxp3 in Treg cells
Using the correlation GSEA function of the Immuno-Navigator database, we obtained the correlation

of expression data for Foxp3 versus all genes in the mouse genome in Treg-derived samples. Using
this data, we evaluated whether genes in clusters P3, P4, and P7 tend to have correlated expression
with Foxp3 or not. Results are summarized in Fig. S16A.

We observed that, as expected, genes in clusters P3 and P4 tend to be positively correlated with
Foxp3 expression in Tregs (Fig. S16A). Intuitively more surprising is the observation that the Foxp3-
independent genes in P7 too tend to have positive correlation with Foxp3 expression. However, P7
might include genes whose induction during Treg cell differentiation precedes, or regulates, that of
Foxp3. Alternatively, P7 might also include genes which are Foxp3-independent yet are regulated by
the same mechanism that controls Foxp3 induction. Both cases can explain the tendency towards
positive correlation of expression. A third possibility is that the classification in Gavin et al. was not
completely accurate, and P7 includes a considerable amount of Foxp3-dependent genes. Since the
classification is based on only a small number of samples, we can not rule out this last alternative.

In combination with the results presented by Gavin et al., the above observations support the key
role of Foxp3 in Treg cells. A relatively large number of genes were shown to be Foxp3-dependent or
Foxp3-amplified by Gavin et al. Here we showed that these genes indeed have correlation of
expression with Foxp3, in a collection of 240 samples obtained from Treg cells. However, on the
other hand, correlation values between Foxp3 and these genes are in general relatively low (typically
PCC values < 0.4). In addition, as described in the main text, we observed that the expression of
genes that are bound by Foxp3 in Tregs is not necessarily correlated with Foxp3 expression. Together
with the weak correlation observed even between Foxp3-dependent genes and Foxp3, these results
support the existence of additional regulatory mechanisms that are independent of, or
supplementary to, Foxp3-mediated regulation.

Correlation Network Hub Prediction of the gene clusters
We used the above three gene sets as input for our CNHP function. Fig. S16B-D shows the 10 top-

scoring genes for each set. Below, we present and discuss some of the observations we could make.

In general, as in the results presented in Fig. 6 of the main text, high-scoring genes typically
contained several known genes of importance, in addition to several genes with no known function
in Treg cells. These genes might present valuable candidates for further analysis.



For the Foxp3-dependent genes (cluster P3), high-scoring genes include known genes of importance
(Icos; rank 17, and Nrp1; rank 22), as well as genes which were also high-scoring in the analysis of
Treg-specific genes (see Fig. 6; Fam129a, Tiaml, Lclatl, etc). ll1rl1 (rank 10; encodes the 1133
receptor ST2) has recently been reported to be especially induced in effector Treg cells and in
colonic Treg cells, and to be essential for the development and maintenance of Treg cells in visceral
adipose tissue (10, 11).

For the Foxp3-amplified genes (cluster P4), high-scoring genes include several of the known genes of
importance in Treg cells, including /12ra (Cd25), Ctla4, Tnfrsf4 (Ox40), Irf4 (rank 17), Prnp (rank 21),
Cd83 (rank 22), Dusp4 (rank 28), Icos (rank 37), Socs2 (rank 41), and Ikzf4 (rank 44).

Here too, Tiam1 (rank 7) is found to have correlated expression with many of the P4 genes. As
mentioned in the main text, Tiaml has been shown to be important in the activation of LFA-1
through TCR-signaling. Vav2 (rank 8), too, is known to play a role in TCR-signaling (12, 13).

While high-scoring genes in the P3 and P7 cluster show correlation only in Treg-derived samples (Fig.
S16B,D), in contrast, for P4 there is correlation in Treg-derived as well as in CD4 T cell-derived data
(Fig. S16C). Since genes in the cluster P4 are Foxp3-amplified (see Gavin et al.), it might suggest that
the differential expression of these genes is already partly established even in absence of Foxp3, and
thus perhaps shared with Foxp3- CD4+ T cells.

In the Foxp3-independent genes (cluster P7), the top scoring gene is Tiam1, which was highly scoring
also in P3 and P4. Again, we observe a certain overlap between high-scoring genes of other clusters,
and for the Treg-specific gene set described in the main paper. Igflr (rank 4), like Itgbh8 (rank 8),
plays a role in focal adhesion, and several integrins have been shown to directly interact with Igfir.

Fig. S22 shows a summary of the main steps in the processing and treatment of data before the
populating of the Immuno-Navigator database. Input data consists of biological data (here: gene
expression data), supplemented with prior knowledge of the biological system and experimental
platform(s) of interest. Publicly available biological samples are processed (removal of duplicated
samples, etc) and normalized in a standard way. Sample annotations include biological and
experimental variables which at this stage will be used for assessing data quality and for batch effect
reduction, in addition to their ultimate use in the cell type-specific analysis of the gene expression
data. Using prior knowledge and reasonable assumptions, a number of indicators of data quality are
defined. The indicators used in our study are described in SI Appendix, section “Evaluation of batch
effect reduction”, and include general as well as system- (consistency with hematopoietic lineage
tree) and platform-specific (correlation between probe pairs representing the same gene) measures.
Importantly, these measures are completely independent of batch annotations or batch effect
reduction methods, and are defined over the entire dataset (e.g. based on the genome-wide data,
not just a small subset of genes). Using these indicators, sample annotations, and quality indicators,
an exploratory analysis of batch effects in the data is conducted, and its quality is assessed.

In a next step, batch effects in the data are reduced, guided by the provided biological (here: cell
type) and experimental (here: studies as proxy for batches) variables for each sample. The quality of
the obtained batch-treated data is again assessed, and compared with the original data’s quality. As
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described in this paper, for this study we found a general improvement of the gene expression
correlation data after batch treatment. If quality is judged not to be sufficient or shows additional
room for improvement, additional processing might be undertaken. Obviously, this step should not
involve “tuning” of the data to the quality indicators. If batch effects appear to be weak, there might
be cases in which the untreated data is sufficient for analysis.

Finally, the obtained data is processed for populating the database (or further downstream analysis).
In the present study, this involved, among other, processing of probe-to-gene annotations and cell
type-specific expression data for populating a SQLite database, as well as pre-computing lists of top
correlated genes, enriched GO annotations, etc. The final data is made accessible using a three-tier
database architecture, in which various tools and supporting data are integrated into a user-friendly
interface.

This general workflow is applicable to various omics data, biological systems, or species, provided
batch information is available.

Principal Component Analysis

There exist a number of exploratory methods for assessing the presence of batch effects in biological
data (14). One exploratory analysis is principal component analysis (PCA) followed by the plotting of
samples marked by batch identifiers or by cell type. We performed PCA on a random selection of
3000 probes over all 3,434 samples, for the data before and after treatment of batch effects. Figure
1A in the main text shows all samples of the untreated data plotted according to the first 2 principal
components (PC), with color codes indicating cell types. Fig. S3 shows similar plots for PC1-PC3 (Fig.
S3A), and PC2-PC3 (Fig. S3C). As also described in the main text, the association between PCs and
biological variables is not so clear, especially for PC2. PC1 appears to be associated with cell types of
the myeloid lineage, and PC3 appears to separate to some degree progenitor cells from non-
progenitor cells. PC1, PC2, and PC3 explain 19.0%, 10.8% and 7.4% of variance in the untreated data,
respectively.

For the batch-treated data, we refer to Fig. 1B in the main text (for PC1-PC2), to Fig. S3B (for PC1-
PC3), and to Fig. S3D (PC2-PC3). PC1, PC2, and PC3 explain 34.0%, 14.1% and 8.0% of variance in the
data after batch effect reduction, respectively. As described in the main text, the PC1 divides cell
types of the myeloid lineage (negative values), of the lymphoid lineage (positive values), and
progenitor cells (intermediate values). PC2 is roughly associated with the degree of maturation of
cells, with progenitor cells (such as hematopoietic stem cells, common lymphoid progenitors,
common myeloid progenitors, megakaryocyte-erythroid progenitors) having high values, and more
specialized cell types having lower values. PC3 of the separates especially mature B cells (large
negative values) and to a lesser degree also Pre-B cells from the other cell types.

