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1 Supplemental Figure Legends

Figure S1: Stability of principal component error and gene set enrichment analy-
sis across down-sampling replicates for the Shen et al. dataset, related to Figure 2
(A) Mean (solid lines) and standard deviation (error bars) in principal component error of
mouse tissue data (Shen et al.), as a function of read depth as calculated from 20 simulated
shallow sequencing experiments at each of 25 indicated read depths. Narrow width of error
bars illustrates the stability of the PCA error calculation to the downsampling procedure.
The mean PCA error curves are also shown in Figure 2A.
(B) Principal component error for first 38 principal components of the mouse tissue data
at 7 read depths, illustrating the number of principal components that can be accurately
reconstructed as sample read depth is decreased. For example, nine principal components
can be reconstructed at less than 20% error with only 133,000 reads per sample.
(C) Gene Set Enrichment Analysis for principal component 1 of the mouse tissue dataset
at decreasing read depth. Significant gene sets (see scale bar) are stable even below 32, 000
reads. Figure 2 focuses on analysis of principal components 2 and 3 as they are of more
biological relevance for classification.
(D) Negative Predictive Value of Gene Set Enrichment Analysis applied to mouse tissue
data for the first three principal components (color) over a large range of read depths. Neg-
ative Predictive Value indicates the fraction of gene sets correctly considered insignificant
out of all gene sets considered insignificant.
(E) Positive Predictive Value of Gene Set Enrichment Analysis applied to mouse tissue data
for the first three principal components (color) over a large range of read depths. Positive
Predictive Value indicates the fraction of gene sets correctly considered statistically signifi-
cant out of all gene sets considered statistically significant.
(F) Principal component error as a function of read depth for selected principal components
for the Shen et al. data as in Figure 2A. Here the transcriptional programs are calculated
from the FPKM values rather then read count data. Again the first three principal com-
ponents can be recovered with >80% accuracy with just 1% of the traditional read depths.
Improvements in error exhibit diminishing returns as read depth is increased. Less domi-
nant transcription programs (principal components 8 and 15 shown) are more sensitive to
sequencing noise.
(G) Variance explained by transcriptional program (blue) and differences between principal
values (green) calculated from the FPKM values. Like the read count data, the leading,
dominant transcriptional programs have principal values that are well-separated from later
principal values suggesting that these should be more robust to sequencing noise.
(H) Projection of a subset of the mouse tissue data onto principal components two and
three as in Figure 2. Here, principal components are calculated with FPKM values, rather
than read count data. As in Figure 2D, the ellipses represent uncertainty due to sequenc-
ing noise at specific reads depths. Again, similar tissues lie close together. Transcriptional
program two separates neural tissues from non-neural tissues while transcriptional program
three distinguishes tissues involved in haematopoiesis from other tissues.
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Figure S2: Principal value separation is large in single cell mRNA-seq datasets,
related to Figure 3
(A) Variance explained by principal components (blue) and differences between principal
values (green) of the Zeisel et al. data. Similar to the bulk mRNA-seq data, the leading,
dominant transcriptional programs have principal values that are well-separated from later
principal values suggesting that these should be more robust to measurement noise. See
Figure 3 for the principal component error and cell-type classification accuracy as a function
of transcript coverage.
(B) Variance explained by principal components (blue) and differences between principal
values (green) of the Treutlein et al. data.
(C) Principal component error as a function of read depth for the first three principal com-
ponents for the Treutlein et al. data.
(D) Transcriptional state of single cells during lung development at two time points E16.5
and 18.5 from Treutlein et al. projected onto the first two principal components (see Supple-
mental Experimental Procedures). Radii indicate error at given read depth. Developmental
stages corresponding to nascent (16.5) and mature (18.5) progenitor cells can be distin-
guished at 3,200 reads.
(E) Variance explained by principal components (blue) and differences between principal
values (green) of the Kumar et al. data.
(F) Principal component error as a function of read depth for the first three principal com-
ponents for the Kumar et al. data.
(G) Projection of the transcriptional state of wild type and Dgcr8 knockout mouse embry-
onic stem cells from Kumar et al. on the first two principal components. The wild type cells
separate from the knockout cells which are deficient in miRNA processing at 3,200 reads.
(H) Variance explained by principal components (blue) and differences between principal
values (green) of the Shalek et al. data.
(I) Principal component error as a function of read depth for the first three principal com-
ponents for the Shalek et al. data.
(J) Projection of the transcriptional state of 18 bone-marrow-derived dendritic single cells
from Shalek et al. data on the first two principal components. The “mature” and “not ma-
ture” cells are distinguishable at 3,200 reads.
(K) and (L) Distinct transcriptional states in single cells can be uncovered by the nonlinear
unsupervised learning methods t-SNE and LLE at low read depth. Computed clusters in
Kumar et al. data and Shalek et al. data at 105 reads are almost identical to those obtained
at 107 reads, with significant information preserved even at 103 reads.