Hierarchical clustering of samples

A second exploratory analysis is to cluster samples according to their similarity, and label them with
their “batch” identifiers (in this case the study by which the samples were published), and by
biological variables (in this case: cell types). In the ideal case (when no batch effects are present),
clustering of samples should result in samples for the same cell type forming clusters. In the
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presence of significant batch effects, however, samples produced by the same study form clusters.
Note however that the situation is complicated by the fact that in our case batches and biological
variables are heavily confounded (e.g. many studies focus on one particular cell type).

Because of the high number of studies (261) used in this analysis, it is hard to give a comprehensive
overview of the batch effects over the entire dataset. Here we therefore briefly focus on the data for
regulatory T cells (Tregs) only. Figures S4A and S4B show the clustering of samples before and after
batch effect reduction, respectively. In the original data, samples are clearly clustered according to
the batch (study) in which they were published. After batch treatment, samples from different
studies are distributed much more evenly over the dendrogram, although some clustering by study
still remains. Similar observations were made for other cell types.

As discussed in the main text, we found in general a tendency for probe pairs with high correlation in
the raw data to be also correlated in the batch-processed data. On the level of correlated gene pairs
too, we observed a significantly high overlap between the untreated and batch-treated data (Table
S2). For example, in the macrophage (M®) data, the untreated and treated expression data contain
each significantly positively 2,575,478 correlated gene pairs, of which 240,041 are shared. Although
this represents only 9.3% of the gene pairs of the treated data, this is about 9.1 times more than the
overlap one would expect at random (26,448 pairs, 1.0%). In all cell types, similarly high overlap was
observed. Nevertheless, the shared number of correlate gene pairs was typically just 10 to 25%
(range 5.5 to 32.6%; mean: 18.0%) of the total correlated gene pairs in each data set. In other words,
although there is a significant overlap, there is also a considerable discrepancy between the
untreated and batch-treated correlated gene pairs.

Here we present a number of results that indirectly indicate that batch effect reduction improved
the estimated gene expression correlation. In brief, we show that after batch effect reduction:
1. Correlation values were more consistent between cell types.

2. Related to the above, the number of gene pairs that were found to be significantly
correlated in the data of multiple cell types was increased.

3. Clustering of cell types according to similarity of their correlation data resulted in a
clustering that was more consistent with the known hematopoietic lineage tree.

4. Genes with shared functional annotations were more frequently found to be highly
correlated.

5. Probe pairs representing the same gene were more frequently highly correlated, compared
to probe pairs representing different genes.

Below, each of these results is described in more detail.

Overlap in significantly correlated gene pairs between cell types

Although each of the cell types included in our dataset has its own distinct features and role in the
immune system, it is reasonable to assume that many biological pathways are shared between them.
Under the assumption that correlation of gene expression reflects (directly and indirectly) biological
pathways, we would therefore expect to observe a considerable amount of overlap in significantly
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correlated gene pairs between different cell types. We found that treatment of batch effects
resulted in an increase in consistency between cell types: Firstly, gene pairs that have highly
correlated expression in multiple cell types increased in number after batch-treatment (Table S4).
On the other hand, gene pairs that were found to be correlated in the data of only a single cell type
decreased in number. Note that PCC thresholds were set in such a way that the number of
significantly correlation gene pairs would be the same in the untreated and treated data, and that
the above observations can thus not be explained simply by a change in the number of significantly
correlated gene pairs. Secondly, batch effect reduction increased the overlap in correlated gene
pairs between pairs of cell types in 183 (72%) out of the 253 cell type combinations (Fig. S6). These
results are likely to reflect a reduction of spurious correlations observed in only one cell type, caused
by batch effects.

Clustering of cell types by similarity of co-expression between pairs of probes

Blood cells differentiate from hematopoietic stem cells through a number of progenitor states into
cells of the lymphoid and myeloid lineage. It is reasonable to assume that neighboring cell types in
this lineage tree are defined by more similar biological pathways than distal ones. When we
performed hierarchical clustering of cell types by their similarity of PCC values (see Materials and
Methods section), the clustering is improved in the batch-treated data (Fig. S7B) compared with the
raw data (Fig. S7A); roughly, 3 big clusters are formed, dominated by progenitor cells, by lymphoid
cell types, and by myeloid cell types, respectively. On the other hand, for the untreated data, the
clustering of cell types fits less well with the known lineage tree.

Correlation between gene pairs with shared functional annotations

Under the assumption that that genes with shared functions are expected to have correlated
expression more often than gene pairs with unrelated functions, we compared the correlation
between genes with shared Gene Ontology (GO) terms with the correlation between unrelated
genes. Similar approaches have been proposed, such as a “GO score”, comparing genes with shared
GO annotations with genes lacking shared annotations (15).

We mapped all child annotations in the GO annotation to each of their parent nodes. Next, we made
a selection of GO annotations that contained between 4 and 20 associated mouse genes. Gene pairs
associated with each of these GO annotations we regarded as being functionally related.

On the other hand, we made a set of functionally unrelated gene pairs as follows: we selected all GO
annotation terms with at most 500 associated genes. Randomly, a large amount of gene pairs were
selected, rejecting any gene pairs associated with a shared GO term.

PCC values were calculated for all functionally related gene pairs, and all functionally unrelated gene
pairs. Finally, we calculated the fraction of functionally related gene pairs having a PCC higher than
99% of the PCCs of the functionally unrelated gene pairs.

Results are summarized in Fig. S8, and show that after reduction of batch effects, the correlation of
expression between functionally related gene pairs is increased relative to that between functionally
unrelated gene pairs. We found an improvement in the batch-treated data in 22, 22, and 18 out of
24 cell types, for the Biological Process, Molecular Function, and Cellular Component GO
annotations, respectively.
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Correlation of same-gene probe sets

As a final measure, we used the correlation between pairs of probes representing the same gene. A
considerable portion of mouse genes are represented by more than one probe set on the Affymetrix
GeneChip Mouse Genome 430 2.0 platform. Although the interpretation of such probe sets
mapping to the same gene is not always straightforward (16), it is reasonable to assume that, on
average, probe sets representing the same gene should have a higher tendency to be positively
correlated than probe sets representing different genes.

Comparing the distribution of PCC values of all same-gene probe pairs (35,164 probe pairs,
representing 10,556 genes that have multiple probes) with that of different-gene probes (for probes
representing 35,164 randomly selected gene pairs), we found that for all cell types there was a
relative increase of correlation between same-gene probes in the batch-treated data (Fig. S9). It
should be stressed that batch effect reduction was performed on the probe intensity data,
completely independent of probe-to-gene mapping data.

As an example, Figure S10A shows the distribution of PCC values over all untreated samples
obtained from macrophages, for both randomly selected pairs of probe representing different pairs
of genes (black), and for all pairs of probes representing the same gene (red lines). Clearly, even in
the untreated data, same-gene probe pairs tend to be more positively correlated, in general. Figure
S10B shows the same histogram for the batch-treated macrophage data. Compared with the
untreated data, the variance in PCC values for randomly selected pairs of probes has strongly
decreased. For the same-gene probes too, the variance has decreased, but a subset of probe pairs
continue to show high positive correlation. As a result, batch reduction results in a relative increase
in correlation between same-gene probes as compared to probes representing different genes. We
evaluated this relative increase using Receiver operating characteristic (ROC) curves. The ROC curves
for the macrophages data, before (black) and after (red) batch treatment (Fig. S10C) show an
increased distinction between same-gene probe PCCs and the PCCs of randomly selected probes.
Similar improvements were seen in the data for all cell types (Fig. S9).