Figure S3: Impact of gene expression covariance and absolute gene expression
level on principal value separation, related to Figure 4
(A) Principal value separation increases with module size. Principal values λi shown for
a sixteen gene system for increasing module size b (with q = 40, r = −8, and mi constant
within blocks and spanning [80, 200]).
(B) Block-diagonal covariance matrix for a general model of gene expression analyzed in
the Supplemental Information Section 2.2 (the ten gene, two module case is illustrated).
The matrix is annotated with relevant parameters, q, r,mi, b. The first principal component
discriminates membership in the two underlying gene expression modules.
(C) Principal value separation increases or remains constant as within-cluster covariance q
increases. Clustered covariance matrices depicted along x-axis and the first four principal
values are analytically determined from the gene expression model of (B) as described in
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Supplemental Information Section 2.2, with b = 4, r = −1, m1 = 10, m2 = 6.
(D) Principal component loading error versus absolute gene expression level for the Shen
et al. dataset. For each gene, the absolute gene expression level is normalized read counts
summed across samples. The gene-wise loading error is calculated for gene i as |pc1,i −
p̂c1,i|/pc1,i at a read depth of 46,000 reads per sample. The weak correlation (R2 = 0.13)
indicates that absolute gene expression level does not significantly contribute to the gene-wise
principal component error.

Figure S4: The modularity of gene expression enables accurate, low depth tran-
scriptional program identification in single cell mRNA-seq data, related to Fig-
ure 4
The gene expression covariance matrix of the Shen et al. data reveals large modules of co-
varying genes (middle), whose signature is a few, dominant transcriptional programs that
explain relatively large variances in the data (top). As predicted by the model, these dom-
inant transcriptional programs are robust to low-coverage profiling (bottom). Shuffling the
Shen et al. data destroys the modular structure, resulting in noise-sensitive transcriptional
programs. For the shuffled data, ∼2.3 million reads are required for 90% accuracy of the first
three transcriptional programs, whereas ∼100, 000 reads suffices for the original dataset.

Figure S5: Principal value separation is common in mRNA-seq and microarray
datasets and is due to gene expression covariance, related to Figure 5
(A) Principal value separations λi − λi+1 for six mRNA-seq datasets illustrating the gen-
erality of principal value decay. Median of the differences between principal values for the
datasets after shuffling is shown in black.
(B) Relationship between error in Non-negative Matrix Factorization (NMF) and sum of
first three principal values of microarray data. NMF error calculated as median error across
three NMF parts at 45,000 reads per sample (see Supplemental Experimental Procedures).
As the summed principal values on the x-axis represent the variance explained by the first
three principal components, this indicates that the performance of NMF correlates with the
existence of dominant, transcriptional programs.
(C) Ratio of principal values, λi/λ1, in human microarray data for 2 ≤ i ≤ 10. Principal
values are well-separated.
(D) After shuffling datasets to remove gene expression covariance, the principal values are
no longer well-separated.
(E) Sample number (x-axis) and the magnitude of the first principal value λ1 (y-axis) are ap-
proximately uncorrelated. Left: 20 yeast datasets, R2 = 0.04. Middle: 106 mouse datasets,
R2 = 0.08. Right: 226 human datasets, R2 = 7.0× 10−4.
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2 Supplemental Theory

2.1 Shallow sequencing

This section develops the theoretical framework used in the main text to analyze shallow
sequencing. We use perturbation theory to find how principal components of shallow data
differ from those of deep data and explore this relationship in the context of a simple,
multinomial noise model for mRNA-sequencing. In the process, we provide background on
Equation (1) and derive Equation (2) of the main text.

We begin by summarizing and extending the notation of the main text.

2.1.1 Introduction and Notation

Suppose we have collected reads from deep mRNA-seq experiments in a matrix G of di-
mensions g × n, where g is the number of genes in the genome and n is the number of
experimental samples analyzed. Each entry satisfies 0 ≤ Gij ≤ Ndeep, where Ndeep is the
total number of reads collected in each sample and is assumed (for convenience) to be con-
stant across samples. Then P 0

ij , the probability that a transcript from sample j maps to

gene i, is equal to Gij/Ndeep. We assume that Ndeep is large enough that P 0
ij represents the

true, underlying probabilities of gene expression. It is frequently more convenient to work
with the row-centered probabilities, Pij , P 0

ij − n−1
∑
j P

0
ij . For instance, the deep gene

covariance matrix C, of dimensions g × g, is of fundamental interest and can be written
simply as C , PP T/(n − 1), where P is a matrix with entries Pij . Note that while we
define the covariance matrix in terms of transcript probabilities, we could similarly define
the covariance matrix in terms of transcripts measured in FPKM units, by rescaling each
Pij by a gene length dependent factor. We choose to work with transcript probabilities for
mathematical convenience.

Now assume that we repeat the sequencing experiments with only N � Ndeep reads.

From these shallow mRNA-seq experiments, we obtain data Ĝij from which we compute the

gene expression probabilities P̂ij and gene-gene covariances Ĉij , which we collect in matrices

P̂ and Ĉ. (In general, we put hats on the quantities calculated from shallow data.) We
are primarily interested in minimizing the number of reads while preserving the biologically
relevant information contained in Ĉ. In particular, this section addresses the question of
how does sequencing depth N affect the distance between the ith principal component of P̂
and the ith principal component of P ?

The principal components vi and principal values λi of the probability matrix P are the
eigenvectors and eigenvalues of the covariance matrix C and therefore satisfy

Cvi = λivi. (2.1a)

We adopt the convention that the eigenvectors are sorted by decreasing eigenvalue, so v1 is
the first eigenvector of C, corresponding to the direction of maximum variance in the data
P . Similarly, the shallow principal components and shallow principal values satisfy

Ĉv̂i = λ̂iv̂i. (2.1b)

4



The rest of this section is structured as follows. Section 2.1.2 describes a simple, multi-
nomial noise model for mRNA-seq and describes how noise propagates to the shallow covari-
ance matrix. Section 2.1.3 explains how this noise “perturbs” the deep covariance matrix
and bounds the resulting change in the first principal component, thereby deriving Equa-
tion (2) of the main text. Finally, Section 2.1.4 generalizes this result to higher principal
components.

We additionally use the following notation. A matrix X has elements Xij . The transpose
of a vector x is xT. Expectation is denoted E · and variance by V ·. We use ‖ · ‖ or ‖ · ‖2 to
mean the `2 norm of a vector and the spectral norm of a matrix (i.e. the maximum singular
value of the matrix). We write ‖ · ‖1 for the `1 norm and ‖ · ‖∞ for the infinity norm of a
matrix (i.e. the maximum absolute row sum).

2.1.2 Noise Model

We first introduce a noise model that describes the impact of sequencing depth on the data
G. While there are many sources of noise in the measurement of mRNA-transcripts, we
begin with a simplifying assumption.

Assumption 1. The dominant source of noise in the measurement of mRNA-transcripts is
counting noise. Further, all noise, across both genes and samples, is uncorrelated.

Hence the data collected from shallow sequencing is

Ĝij ∼ Binomial(N,P 0
ij).

The maximum likelihood estimate of the true (i.e. obtained from deep data) gene expression
probabilities is simply

P̂ 0 = Ĝ/N.

Using the assumption that all noise (across both genes and samples) is uncorrelated and
further assuming that the binomial is well-approximated by the normal distribution, we
have that the underlying probabilities are

P̂ 0
ij ∼ Normal

(
P 0
ij ,

1

N
P 0
ij(1− P 0

ij)
)

which, when row-centered, are

P̂ij ∼ Normal
(
P 0
ij −

1

n

∑
j

P 0
ij ,

1

N
P 0
ij(1− P 0

ij)
)
. (2.2)

With this notation, the shallow gene covariance is Ĉ , P̂ P̂ T/(n− 1).

Similar models for sequencing noise, as well as more specialized models for single-cell
RNA-seq, have been recently proposed (Marioni et al. 2008; McIntyre et al. 2011; Pollen
et al. 2014; Liu, Zhou, and White 2014; Tarazona et al. 2011; Anders and Huber 2010; Islam
et al. 2014; Shiroguchi et al. 2012; Grün, Kester, and van Oudenaarden 2014; Brennecke
et al. 2013; Ding et al. 2015; Daley and Smith 2014; Vallejos, Marioni, and Richardson
2015). Our goal in what follows is to use the simplest noise model to identify the important
parameters and capture their basic dependencies. However, more realistic noise models will
fit comfortably in our framework.
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To measure the error induced by shallow sequencing, we introduce two definitions.

Definition 1. The error in gene expression probabilities is E , P̂ − P .

From equation (2.2), this error is distributed as

Eij ∼ Normal
(
0,

1

N
P 0
ij(1− P 0

ij)
)
. (2.3)

Definition 2. The covariance distortion induced by shallow sequencing is D , Ĉ −C.

With the definitions of gene covariance as well as Definition 1, the covariance distortion can
be expanded as

D =
1

n− 1
(PET + EP T + EET). (2.4)

2.1.3 Perturbation theory

Our goal is to find how the principal components of P differ from those of P̂ . Our approach
treats the covariance distortion D as a (random) perturbation to the deep covariance matrix
C. We then use a result from perturbation theory as well as the properties of the noise
model of Section 2.1.2 to find the resulting change in the principal components of P . Along
the way, we introduce assumptions that reflect properties of biological data that are needed
to simplify the result.

Our main tool from perturbation theory (Stewart and Sun 1990; Shankar 2012) describes
how the eigenvectors of a positive semi-definite matrix change when the matrix is perturbed:

Proposition 1. Let C be a positive semi-definite matrix with eigenvalues λ0k and eigenvec-
tors v0k. Further let

Ĉ(ε) = C + εD

be a perturbation of C. With some weak assumptions on D, the eigenvalues and eigenvectors
of Ĉ are

λ̂k(ε) = λ0k + ελ1k

v̂k(ε) = v0
k + εv1

k

where the first-order corrections to the eigenvalues and eigenvectors are

λ1k = v0T
k Dv0

k

and

v1
k =

∑
j 6=k

v0T
j Dv0

k

λ0k − λ0j
v0
j + akv

0
k.

Here ak is a constant that is determined by the constraint that v̂k is unit length.

Equation (1) of the main text immediately follows from this proposition. As explained
in the main results, a natural measure of the error induced by shallow sequencing in the kth

6



principal component is ‖v̂k − vk‖2. From Proposition 1, this quantity is to first order

‖v̂k − vk‖2 ≈

√√√√a2k +
∑
j 6=k

(
vT
j Dvk

λk − λj

)2

. (main text equation 1)

In this formula, ak can be determined by the convention that v̂k has unit length,

(1 + ak)2 = 1−
∑
j 6=k

(
vT
j Dvk

λk − λj

)2

.