S| Materials and Methods

High-throughput sequencing of RNA (RNA-seq) was conducted for CD25P° T cells, unstimulated
CD25"8 T cells, PMA-stimulated CD25"8 T cells, and anti-CD3-stimulated CD25"# T cells. C57BL/6
mice (Female, from 5-6weeks) were purchased from CLEA Japan. CD4+ T cells were isolated from
splenic and lymph nodes as previously described (1). CD8-B220-CD16/32-NK1.1-CD4+CD25+ T cells
(Treg cells) and CD8-B220-CD16/32-NK1.1-CD4+CD25-CD44low T cells (Tconv cells) were purified by
sorting with a cell sorter (MoFlo; Beckman Coulter). For in vitro TCR stimulation of cells, plates
coated with anti-CD3 (1 pg/mL) and anti-CD28 (1 pg/mL) for 6 h or phorbol 12-myristate 13-acetate
(20 ng/mL) and ionomycin (1 uM) for 2 h with recombinant IL-2 for Treg or without recombinant IL-2
for Tconv were used. Anti-ll2ra (PC61), anti-CD4 (RM4.5), anti-CD44 (IM7), anti-CD8a (53-6.7), anti-
B220 (RA3-6B2), anti-CD16/32 (2.4G2), and anti-NK1.1 (PK136) were obtained from BD PharMingen,
Biolegend, or eBioscience. Anti-CD3 (2C11) and anti-CD28 (37.51) were used for in vitro T-cell
stimulation. Mouse recombinant IL-2 was a gift from Shionogi Co. Total RNAs were extracted from
sorted cells using Trizol (Qiagen), and were subjected to TruSeq library prep kit (lllumina), and read
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by Hiseq2000 (lllumina). Sequencing data have been deposited in the DNA Data Bank of Japan (DDBJ)
under accession number DRA004105. Obtained sequences were mapped to the mouse genome
(mm?9) by tophat2 (17).

Treg-specific genes were defined as follows. The number of reads aligned to each gene was counted,
and normalized using DESeq (18). Genes with high preferential expression in Tregs defined as genes
with a sufficiently high tag count in the CD25P° sample (higher than the median non-zero tag count,
308.7), and the tag count in the CD25P° sample should be at least 2-fold higher than that in any of
the CD25"¢ samples. From this set, genes induced (>2-fold enrichment) upon stimulation of CD25"#
cells by PMA or anti-CD3 were removed. This resulted in a set of 248 genes (Refseq IDs).

For the analysis of Foxp3 binding in Tregs, ChIP-seq data for Foxp3 binding in Treg cells was obtained
from DDBJ accession number DRA003955. Obtained sequences were mapped to the mouse genome
(mm9) by bowtie2 (19), and peak-called by FindPeaks (20). Peaks with at least a 7-fold stronger
signal in the ChIP sample than in the input sample were retained, and from those the 25% with the
highest score were selected. Finally, 1,300 genes were associated with at least one of these peaks
(region -100kb to +100kb around transcription start site). Results were consistent when other
thresholds were used.

For EIf1 and Ets1 (21), and Foxol (22) binding in Tregs, ChIP-seq reads were obtained from NCBI
Genome Expression Omnibus (GEO), access numbers GSE40684 and GSE40657. Mapping, peak
calling, and selection of target genes were performed as described above. For EIf1, Ets1, and Foxol,
2252 1278, and 2868 bound genes were obtained, respectively.

For PU.1, C/EBPB, Nfkb1, and Statl binding in DCs before and after stimulation with LPS, ChIP-seq
data was obtained from GEO accession number GSE36104. Peak scores were used as reported in the
original study (7), with scores above 26.9 regarded as significant. For each transcription factor, target
genes were defined as genes with significant peaks in the region -5kb to +5kb around their
transcription start site in at least one of the ChIP-seq samples for the transcription factor. Thus, 8758,
7143, 500, and 618 bound genes were obtained for PU.1, C/EBPB, Nfkb1, and Stat1, respectively.

We obtained target genes for a collection of 104 TFs and DNA-binding proteins from the Haemcode
database (6). Haemcode contains, among others, ChIP-seq peak data obtained from publicly
deposited ChlP-seq data, processed using a consistent analysis pipeline. Haemcode also provides
annotation files in which ChIP peaks are assigned to candidate target genes, based on the overlap
between peaks and genes or the distance between them. We collected target genes for the 104 TFs
and DNA-binding proteins for which data was available for cell types present in our database. This
covered 61 different factors, and 14 different cell types. Table S5 shows an overview of the data.

For each factor, cell type, and study, we defined target genes using the Haemcode annotation data,
as follows: target genes should overlap with a ChIP-seq region peak, or the distance between the
gene and the peak should be at most 100 kbs. Genes meeting this condition were regarded as
targets, and other genes as non-targets.
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From our database, we collected the expression correlation data for the gene encoding the ChlPed
regulator in the cell type used for the ChIP-seq experiment. As measure for the bias in correlation
between the CHIPed regulator and its targets we calculated “enrichment scores”, similar to those
used in Gene Set Enrichment Analysis (GSEA) (5). In brief, genes are sorted by their correlation with
the ChlPed regulator. Enrichment scores are subsequently calculated by going through the sorted list
of genes, increasing a running-sum score whenever a target gene is encountered, and decreasing it
when a non-target gene is encountered. The maximum and minimum of this running-sum score are
used as a measure for the bias in correlation between the ChlPed regulator and its targets as
compared to the non-targets. For a more detailed description about GSEA and enrichment scores,
we refer to (5).

Enrichment scores were analysed for all 104 datasets (see S| Appendix, section “Correlation Gene Set
Enrichment Analysis”).

FITC-conjugated anti-CD45RA (HI100) mAb and V500-conjugated anti-CD4 (RPA-T4) mAb were
purchased from BD Biosciences. PE-conjugated anti-FoxP3 (236A/E7) mAb and purified anti-ltgb8
(416922) were purchased from eBioscience and R&D Systems respectively. Anti-ltgb8 mAb was
biotinylated by Biotin Labeling Kit - NH2 (Dojindo).

Human CD4+ T cells were enriched from PBMCs of healthy donors by using BD IMag system.
Enriched Th cells were stained with anti-ltgb8 mAb for 30 min on ice. After washing, cells were
incubated with streptavidin-labeled APC (BD Biosciences) and other antibodies for 30 min. FoxP3
staining was performed after fixation by Foxp3 / Transcription Factor Staining Buffer Set
(eBioscience) and FoxP3+ltgh8+ cells were sorted by FACSAriall.

All donors provided written informed consent before sampling according to the Declaration of
Helsinki. The present study was approved by the institutional ethics committees of Osaka University.

Methods and primers for CpG methylation analysis were previously described (23). Briefly, genomic
DNA was subjected to bisulfite treatment using MethylEasy Xceed (Human Genetic Signatures),
followed by PCR amplification of target regions and subcloning into pTAC-1 plasmid in DynaExpress
TA PCR Cloning Kit (BioDynamics Laboratory Inc). 16 colonies per region were amplified with the
Illustra TempliPhi Amplification Kit (GE Healthcare) and sequenced.

A set of genes induced in GM-CSF-induced bone marrow-derived DCs by LPS was defined as follows.
RNA-seq data for mouse DCs before and 4 hours after LPS stimulation was obtained from the DDBJ
Sequence Read Archive; accession number DRA001131 (24). Reads were mapped to the mouse
genome (mm10) using Tophat and Bowtie (19, 25). Uniquely mapped tags with at most 2
mismatches were counted per mouse Refseq gene, and converted to reads per million reads per
kilobase (RPKM). Genes with at least a 5-fold induction of expression 4 hours after stimulation and at
least one sample with an RPKM value higher than the genome-wide median RPKM were defined to
be significantly induced. This resulted in a set of 449 Refseq IDs, representing 345 unique genes.
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It is not hard to see that batch effects increase absolute values of PCCs. Fig. S18 shows a toy example
of two probes which are not correlated in reality, measured in 2 batched of 10 samples each (Fig.
S18A). Adding batch effects to the batches (in this case a simple shift; increasing values for both
probes in batch 1 and decreasing them in batch 2) results in an apparent strong (in this case positive)
correlation between the two probes (PCC for Fig. S18A: 0.079; for Fig. S18B: 0.854). It is therefore
not surprising to observe that absolute PCC values are decreased after treatment of batch effect (see
also Fig. 2A in main text, and Fig. S5).