We now focus on deriving an upper bound for the expected error of the first principal
component, E ‖v̂1−v1‖2, where the expectation is over noise. As a vector’s `2 norm is always
less than its `1 norm, we can bound the expectation of ‖v̂1 − v1‖1 instead. By Proposition
1, we have to first order

E ‖v̂1 − v1‖2 ≤ E ‖v̂1 − v1‖1

= E
∑
j 6=1

∣∣∣∣ vT
j Dv1

λ1 − λj

∣∣∣∣
≤ E

[∑
j 6=1

1

(λ1 − λj)2
∑
j 6=1

(vT
j Dv1)2

]1/2
(2.6)

where we have used the Cauchy-Schwarz Inequality to isolate the effects of the numerator
and denominator. As the Pythagorean Theorem states that

∑
j(v

T
j Dv1)2 = ‖Dv1‖2, we

have, using the definition of matrix norm, that

E ‖v̂1 − v1‖2 ≤ E ‖D‖
[∑
j 6=1

1

(λ1 − λj)2

]1/2
. (2.7)

The norm of the covariance distortion ‖D‖ can be expanded from equation (2.4) as

‖D‖ = ‖Ĉ −C‖
= (n− 1)−1‖(P + E)(P + E)T − PP T‖
= (n− 1)−1‖PET + EP T + EET‖
≤ (n− 1)−1

(
2‖PET‖+ ‖EET‖

)
≤ 2

n− 1
‖P ‖ ‖E‖+O(‖E‖2), (2.8)

where the last inequality follows from the sub-multiplicativity of the matrix norm. Hence
‖D‖ is bounded by the product of ‖P ‖ and ‖E‖ plus higher order error terms. Putting this
result in equation (2.7), we have

Proposition 2. With the notation established,

E ‖v̂1 − v1‖2 ≤ E
2

n− 1
‖P ‖ ‖E‖

[∑
j 6=1

1

(λ1 − λj)2

]1/2
+O(‖E‖2). (2.9)
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So far our analysis has been general, aside from dropping higher order terms in the perturba-
tion expansion. We next analyze in turn each of the three terms on the right side of equation
(2.9), ‖P ‖, ‖E‖, and {

∑
j 6=1 (λ1 − λj)−2}1/2, and introduce assumptions where necessary

to simplify. In particular, while ‖E‖ can be simplified in different ways depending on the
assumptions made regarding noise, we will assume the noise model of the previous section
to analyze this term.

The norm of P is easy to compute from the definition of the gene covariance matrix. As
C is defined to equal PP T/(n− 1), we have that ‖P ‖2 = (n− 1)‖C‖ from which follows

‖P ‖2 = (n− 1)λ1, (2.10)

using the fact that C is positive semi-definite.

Next we turn to the norm of E, which fundamentally represents the “strength” of the
noise, or the “noise power,” caused by sequencing at a shallow depth. Evaluating this
quantity is more challenging, as from our noise model analysis of Section 2.1.2, each entry
of E is a gaussian random variable with a different variance. Such matrices are studied in
random matrix theory. For instance, corollary 4.2 of Tropp 2011 provides a “tail bound”
for the probability that the norm of this random matrix exceeds a fixed quantity. In our
notation, the tail bound states that

Pr{‖E‖ >
√
t} < min{(n+ g) exp(−t/2σ2), 1},

where σ2 is a “variance parameter” equal to

σ2 = max

{
max
j

1

N

∑
k

P 0
jk(1− P 0

jk), max
k

1

N

∑
j

P 0
jk(1− P 0

jk)

}
. (2.11)

This tail bound is sufficient to bound the first two moments of ‖E‖ as shown in Section 4.3
of Tropp 2011. The second moment of ‖E‖ follows from the fact that the expectation of a
non-negative random variable is one minus its cdf, so

E ‖E‖2 =

∫ ∞
0

Pr{‖E‖ >
√
t} dt

≤
∫ ∞
0

min{(n+ g) exp(−t/2σ2), 1} dt

= 2σ2 log(n+ g) +

∫ ∞
2σ2 log(n+g)

(n+ g) exp(−t/2σ2) dt

= 2σ2 log e(n+ g).

This directly leads to a bound for expectation of ‖E‖. Since V ‖E‖ = E (‖E‖2)− (E ‖E‖)2,
we have that E ‖E‖ ≤ (E ‖E‖2)1/2 from which

E ‖E‖ ≤ σ{2 log e(n+ g)}1/2. (2.12)

The term in the square root depends on n and g but very weakly. For instance, taking the
small values of g = 1000 and n = 10, the quantity {2 log e(n + g)}1/2 is 3.97. On the other
hand, for g = n = 105, the term increases only to 5.14. Hence for values within an order of
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magnitude of what we may encounter in practice, we incur little error by treating this term
as constant.

We now simplify the variance parameter of equation (2.11). The variance parameter is
the maximum of the largest row sum and the largest column sum of the variances in E. As
typically there are many more genes then samples, the largest column sum is greater than
the largest row sum and therefore determines σ2. More formally we have

Assumption 2. As commonly Pij � 1, assume that Pij � P 2
ij. Additionally suppose

that ‖P ‖∞ < 1. This latter assumption will be satisfied if n is small, say n < 1/
√
λ1, as

‖P ‖∞ ≤
√
n‖P ‖2 ≤ n

√
λ1.

Then the variance parameter σ2 reduces to

σ2 ≈ max

{
max
j

1

N

∑
k

P 0
jk, max

k

1

N

∑
j

P 0
jk

}
= max

k

1

N

∑
j

P 0
jk =

1

N
. (2.13)

Combining these results, we have shown

Proposition 3. With Assumptions 1 and 2, the expectation of the norm of the error in the
gene expression probabilities E satisfies

E ‖E‖ ≤ κ√
N

(2.14)

where κ is a constant ({2 log e(n + g)}1/2) effectively independent of the dimensions of the
matrix.

Finally, we analyze the third term on the right side of equation (2.9). Splitting the term
into two sums yields[∑

j 6=1

1

(λ1 − λj)2

]1/2
=

[(∑
j≤n
j 6=1

1

(λ1 − λj)2
+
∑
j>n

1

λ21

)]1/2

≤
(

n− 1

(λ1 − λ2)2
+

g − n
λ21

)1/2

, (2.15)

using the fact that λ1−λ2 ≤ λ1−λj for all j > 1. As discussed in the main text, typically the
principal values “decay” rapidly so that the kth principal value spacing is large with respect
to λk. This observation allows us to compare the relative magnitude of the two terms in
equation (2.15) and motivates

Assumption 3. Let δλk , minj{|λk − λj |} be minimum distance between the kth principal
value and any other principal value. Assume that P satisfies√

n

g − n
� δλk

λk
for all k. (2.16)

In general, we call matrices that satisfy this property well-separated.

In many cases of interest, δλk = λk − λk+1. Then equation (2.16) reduces to a simpler
expression,

λk+1

λk
� 1−

√
n

g − n
for all k.
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Intuitively, this property states that each principal value is much smaller than the one that
preceded it. This property can be checked in actual data in Figures S5C and S5D. With this
assumption, we neglect the first term in the sum of equation (2.15) to obtain[∑

j 6=1

1

(λj − λ1)2

]1/2
≤
(
g − n
λ21

)1/2

. (2.17)

We return to equation (2.9) and put all of these results together. If we apply the bounds
of (2.10), (2.14), and (2.17) and drop the higher order error terms, we find

E ‖v̂1 − v1‖2 ≤ 2κ

(
g − n

λ1N(n− 1)

)1/2

.

Since Assumption 3 implies that g � n and in practice n � 1, this inequality is approxi-
mately

E ‖v̂1 − v1‖2 ≤ κ
√

1

λ1Nn
(2.18)

where we have absorbed constants into κ. This completes our derivation of Equation (2).

Remark It is natural to ask what happens when n is large, contrary to Assumption
2. In this case, the simplification used for the “variance parameter” in equation (2.13) no
longer holds, and equation (2.14) is replaced with

E ‖E‖ ≤ κPmax
√
n√

N

where Pmax = maxij{Pij}. Consequently, the best bound our methods show for the error of
the first principal component is

E ‖v̂1 − v1‖2 ≤ κ
√

1

λ1N
,

in place of equation (2.18).

2.1.4 Higher principal components

Similar reasoning shows that bound (2.18) can be adapted to apply to higher principal
components. For principal component k, the previous analysis holds but equation (2.15)
must be generalized to[∑

j 6=k

1

(λj − λk)2

]1/2
≤
(

n− 1

minj(λk − λj)2
+

g − n
λ2k

)1/2

With this modification, we find, using the same reasoning based on Assumption 3, that

E ‖vk − vk‖2 ≤ κ

√
λ1
λk

√
1

nN
(2.19)
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This is a conservative bound that will likely be sufficient for many applications. However,
the bound can be improved as we show next.

The key idea to improving the bound is that D can be written as a sum of rank-one
projections, many of which contribute only second order terms to the perturbation expansion
of Proposition 1. We will remove these second order terms to find a “reduced perturbation”
that we call D′ (which has strictly smaller norm than D) and use this perturbation to
bound E ‖v̂k − vk‖ through Proposition 1. As an illustration, consider the second principal
component, v2, and its noisy counterpart, v̂2. To first order,

v̂2 − v2 =
∑
j 6=2

vT
j Dv2

λ2 − λj
vj .

We expand the terms in D = Ĉ −C via eigendecomposition to find

v̂2 − v2 =
∑
j 6=2

vT
j (Ĉ −C)v2

λ2 − λj
vj =

∑
j 6=2

( n∑
i=1

λ̂i
vT
j v̂iv̂

T
i v2

λ2 − λj
vj −

n∑
i=1

λi
vT
j viv

T
i v2

λ2 − λj
vj

)
.