For our analysis, we defined “significant” correlations using a false discovery rate (FDR) measure,
comparing correlation values obtained from the actual data, with those obtained from artificial data.
However, it is reasonable that some batch effect remains even in the batch-treated data. Because of
this, the PCC values in this batch-treated data are still likely to be to some degree biased towards
extreme values. To prevent this from inflating the number of significantly correlated probe pairs, we
constructed our artificial data in a way that would preserve batch effects that might still be present
in the batch-treated data. We did this using “batch-guided” shuffling, as follows:

1. For each cell type, we collected all batch-treated samples, along with their corresponding
batch index (identifier for the study they were published by).
2. For each probe, values were randomly shuffled one batch at the time:
a. if a batch contained at least 5 samples for the cell type of interest: values for the
probe were shuffled within the batch.
b. if the batch contained less than 5 samples for the cell type of interest: a
corresponding number of values were randomly sampled from all values of this
probe over all batches.

This approach assures that if some particular batch contains extreme values, these extreme values
will also be preserved in the artificial data. Note that in the absence of batch effects this approach is
essential identical to random shuffling of data per probe, regardless of batch indices.

Using the same toy example as above, we illustrate the effect of this “batch-guided” shuffling. Fig.
S18C shows the scatter plot of the samples in the toy example with batch effects (see Fig. S18B)
after default random shuffling regardless of batch indices. Fig. S18D shows the scatter plot of the
same samples after batch-guided shuffling. The PCCs are 0.152 and 0.810, respectively. In the latter
case, batch effects have been largely preserved, leading to PCCs with higher absolute values, similar
to those observed in the original batch-affected data (Fig. S18B).

In order to evaluate the behavior of CNHP further, we ran it on sets of randomly selected genes of
different sizes. We randomly selected sets of genes of size 10, 20, 30, 40, 50, 100, 150, 200, 300, 400,
and 500 and used these as input for 23 cell types (not for multipotent progenitor cells, for which we
could not find a suitable FDR-based PCC threshold; see main text) and for the combined data. We
repeated this 10 times (2640 runs in total), and for each input size we recorded the minimum p value
for the gene with the most significant frequency of correlation with the input set of genes. Fig. S19
shows for each input size and dataset the lowest p value (-logio values) we observed (see also main
text for the estimation of the p values). Overall the lowest p value observed was 3.9e-8, suggesting
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that in general a p value threshold of 1e-10 is a reasonable choice for genuine analyses. There were
no clear tendencies in minimum p values with regard to the size of the input gene set or the number
of samples in the dataset.

In order to evaluate the robustness of the CNHP results, we performed CNHP on the set of genes
that are induced in mouse dendritic cells (DCs) after lipopolysaccharide (LPS) stimulation (see main
text). We considered all genes with a high level of correlation with the input genes (p value < 1e-10)
as a reference set for “highly correlated genes”, and all genes with a low level of correlation with the
input genes (p value > 0.01) as a reference set for “non-correlated genes”. We then ran the same
analysis on smaller input sets by removing randomly parts of the original input gene set (removing
5%, 10%, ..., 95% of the genes; 20 runs each). For each run, we checked how many of the reference
“highly correlated genes” and “non-correlated genes” were highly correlated (p value < 1e-10) with
the genes in the smaller input gene sets.

Figure S20 shows box plots of the fraction of “highly correlated genes” that were retained for each
input set size. The plot shows that the retention rate first drops slowly when only 5 to about 50% of
the original input set is randomly removed. The retention rate then drops more rapidly as the input
gene sets become smaller. Importantly, more than half of the “highly correlated genes” could be
retained even when 75% of the original input was removed. On the other hand, not a single “non-
correlated” gene was reported as “highly correlated” in any of the runs we performed.

In another analysis, we gradually added randomly selected (non-input) genes to the original input.
We did this in several steps (5%, 10%, ..., 100% of the original input set size; 20 runs for each level).
For each run, we checked how many of the reference “highly correlated genes” and “non-correlated
genes” were highly correlated (p value < 1e-10) with the genes in the noisy input sets.

Figure S21 shows box plots of the fraction of “highly correlated genes” that were retained for each
level of randomly selected genes added. Retention rates drop linearly in function of the amount of
noise added. However, even when 100% noise is added, retention rates are still above 85%. This
suggest that CNHP is rather robust against noise, as long as a set of biologically meaningful genes is
included in the input set. Here too, not a single “non-correlated” gene was reported as “highly
correlated” in any of the runs we performed.

From the Jaspar database (26) we prepared a set of 543 PWMs, including the DNA binding motifs for
mammalian transcription factors, as well as core promoter motifs. For each PWM, a threshold score
was set in a way that results in about one predicted binding site per 5kb of the mouse genome
(mm10). For each Refseq gene, the region -500 to +200 relative to its transcription start site was
scanned using the set of PWMs and their corresponding threshold scores. Predicted transcription
factor binding sites (TFBSs) for each gene can be downloaded from Immuno-Navigator.

In addition, for each gene, the TFBSs that are enriched in the promoters of the top 100 most highly
correlated genes in each cell type have been pre-calculated and are available in the database. Our

approach for TFBS enrichment prediction takes into account GC content biases in the promoter
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regions (27). For a more detailed description we refer to the section “TFBS enrichment analysis”

below.

Vertebrate promoters can be roughly classified into CpG island-associated promoters and non-CpG
island promoters (28, 29). Obviously, the presence or absence of predicted transcription factor
binding sites (TFBSs) in promoter sequences is affected by the overall GC content and CpG scores of
a DNA sequence. A number of studies have reported better performance in the prediction of
enrichment of TFBSs when taking into account the GC content and CpG scores of the input
sequences (27, 30).

We extracted the genomic sequences from position -500 to +200 relative to all Refseq transcription
start sites (obtained using the UCSC Table Browser) (31). Next, we divided these sequences into 7
bins of 100 bps, and in each bin calculated the GC content and the CpG score. These values were
combined into a single matrix, on which we applied PCA. Using the two first principal components
we classified promoters into two clusters using k-means clustering (k=2). These two clusters
correspond to 17,847 promoters with high GC content and high CpG scores, and 15,225 promoters
with low GC content and low CpG scores.

We used the above classification in order to reduce biases in the TFBS enrichment analysis caused by
GC content and CpG scores of promoter sequences under investigation. For each position weight
matrix (PWM) p, we calculated the fraction of sequences containing a hit for p among the high GC
content promoters (ff,nign) and the low GC content promoters (frpiow). FOr each set of promoter DNA
sequences D in which to predict enriched TFBSs, we count the number of sequences that contain a
hit for p (hep). We also look up the number of sequences in D that were classified in the high GC
content class (nnign) and in the low GC content class (niw), respectively. Finally, using the binomial
distribution, we calculated the probability of observing h,, or more hits for p in a set of npign high GC
content and nyw low GC content sequences, given frpnign and frp iow. This probability was corrected for
multiple testing using the Bonferroni correction, and PWMs with a corrected p value < 0.01 were
considered as significantly enriched in the input set D.