In the inner sum, we incur an error of O(λ1‖D‖2) if we choose to skip the i = 1 term. This
is because both vT

j v̂1 and v̂T
1 v2 are on the order of ‖D‖. For sufficiently large number of

reads, this is smaller than the i = 2 term which is O(λ2‖D‖) as vT
j v̂2 is O(‖D‖) and vT

2 v̂2

is O(1− ‖D‖2). Discarding these second order terms, we have by this analysis

v̂2 − v2 ≈
∑
j 6=2

vT
j (Ĉ ′ −C ′)v2

λ2 − λj
vj =

∑
j 6=2

vT
j D
′ v2

λ2 − λj
vj . (2.20)

In this equation, C ′ and Ĉ ′ are “reduced” matrices equal to
∑
i>1 viv

T
i and

∑
i>1 v̂iv̂

T
i

respectively, and D′ , Ĉ ′ − C ′ is the “reduced perturbation.” In general, to bound the
error of the kth principal component, the first k − 1 rank one projections of D onto viv

T
i

may be projected out with a loss of accuracy of only O(‖D‖2). As the reduced perturbation
D′ has a smaller norm, we are able to obtain better bounds.

With equation (2.20), we continue like we did with the first principal component, replac-
ing D with D′ in our analysis. Equation (2.6) is modified to give

E ‖v̂2 − v2‖2 ≤ E
[∑
j 6=2

1

(λj − λ2)2

∑
j 6=2

(vT
j D
′v2)2

]1/2

≤ E ‖D′‖
[∑
j 6=2

1

(λj − λ2)2

]1/2

≤ E
[

2

n− 1
‖P ′‖ ‖E‖+O(‖E‖2)

][∑
j 6=2

1

(λj − λ2)2

]1/2
(2.21)

Here P ′ is the “reduced” data, found by forming the singular value decomposition of P
without the first component, i.e.

∑
i>1

√
λi viw

T
i , and row mean centering the result. By

construction, P ′P ′T and PP T share the same eigenvectors.
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Now consider the two terms in equation (2.21). The first term in brackets depends on
‖P ′‖ and E ‖E‖. Equation (2.14) describing E ‖E‖ is unchanged but equation (2.10) is now
replaced with

‖P ′‖2 = (n− 1)λ2. (2.22)

The second term in brackets is[∑
j 6=2

1

(λj − λ2)2

]1/2
=

[( ∑
1≤j≤n
j 6=2

1

(λj − λ2)2
+
∑
j>n

1

λ22

)]1/2

≤
(

n− 1

minj(λ2 − λj)2
+

g − n
λ22

)1/2

Now using the assumption that P is well-separated, this inequality is approximately[∑
j>2

1

(λj − λ2)2

]1/2
≤
(
g − n
λ22

)1/2

. (2.23)

Substituting equation (2.22) and equation (2.23) into equation (2.21) and dropping higher
order terms, we have

E ‖v̂2 − v2‖2 ≤
κ√
nNλ2

.

This technique can be applied iteratively. For the kth principal component, the first k − 1
rank one projections of D onto viv

T
i can be neglected, so that the norm of the “reduced”

data P ′ is {(n− 1)λk}1/2. Hence the error in the kth principal component is

E ‖v̂k − vk‖2 ≤
κ√
nNλk

. (2.24)

2.2 Gene expression modules enhance principal value separation in
a simple model

In the main text we show that principal value separation determines the accuracy of tran-
scriptional program extraction at low read-depths. Through a broad survey of gene expres-
sion datasets, we find that favorable principal value separation is common in biological data
allowing mRNA-seq at a drastically increased scale. In this section, we study a simple gene
expression model to ask how modularity, a core structural property of biological systems,
might impart principal value separation and noise tolerance to gene expression data. The
relationship between gene expression modules and principal value separation is of funda-
mental interest because transcriptional regulatory networks are commonly organized into
regulatory modules, groups of covarying genes. In fact the covariance matrices of both the
Shen et al. and Zeisel et al. datasets contain coherent gene expression blocks that suggest
an underlying modular architecture (Figure 4B and S4). Within the context of a simple
model, we rigorously show that principal value separation is enhanced by such a modular
architecture; principal value separation scales directly with module size and the magnitude of
gene expression covariance within modules. As such, gene expression modules might endow
biological systems with an inherent tolerance to shallow profiling.
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Gene expression model We consider a gene expression covariance matrix, C, that has
the block diagonal structure shown in Figure S3B. The matrix contains two blocks of size
b × b, and each block represents a module of covarying genes. Genes within each red block
have a positive covariance, and the two blocks have relative negative covariance represented
by green. For mathematical convenience, we consider all blocks to share a constant within-
block gene expression covariance q. The gene expression variances mi within each block are
assumed to be constant, but differ between the blocks to avoid module degeneracy. The
between-block covariances are likewise constant and equal to r. We note that for a gene
expression model with two mutually exclusive gene expression modules (i.e. when module 1
is “on” module 2 is “off”), r ≤ 0 because covariance is calculated following mean centering
of the raw gene expression data. We also assume that q ≥ 0, m1 > m2, m1 > q, m2 > q.
Finally, we assume that q > |r| to ensure that the two blocks of genes are distinct.