For each gene, associated GO terms are included in Immuno-Navigator. In addition, enriched GO
terms in the top 100 most correlated genes in each cell type are available. GO term enrichment was
estimated using a hypergeometric distribution and Bonferroni correction for multiple testing. GOslim
annotations can be used for filtering results of CNHP.
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Sl Tables

Cell type Abbreviation sample count
1| CD4Tcells CDh4 634
2 | Macrophages MO 601
3 | Mature B cells - 384
4 | CD8T cells CD8 323
5 | Regulatory T cells Treg 240
6 | hematopoietic stem cells HSC 236
7 | conventional dendritic cells cDC 216
8 | Pre-B cells - 94
9 | Granulocyte-macrophage progenitors GMP 82
10 | Common myeloid progenitors CMP 74
11 | Mature NK cells - 68
12 | Double Positive cells DP 65
13 | Mast cells - 61
14 | Type 1 helper T cells Thl 51
15 | memory T cells Tmem 47
16 | Monocytes - 38
17 | Common lymphoid progenitors CLP 36
18 | Type 2 helper T cells Th2 35
19 | Plasmacytoid dendritic cells pDC 28
20 | Pro-B cells - 28
21 | Megakaryocyte-erythroid progenitors MEP 27
22 | Natural killer T cells NKT 24
23 | Common dendritic cell progenitors cbp 22
24 | Multipotent progenitor cells MPP 20
Total 3,434

Table S1: Final count of samples per cell type included in this study and in the database.
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Data set or | Gene pairs Gene pairs Gene pairs Gene pairs Fold Percentage
cell type before after shared shared enrichment | shared (%)
treatment treatment (observed) | (expected)
Combined 1,920,557 1,920,557 345,182 14,704 23.5 18.0
CD4 2,009,223 2,009,223 430,558 16,093 26.8 21.4
M® 2,575,478 2,575,478 240,041 26,443 9.1 9.3
Mature B 2,934,765 2,934,765 700,198 34,335 20.4 23.9
CD8 3,071,390 3,071,390 413,689 37,606 11.0 135
Treg 3,395,245 3,395,245 1,078,507 45,955 23.5 31.8
HSC 1,269,071 1,269,071 208,280 6,420 324 16.4
cDC 2,748,539 2,748,539 278,675 30,116 9.3 10.1
Pre-B 2,450,745 2,450,745 742,093 23,944 31.0 30.3
GMP 3,374,613 3,374,613 568,447 45,398 12.5 16.8
CMP 3,349,175 3,349,175 1,046,023 44,717 23.4 31.2
Mature NK 2,678,781 2,678,781 903,851 28,607 31.6 33.7
DP 3,031,810 3,031,810 760,249 36,643 20.7 25.1
Mast 3,216,178 3,216,178 422,503 41,236 10.2 131
Thl 2,260,888 2,260,888 332,115 20,377 16.3 14.7
Tmem 2,597,571 2,597,571 240,206 26,898 8.9 9.2
monocyte 2,715,329 2,715,329 585,837 29,393 19.9 21.6
CcLP 1,886,671 1,886,671 204,328 14,190 14.4 10.8
Th2 574,163 574,163 51,349 1,314 39.1 8.9
pDC 2,259,353 2,259,353 254,739 20,350 12.5 11.3
Pro-B 552,209 552,209 30,314 1,216 24.9 5.5
MEP 575,317 575,317 50,042 1,319 37.9 8.7
NKT 679,041 679,041 101,665 1,838 55.3 15.0
cDP 806,882 806,882 263,131 2,595 101.4 32.6

Table S2: Table showing the overlap between significantly correlated gene pairs in the untreated and batch-

treated gene expression data. For the combined data and for each cell type’s data, the number of significantly

positively correlated gene pairs are shown in the untreated data, as well as in the data from which batch

effects have been reduced. Note that we selected PCC thresholds so that the number of gene pairs would be

the same in the untreated data as in the treated data. In addition, the observed number of shared correlated

gene pairs, the number expected at random, the fold increase (observed vs expected), and the percentage of

shared gene pairs (shared pairs vs total pairs in treated data) is shown. Cell type abbreviations are as in Table

S1.
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Rank | PWMID Motif name | Hitsininput | Hits expected Fold enrichment P-value
1 MAO0105.1 | NFKB1 52 25.9 2.01 8.8e-06
2 MAO0107.1 | RELA 42 18.4 2.28 2.1e-05

Table S3: Significantly enriched regulatory motifs in the promoter sequences of the 100 genes with the highest
correlation with Jmjd3 in macrophage samples. For significantly enriched motifs, the PWM ID, motif name, the
observed and expected number of hits in the 100 promoter sequences is shown. There is a strong enrichment

for NF-kB binding motifs (“NFKB1” and “RELA”).

Shared in x cell Untreated Batch-treated Fold
types data data enrichment

1 17,225,773 14,761,149 0.95
2 4,828,296 4,243,716 0.98
3 2,084,875 1,975,279 1.05
4 1,111,558 1,125,073 1.12
5 661,501 715,661 1.20
6 421,602 485,707 1.28
7 280,150 343,279 1.36
8 191,257 245,731 1.43
9 130,765 177,722 1.51
10 89,559 128,039 1.59
11 60,635 91,881 1.68
12 40,211 64,772 1.79
13 25,909 45,583 1.95
14 16,081 31,177 2.15
15 9,200 20,552 2.48
16 5,253 12,852 2.72
17 2,849 7,626 2.97
18 1,487 4,047 3.02
19 637 1,912 3.33
20 245 834 3.78
21 93 338 4.04
22 28 109 4.32

22




23 10 25 2.78
Total number of
correlated gene
pairs in cell type-
specific data 27,187,974 24,483,064 1.00

Table S4: Table showing the number of significantly positively correlated gene pairsin 1, 2, ..., 23 cell types, for

untreated gene expression data, and data after treatment of batch effects. The fold enrichment column shows

the relative enrichment after batch effect treatment, taking into account the total number of correlated gene

pairs observed in both datasets (shown at the bottom).

chiPed factor GEO accession | Cell type in . Positive enrichment Neg'ative
number Immuno-Navigator | score enrichment score
Ascl2 GSE52840 CD4 0.050 -0.010
Atf3 GSE54414 Macrophage 0.132 -0.003
Batf GSE39756 CD4 0.238 -0.005
Batf GSE40918 CD4 0.340 -0.001
Batf GSE52773 cDC 0.095 -0.030
Batf GSE54191 CD8 0.218 -0.001
Cbx7 GSE36658 HSC 0.104 -0.003
Cbx8 GSE36658 HSC 0.081 -0.002
Cebpa GSE21512 Macrophage 0.220 -0.052
Cebpa GSE50565 Macrophage 0.280 -0.035
Cebpb GSE21512 Macrophage 0.123 -0.092
Ctcf GSE36099 cDC 0.149 0.000
Ctcf GSE40918 CD4 0.248 0.000
Ctcf GSE44637 Mature B 0.131 -0.001
Ctcf GSE48086 Mast 0.212 0.000
E2f1 GSE36099 cDC 0.051 -0.063
E2f4 GSE36099 cDC 0.018 -0.062
Ebfl GSE19971 Pro-B 0.136 0.000
Ebfl GSE35857 Mature B 0.192 0.000
Ebfl GSE35915 Mature B 0.289 -0.003
Egrl GSE36099 cDC 0.171 -0.009
Egr2 GSE36099 cDC 0.176 -0.002
Egr2 GSE49366 CD4 0.262 -0.016
EIf1 GSE40684 Treg 0.293 -0.011
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Ep300 GSE40463 Thl 0.163 -0.001
Ep300 GSE40463 Th2 0.152 -0.003
Ep300 GSE40918 CD4 0.268 0.000
Erg GSE48086 Mast 0.160 -0.003
Etsl GSE40684 Treg 0.455 0.000
Ets2 GSE36099 cDC 0.062 -0.126
Flil GSE20898 Th2 0.071 -0.001
Flil GSE48086 Mast 0.407 0.000
Fos GSE48086 Mast 0.115 -0.017
Fosl2 GSE40918 CDh4 0.069 -0.012
Foxol GSE40656 Treg 0.437 0.000
Foxol GSE46525 CD4 0.403 -0.001
Foxp3 GSE40684 Treg 0.114 -0.012
Gata2 GSE26031 HSC 0.213 -0.001
Gata2 GSE42518 Mast 0.381 0.000
Gata3 GSE20898 CD4 0.325 0.000
Gata3 GSE20898 CD8 0.301 -0.001
Gata3 GSE20898 DP 0.127 -0.021
Gata3 GSE20898 Treg 0.205 0.000
Gata3 GSE20898 NKT 0.313 -0.002
Gata3 GSE20898 Thl 0.146 -0.010
Gata3 GSE20898 Th2 0.168 -0.004
Gfil GSE42518 Mast 0.209 -0.001
Hifla GSE36099 cDC 0.136 -0.040
Hoxb4 GSE34014 HSC 0.050 -0.050
Ikzf1 GSE38200 Pre-B 0.170 -0.012
Irfl GSE36099 cDC 0.137 -0.017
Irf4 GSE39756 Mature B 0.222 -0.018
Irf4 GSE39756 CD4 0.148 -0.020
Irf4 GSE40918 CD4 0.298 -0.005
Irf4 GSE54191 CD8 0.181 -0.031
Irf8 GSE53311 cDC 0.134 -0.052
Jun GSE54191 CD8 0.253 0.000
Junb GSE38377 Macrophage 0.090 -0.105
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Junb GSE52773 cDC 0.161 -0.004
Junb GSE54191 CD8 0.150 0.000
Jund GSE54191 CD8 0.082 0.000
Ldbl GSE26031 HSC 0.130 0.000
Lmo2 GSE48086 Mast 0.369 0.000
Maf GSE47528 CDh4 0.160 0.000
Maff GSE36099 cDC 0.107 -0.021
Med1 GSE44288 Pro-B 0.153 0.000
Meisl GSE48086 Mast 0.177 -0.008
Menl GSE53831 CD4 0.349 0.000
Mitf GSE48086 Mast 0.274 -0.001
Pax5 GSE38046 Mature B 0.259 -0.002
Polr2a GSE54414 Macrophage 0.057 -0.084
Pou2f2 GSE21512 Mature B 0.369 0.000
Rel GSE36099 cDC 0.334 -0.003
Rela GSE16723 Macrophage 0.196 -0.015
Rela GSE36099 cDC 0.210 -0.005
Rela GSE48759 Macrophage 0.150 -0.099
Relb GSE36099 cDC 0.363 -0.010
Runx1 GSE29515 HSC 0.132 -0.001
Runx1 GSE48086 Mast 0.260 0.000
Runx3 GSE48591 cDC 0.109 -0.060
Runx3 GSE50131 CD8 0.283 -0.002
Sfpil GSE21512 Mature B 0.239 -0.021
Sfpil GSE21512 Macrophage 0.091 -0.143
Sfpil GSE21614 Pro-B 0.062 -0.010
Sfpil GSE38377 Macrophage 0.072 -0.154
Sfpil GSE48086 Mast 0.221 0.000
Sfpil GSE48759 Macrophage 0.096 -0.126
Sfpil GSE52773 cDC 0.209 -0.005
Smad3 GSE21614 Pro-B 0.197 -0.001
Statl GSE33913 Macrophage 0.119 -0.097
Statl GSE38377 Macrophage 0.097 -0.155
Statl GSE40463 Thl 0.209 -0.007
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Stat3 GSE27161 cDC 0.169 0.000
Stat3 GSE36099 cDC 0.235 -0.002
Stat3 GSE39756 CD4 0.235 -0.001
Statd GSE22104 Thl 0.120 -0.019
Stat5b GSE27161 cDC 0.159 -0.010
Stat6 GSE22104 Th2 0.093 -0.017
Staté GSE38377 Macrophage 0.294 -0.010
Tall GSE26031 HSC 0.263 0.000
Tall GSE48086 Mast 0.312 0.000
Thx21 GSE33802 Thl 0.229 0.000
Thx21 GSE40623 Thl 0.155 0.000
Tcf3 GSE48086 Mast 0.237 0.000

Table S5: Overview of the Haemcode-derived ChlIP-seq data sets. For the 104 dataset included in this study,

the table shows the ChlPed factor, the GEO accession number of the ChIP-seq data, the cell type used for the

ChIP-seq experiment and for the correlation analysis, and the positive and negative enrichment scores

observed in that cell type.

Cell type PCC threshold Probe pairs Gene pairs | Estimated FDR
Combined data | 0.620144 5999920 2924148 0*

CD4+ T cells 0.4 3498181 2032548 0

MO 0.4 5583890 3171592 0

mature B 0.416098 5999961 3429280 0

CD8+ T cells 0.403383 5999994 3316318 0

Treg 0.45861 5999972 3867165 8.28E-07
HSC 0.4 1888398 1411692 0

cDC 0.442626 5999973 3497173 0

Pre-B 0.479065 5999915 3321256 0.000541
GMP 0.518508 5999971 4394763 0.001781
mast 0.569727 5999908 4157054 0.009424
(oY1 0.542823 5999954 4296330 0.000253
mature NK 0.543069 5999931 3595759 0.000541
DP 0.535053 5999909 3969803 0.002391
Thl 0.589866 5999903 3447620 0.003128
memory T cell | 0.583928 5999934 3857087 0.005891
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monocyte 0.680278 5999932 4228912 0.001371
CLP 0.639097 3859400 2870687 0.01

Th2 0.721279 1031368 761586 0.009999
pDC 0.706806 4647635 3349858 0.01
Pro-B 0.744162 1070121 818861 0.01
MEP 0.764744 1191676 881400 0.009999
NKT 0.778883 1320326 956253 0.01
cbp 0.792533 1458158 1092179 0.009999
MPP NA NA NA NA

Table S6: This table shows for each dataset the PCC threshold used, the number of probe pairs with higher PCC

values than this threshold, the number of gene pairs with PCC values higher than this threshold, and the

estimated false discovery rate (FDR). (*: for the combined dataset the threshold was decided using randomly

shuffled data in which batch information was not used; see also section “Construction of Shuffled Data”).
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Fig. S1. Example of single gene analysis using Immuno-Navigator. (A) Top page with several tabs and a gene
search function. (B) Gene page for the gene Foxp3. A short description, IDs and external references are shown,

as well as the “Probes” tab, showing the high expression of this gene in Treg samples. (C). Top correlated

probes page. In this case, the probes are sorted by their correlation with the Foxp3 probe in the Treg samples.

(D) The “cell type selector” menu allows the user to select which cell types to show in the table. Black: cell
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types that are currently included in Immuno-Navigator; Green: selected cell types; Grey: cell types which are
not yet included in Immuno-Navigator. (E) Scatter plots of the probe of Foxp3 (X axis) and the probe for //2ra (Y
axis) over all samples in the database (left) and the Treg samples only (right). For the scatter plot of all samples,
colours reflect cell types. Moving the mouse over a sample displays the corresponding cell type. Treg samples
are indicated. (F) Correlation network for Foxp3 in the Treg samples. Thick edges represent significant
correlations; thin edges represent high (top 5) but not significant correlations. The central blue node is the
query gene, black nodes are the top 5 correlated genes of the query gene, and grey nodes represent their top

5 correlated genes, respectively. (G) Motif enrichment result page. In this case, enriched motifs are shown for
the top 100 genes with highest correlation with the gene Ifit1, over all macrophage samples.
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Fig. S3: Principal Component Analysis of gene expression data before and after batch effect reduction. Scatter
plots are shown for all samples in the untreated data (A: PC1 vs PC3, C: PC2 vs PC3), and in the batch-treated

data (B: PC1 vs PC3, D: PC2 vs PC3) . Shapes and colors reflect cell types (see legend of Fig. 1 in the main text of
the paper).
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Fig. S4: Hierarchical clustering of Treg samples before (A) and after (B) batch effect reduction. Color codes
below the dendrogram represent studies (different color for each study). Please note that because of the high
number of studies some colors are hard to distinguish.