Solution to the model In this simple model, we now determine the factors that
influence the separation of the principal values of the underlying data. The principal values,
denoted by λi, are defined as the eigenvalues of C and for this model can be calculated
analytically. There are 2b eigenvalues in total: b − 1 eigenvalues equal to m1 − q, another
b− 1 eigenvalues equal to m2 − q, and two eigenvalues given by

{λ1, λ2} = m+ (b− 1)q ±
√

(br)2 + {δm}2, (2.25)

with the notation m = (m1 + m2)/2 and δm = (m1 − m2)/2. When q and r both equal
zero, all gene-gene covariances are zero and the system has eigenvalues m1 and m2, both
with multiplicity b. For nonzero q and r, the non-degenerate eigenvalues separate from the
degenerate eigenvalues. In this case, λ1 is the largest eigenvalue of C and, for sufficiently
large q, λ2 is the second largest eigenvalue of C (Figure S3C). We note that the noise
tolerance of λ1 is of special interest because its associated eigenvector, the first principal
component of the gene expression data, identifies the gene expression modules in the system
(Figure S3B). The entries of this eigenvector, pc1, are positive for genes within one module
and negative for genes within the other module.

As described in the main text, the noise tolerance of pc1 depends upon the spacing
between λ1 and all other eigenvalues of C. These can be calculated directly as

λ1 − λ2 = 2
√

(br)2 + {δm}2 (2.26a)

λ1 − (m1 − q) =
√

(br)2 + {δm}2 − δm+ bq (2.26b)

λ1 − (m2 − q) =
√

(br)2 + {δm}2 + δm+ bq. (2.26c)

These quantities are depicted as a function of q in Figure S3C for a two-module, four gene
system.

The features that improve the noise tolerance of principal component recov-
ery Examination of the the principal value separations leads to two conclusions. First,
increasing the within-module covariance q increases the separation between λ1 and λi for
i > 2 (equations 2.26b, 2.26c). Secondly, this effect scales with the size of the gene expression
modules. While both the covariance term q and the variance term mi contribute to princi-
pal value separation, only the impact of the covariance term scales with block size b (as bq).
Hence for large modules (i.e. large b), the covariance terms may contribute significantly to
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principal value separation. We conclude that gene expression modularity directly increases
the separation between λ1 and all other principal values, and thus enhances the ability to
extract principal component 1 at low read depth. (We note that our model with covariance
q fixed for all blocks can be generalized to allow for differing covariance parameters within
blocks and still yields qualitatively similar results.)

Finally, the impact of module size on principal value separation can be seen directly in a
generalized model where more than two gene expression modules are allowed. In Figure S3A,
we analyze a series of covariance matrices where the number of genes is held constant, but the
number of gene expression modules is increased. In these calculations, the covariance terms
q and r are held constant (q = 40, r = −8) and mi span a constant range, 80 < mi < 200.
For constant q and r, the spacing between the largest eigenvalue and all others eigenvalues
(λ1 − λi) increases as module size increases. A system with two modules has significantly
increased principal value separation when compared with even a four module system. Due
to this scaling, large gene expression modules might significantly enhance principal value
separation and therefore noise tolerance in biological data.

3 Supplemental Experimental Procedures

Alignment of sequencing reads and quantification of read counts for public
mRNA-seq datasets

Raw mRNA-seq reads were obtained from the Gene Expression Omnibus. mRNA-seq
datasets used in Figure S5A are from Shen et al. 2012; Treutlein et al. 2014; Shalek et al. 2013;
Kumar et al. 2014; Chen et al. 2012; Pollen et al. 2014. The reads from these studies were
aligned to either human hg19 or mouse mm9 exomes. Exome files were constructed based
upon the transcriptome annotations and gene feature files (gff) available from the UCSC
genome browser (Kent et al. 2002). Open reading frames encoding rDNA, transposable
elements, or other non-protein coding features were not included in the exome. Reads were
aligned to exomes using Bowtie2 v 2.1.0 (Langmead and Salzberg 2012) using the following
options -D 25 -R 3 -N 1 -L 20 -i S 1 0.50 local.

Following alignment, the data was preprocessed prior to analysis. This was accomplished
by normalizing raw per gene read counts by the total number of reads collected for a given
sample, ensuring that the normalized reads of one experiment sum to one.

For the analysis of Zeisel et al., we used the transcript counts reported on the Linnarsson
Lab website.

Simulated shallow sequencing through down-sampling of reads

A computational downsampling procedure was applied to simulate the impact of reduced
read depth on public mRNA-seq datasets (the Zeisel et al. data required a different method;
see the next experimental procedure). Read counts for the deep mRNA-seq experiments
were normalized by dividing the number of reads mapped to a gene by the total number of
mapped reads in that experiment, generating a multinomial probability mass function. For
a given simulated read depth, we model the sequencing process by drawing N reads, with
replacement, from this multinomial distribution.
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We sample with replacement because the number of molecules within an mRNA-seq li-
brary, ∼1012 (McIntyre et al. 2011), is much larger than the number of reads being sequenced,
∼107 (Shen et al. 2012), effectively making each sequencing event independent of others. To
accelerate the computation at simulated depths over one million reads, read counts were esti-
mated directly with a Poisson distribution. Similar downsampling procedures are frequently
use to model read depth reductions and associated measurement noise (Robinson and Storey
2014; Pollen et al. 2014).