A
untreated data batch-treated data
> 3 .
Q o s
C 8 e g
[V ] o8
> 8 g 8
g - ﬂm—ﬂ‘ﬂm g s
I.I!: o : - II—L I.Ih_ o ‘ I I I’_‘M |
0.5 . 5 -1.0 0.5 0.0 0.5 1.0
PCC PCC
B
AT

|||-|-|-|-u|-|-|n|||||m
| ! | 1 |

CLP | '"Zﬁf..______ﬁﬁ_f_

= | Lo i
' T 11§17 ©r'r rT'r 1rr &°r°rr T©T°rr T°r1 Tir1 1 1717 T 1T 1771 T'T1T 1 1717 ’©°1 T °T1T T°7T1
Tec2Py89seEaEEE gy eEs
_EUEELJ;IUEEEM EI—E; F a £ = =
o E a O fud = 8 o
E © 2 c
(=] > @ Q

31



Fig. S5: Treatment of batch effects strongly changes gene expression correlation. (A) The distribution of PCC
values in the entire set of 3,434 gene expression samples (“Combined” dataset) before (left) and after (right)
batch effect reduction. (B) Boxplots show the distribution of PCC values observed in all data sets (combined
data, and each cell type’s data separately) before (blue) and after (red) batch effect treatment. In all datasets,
batch effect treatment resulted in decrease of variance in PCC values, and a reduction of extremely high

(positive and negative) PCC values.

MI
D2

Mature B

CMP
Mature NK
DP

Thl
Tmem
moneoyte
CLP

Th2

pDC
Pro-B
MEF
NKT

coP

M

o4
Mature B
D3
Treg

HZC

tDC
Pre-B
GMP
Mast
CMP
Matura NK
DP

Thl
Tmem
monacyte
CLP

Th2

pDC
Pro-B
MEP
NKT

<DP

1037439
929365
1113408
1024063
683802
373392
274916
385335
687169
472256
435569
278598
450619
413458
450187
312189
199311
97897
396031
81745

Cumbincdg E E
g

237182
283033
291261
233777
298743
140585
264543
247383
233285
222546
203524
253433
233036
245355
188210
137731

85354

84538
114376

41781

48635

35581

©

Combined g

5

CMP 048
Mature NK 093
CFP 053
Thl 059
Tmem 042
manacyte 044
CLP 043
Th2 0.86
eoc [NGE
Fro-B 051
MEP 073
NKT 043
cop 087

B

=

3

Com

630510
980637
825124
450294
285612
183549
312226
BE4050
487150
370140
136509
349108
317022
367379
252077
152359

55788
406007

52108

525102
572263
623708
526766
243572
246329
405610
408887
481763
423355
432323
366101
335533
353023
261000
174373

33636
326030

43043

71442

70230
122402

&
=

083
058
76
120
087
461
130
oe2
frke]
115
220
105
106

104
114
179
.80
094
228
148
95

M

939128
799429
745052
278309
277520
345505
621103
364822
431511
306265
427120

453368
286731
146528
102365
315133

60777

63174
116567
104164

=

1115309
1246188
967614
385536
631813
605088
580013
532870
627147
632548
536340
604343
564066
262414
244044
161307
193326

118372
93530
200785

Coa

E38765
331279
232610
511018

521393

403837
537833
467053
439129
370595
176440
119668
480771

70388

86153

91639
139173

B

Mature

953378
402538
741570
772697
668326
613347
754358
787017
585487
648345
536163
311023
280033
173770
242725

73743
143075
103714
242320

Mature B

542975
202306
375368
704431
496694
430822
334553
433472

515255
309331
430398
94587
450276
141680
62806
74692
86465

356133
417357
773343
787547
660322
642508

738233
583465
672523
668542
312720
234324
164520
213436

70203
137366
111527
212538

=

476455
272666 60012
501319 149688
547162 386647
452526 195950
48305 365607
583249 126130
665686 274895
474780 137345
45013 208370
403517 121159
445632 427276
150683 34740
30878 118284
143743 108847
131561 58258
170582 21084
199423 44830
g b
Pl I
475037
610279 294150
601633 253392
820750 401791
657296 2658696
742478 417446
845052 322331
701705 263303
606278 232228
574230 219687
344553 154872
383483 182742
189323 73704
345716 123264
B7728 41455
129784 72165
145526 55529
222380 103966
= I
1.00
2.2¢ SR
1.20 174
1.50 1.04
145 137
114 1.14
145 2.56
1.05 0.96
1.28 169
135 1.05
0.85 1.28
0.86 0.43
1.26 229
112 1.04
0.61 038
0.99 1.24
0.85 263
112 233
o
E oz

173368
279604
123106
174563
231102
193929
168635
312729
191936
56863
77380
139845
26108
42032
78587
74309

433833
504848
476041
536481
550842
354434
335514
383368
235800
208627
109918
233706

56826

33548

86511
152022

5}

a
o

123

442336
436702
433443
526280
451204
420158
366221
214003
182082
113165
175874

58586

65363
133560

Pre-B

103

Pre-B

467980

283502
386186
285779

472381
374550
503854
433748
339131
4132535
233887
330244
131243
253706

63173
158333

83241
132633

o

101
112
213
125

0.64
118
138
172

0.93
219
131
217

GMP

121
223
125
110
135
093
126
113
076
141
236
037
222

Mt

435579

551106
444352
374300
335414
275470
332645
112105
230220

71768
206826

83238
177186

o

232890
135116

146440
79021
167895
46587
85810
104062
145336

Mature NE

514835
535320
462855
257383
223855
153166
247378

63214
115754

81324
173518

Mature NE

Mature MK,

435815
376383
242534
218833
135544
222703
54124
82343
54443
140373
o

untreated data

215346
268758
1010839
212530
217485

37290

48040
108821

fold difference

167

175107
162991
53918
221312
54611

117

Tmem

118114
28024
206312
42740
B0922
101952
116411
@

monooyt

T74IS

manasyte

273
86223
134815
38583
29606
35322
o

52225
118138
36145
4177
53017
72326
[

110

Q70 153
077 137
o79 IEEE
Q75 127
048 179
067 203
2 -

< 3

g

H

s

E

120

137

33563
42140
43568
64333

poc

135

070
166

7850 15697
16074 45884 38376
=

MEP
M

14880
14957 15722
27454 37842 23485
@ e =
o w =
i = =
=
0.76
13 1.00

17 0.8 077
=

Pro-B
MEP
M

Fig. S6: Overlap in positively correlated gene pairs in all datasets (combined data and cell type-specific data).

(A) Table showing the number of shared significantly positively correlated gene pairs between all datasets in
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the untreated data. A color code (white: low; red: high) is used to improve readability. (B) Same as (A) for the
data after batch effect reduction. (C) Fold difference in the number of overlapping gene pairs between the
batch-treated and untreated data. This shows the counts shown in (B) divided by those of (A). Here too a color
code is used (red: higher overlap in the batch-treated data, blue: higher overlap in the untreated data). In 183
(72%) out of the 253 cell type combinations an increase in overlap was observed.
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Fig. S7. Hierarchical clustering of cell types according to their similarity in gene pair correlation of expression
values. Cluster dendrograms are shown for the untreated expression data (A) and for the data after batch
effect reduction (B). Cell types are marked as follow: blue: progenitor cell types; green: lymphoid cell types;
orange: myeloid cell types.
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Fig. S8: Evaluation of batch effect reduction on correlation of expression between functionally similar genes.
For each dataset (24 cell types), the fraction of functionally related gene pairs with high correlation is shown.
High correlation was defined as correlation higher than that of 99% of functionally unrelated gene pairs. The
fractions are shown for untreated (blue) and batch-treated (orange) data, for Biological Process (A), Molecular
Function (B), and Cellular Component (C) GO annotations. Green dots indicate datasets in which an
improvement was observed in the batch-treated data.
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Fig. S9: Treatment of batch effects results in a relative increase of correlation between probe set pairs

representing the same gene, in macrophage data. Differences in correlation between probe pairs representing

the same gene, and probe pairs representing different genes were measured using Area Under the Curve (AUC)
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values of ROC curves. The barplots in this figure show for all cell types the AUC values of these ROC curves, for
untreated (blue) and batch-treated (orange) data. In all datasets an improvement was observed after batch
effect reduction.

Untreated data Combat-treated data

>
w

6000
6000

= = = =
o = o =
| o | o
[«0]} [«0]}
S g | =
T 2 o s
[0} [0}
- -
= g A [Feewe =g ]
o J —sfﬂu' . "\HTH—I}. o J ,,-rLJ h_ﬂ-
- |I.0 -0‘.5 UTO 075 1 TU - II.O -0‘.5 UTO 075 1 TU
Pearson Correlation Coefficient Pearson Correlation Coefficient

(@]

0.4 0.6 0.8
Il Il

0.2

P(PCC > x | same-gene pairs)

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

P(PCC > x | random pairs)

Fig. $10. Reduction of batch effects results in a relative increase of correlation between probe set pairs
representing the same gene, in macrophage data. (A) Histograms for the distribution of PCC values in the raw,
untreated, macrophages gene expression data. The histogram shows the distribution of PCC values for random
probe pairs representing different genes (black), and for probe pairs representing the same gene (red). (B)
Similar histogram for the batch-treated macrophage data. (C) ROC curve for PCC values in macrophage-derived
expression data, between pairs of probes mapped to the same gene, and between randomly selected probes
not mapped to the same gene, before (black line) and after (red line) bath reduction treatment. After batch
reduction, probe pairs representing the same gene are relatively more positively correlated (see also Fig. S9).
“x": PCC threshold.
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Fig. S11: The relationship between correlation in cell type-specific data and in the combined data. For gene
pairs with significant positive correlation in 0, 1, 2,..., 23 cell types (X axis), the fraction of gene pairs that was
also significantly positively correlated in the combined data (Y axis) is shown. For example, of gene pairs that
are significantly correlated in 6 cell types, about 10% is also correlated in the data of all cell types combined
together.
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Fig. S12 Example analysis of genes induced after LPS stimulation of DCs. (A) Result of CNHP. Rows
represent genes, and columns represent cell types. The first column shows the rank of genes as
sorted by their enrichment score in cDC expression data. The second column shows gene symbols. In
this case, only genes associated with the GOslim annotation GO:0001071 (“nucleic acid binding
transcription factor activity”) are shown. Genes are sorted by enrichment of high correlations with
the input genes in the cDC data, and only the top 10 enriched genes are shown. A colour code is
used to represent the degree of enrichment (-logio p value; blue: no enrichment; red: high
enrichment). Values above 10 are considered to be significant. Cell type abbreviations are as in Table
S1. (B) Motif enrichment analysis of the LPS induced genes. The top 10 regulatory motifs with
significant enrichment in the input genes is shown. Several IRF and STAT family motifs are enriched,
supporting the result shown in (A).
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Fig. S13. Relationship between transcription factor binding and correlation of expression. (A) For four genes
encoding transcription factors (Foxp3, EIf1, Ets1, and Foxo1l) the cumulative distribution of correlation of
expression is shown between the transcription factor and its target genes (black line) and non-target genes
(red line) over the combined gene expression data (all cell types). The X axis represents the PCC. All four
transcription factors showed higher correlation with their target genes than with their non-target genes. For
the corresponding plots for correlation of expression in the Treg-derived samples only we refer to Fig. 5 in the
main text. (B) and (C): Similar plots for four transcription factors (PU.1, C/EBPB, Nfkb1, and Stat1) in dendritic
cells. For all four regulators, higher correlation was observed with target genes than with non-target genes
over the combined expression data (all cell types, B). In the cDC-derived data (C), however, higher correlation
with target genes was observed only for Nfkb1 and Stat1, and not for PU.1 and C/EBPB).
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ChlIP-seq dataset included in Haemcode and a few additional datasets included in this paper, we analysed the

correlation of expression between the ChlPed factor and its target genes in the relevant cell types. (A) Scatter

plot of positive and negative enrichment scores. Each point represents a ChIP-seq experiment for a specific

factor in a specific cell type. High positive/negative scores reflect enrichment of target genes towards high

positive/negative correlation of expression with the ChIPed factor. A number of datasets discussed in the

paper are indicated. Note that the scales of the X and Y axes are different. (B) Enrichment plot of genes bound

by Statl in cDC cells. Positive and negative enrichment scores are indicated. (C) As in (B), for Foxp3 target

genes in Treg cells. (D) Cumulative distribution of PCC values for correlation with the Sfpi1 gene (encoding

PU.1) are shown for PU.1-bound and non-bound genes in macrophages. Below the corresponding enrichment

plot is shown. (E) Same as in (D) for correlation with Sfpil over the combined set of expression data for all cell

types in our dataset.
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Figure S15: Comparison of the correlation bias observed in cell type-specific data, and in the combined data
for all cell types. Enrichment scores are shown for the same datasets as shown in Fig. S14. The X axis shows the
bias in correlation between each regulator and its targets in the cell type used for the ChIP experiment. The Y
axis shows the bias in the combined data for all cell types. Several Treg-derived datasets are indicated. In the
upper left part of the plot, the indices 1 to 10 indicate regulators that have a similar pattern as Foxp3 in Tregs.
Namely, these regulators lack correlation of expression with target genes in the cell type used for the ChIP-
experiment, yet have correlation of expression when seen over the entire dataset. Details about these
regulators are shown in the table at the right.
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Fig. S16: Analysis of correlation of expression of Foxp3-dependent, Foxp3-amplified, and Foxp3-independent
gene sets. (A) Correlation of expression with Foxp3 in Treg-derived samples. For Foxp3-dependent (P3), Foxp3-
amplified (P4), and Foxp3-independent (P7) genes, the cumulative distribution of PCC values in the Treg-
derived data is shown (black line). The red line represents genes not in each cluster. For all three sets,
increased positive correlations with Foxp3 were observed. P values for the difference in distribution is included
in each graph (based on the Kolmogorov-Smirnov test). (B-D) Tables showing the top 10 genes with the highest
correlation score (rank 1 to 10) for Foxp3-dependent (P3, B), Foxp3-amplified (P4, C), and Foxp3-independent
(P7, D) gene sets. Scores are shown in 23 cell types, and in the combined dataset. Genes are sorted by their
score in Treg-derived data. A color code represents the score (-log10 p value; blue: no enrichment; red: high
enrichment). Cell type abbreviations are as in Table S1.
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Fig. S18: Toy example of two probes measured in 2 batches (blue points: batch 1; red points: batch 2). (A)
Without batch effects. (B) The same points with a simple batch effect added to both batches. (C) Toy example
of (B) subjected to random shuffling, and (D) “batch-guided” shuffling. For (C), colors have been removed, as

batch information is lost by the shuffling. In (D) colors are as in (A) and (B), and illustrate that batch effects

have been preserved. The PCC values are 0.079 for (A), 0.854 for (B), 0.152 for (C) and 0.810 for (D),
respectively.
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Fig. $19: Observed minimum p value (-logio values) per dataset (columns; sorted by decreasing number of
samples) per input set size (rows). Values are color coded to improve interpretability. We refer to Table S1 for
cell type abbreviations.
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Fig. S20: Box plots showing the retention rates of “highly correlated genes” in function of the fraction of genes

that were removed from the input (in percentages of the original set size).
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Fig. S22: Flowchart summarizing the general strategy of our data processing approach, from the collection of
input data to the population of a three-tier database. A description of the main steps is given in SI Appendix,
section “General data analysis approach”.
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