Simulated shallow sequencing through down-sampling of transcripts for Zeisel
et al. dataset

As the Zeisel et al. data contains unique molecular identifiers (UMIs) which allow for
the direct quantification of transcripts, the previously described downsampling procedure
was modified for this dataset. First, 15,000 transcripts were sampled with replacement for
each cell (as previously described) to obtain gene expression profiles with constant transcript
coverage per sample. We sampled 15,000 transcripts as that is approximately the average
number of unique transcripts observed per cell in Zeisel et al. To simulate low coverage data,
we sampled a desired number of reads from this reference distribution without replacement.

Saturating expression levels of outlying genes

Following downsampling, the largest 1% of all gene expression values (based on read
counts) were set to the value of the 99th percentile of the data. This saturation was performed
to diminish the impact of extreme outliers on subsequent data analysis as PCA is known to
be sensitive to such outliers. Following saturation, data was renormalized to preserve the
equal weighting of each experiment. We found in practice that outlier filtering was important
for preserving biological structure and in fact was required for biological replicates to cluster
together in the mouse tissue dataset. The saturation threshold for Kumar et al. 2014 was an
exception to the 1% threshold, it was set to 2.25% to ensure biological replicates clustered
together. Read counts were used as the fundamental gene expression unit in the analysis
for simplicity in theoretical modeling and convenience during the simulated down-sampling
procedure. Similar results were obtained in FPKM units where read counts are normalized
for gene length.

For the Zeisel et al. dataset, after downsampling and before principal components analy-
sis, we removed the top 15 varying genes. We found that this was necessary for recapitulating
the original study’s classification of cell types at full transcript coverage.

Evaluation of Equation 1

Evaluation of Equation 1 requires the deep principal components, deep principal values,
and the deep and shallow data covariance matrices. The deep principal components and
principal values were determined for each dataset directly from the deep normalized read
count data. Ĉ was then calculated on read count data generated through the simulated
down-sampling procedure described above. At each read depth, Equation 1 was evaluated
on twenty separate instances of Ĉ, and the mean principal component error was reported as
a percent of the theoretical maximum error (

√
2).
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Projecting gene expression profiles onto the principal components

Classification plots show the principal component coefficients for each gene expression
profile (from either a bulk mRNA-seq sample or single cell). These coefficients represent the
amount of variance along the axis defined by the respective principal component, or the pro-
jection of the expression profile onto a principal component. These coefficients are computed
by taking the dot product of the gene expression profile and the principal component. When
simulating low coverage mRNA-seq, the noisy, simulated gene expression profile is projected
onto the principal components computed from the noisy, simulated gene expression data.

Zeisel et al. cell type classification accuracy

For classification of single cells from Zeisel et al. at a simulated depth, each sampled
transcriptional profile was compared to three reference transcriptional profiles. The reference
transcriptional profiles were computed by averaging the full depth transcriptional profile of
each cell type as classified by Zeisel et al. Each downsampled cell was then assigned the cell
type label of the most similar reference profile. False positives correspond to mismatches
between the assigned cell type and the cell type from Zeisel et al. at full depth.

Cell type classification by nonlinear dimensionality reduction

Figures S2K and S2L were generated by downsampling data from Kumar et al. and
Shalek et al. as described above, followed by dimensionality reduction with t-SNE and LLE.
t-SNE was applied through the scikit-learn Python package version 2.7.6 (Pedregosa et al.
2011) and LLE was implemented following Roweis and Saul 2000.

Simple gene expression model

Simulated covariance matrices were generated for a system with six gene expression
modules. Module size was drawn from an exponential distribution and modules sorted for
increasing size. Within-module covariance was set to a uniform value (q, ranging from 10 to
80) and between-module covariance (r) was set to a constant for simplicity (-10).

Analysis and simulated downsampling of microarray data

Microarray data were downloaded from Gene Expression Omnibus (Edgar, Domrachev,
and Lash 2002). To minimize the effect of platform variability, one type of microarray
platform was selected for each species. We chose Affymetrix Yeast Genome S98 Array,
Affymetrix Mouse Genome 430 2.0 Array, and Affymetrix Human Genome U133 Plus 2.0
Array because they had the largest number of datasets containing at least 20 samples. Log-
transformed datasets were removed to ensure that each dataset was preprocessed in the
same way. After filtering, 20 datasets for Saccharomyces cerevisiae, 106 datasets for Mus
musculus and 226 for Homo sapiens remained. Each dataset was normalized so that the
gene expression values of each sample sum to one. Further, as with the mRNA-seq datasets,
we saturate expression levels at the 99% percentile to handle extreme expression outliers. To
generate simulated mRNA-seq data from microarray experiments, we used the normalized
and filtered gene expression matrix as input into our down-sampling procedure previously
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described. The normalized gene expression matrix was used as a multinomial probability
distribution and this distribution was sampled to generate simulated mRNA-seq data at
different read depths.

Equation 2: fitting the constant κ and cross validation

To fit κ in Equation 2, we first partitioned the microarray data into a training set and a
cross validation set, each consisting of half the datasets. We simulated shallow sequencing
on the microarray data within the training set at ten values between 103 and 107 reads to
obtain PCA error for each dataset. The constant κ from the Equation 2 was determined
by fitting (with a linear regression) the simulated PCA error to the analytical prediction of
Equation 2.

To demonstrate that the relationship is predictive, we simulated shallow sequencing on
the remaining 50% of the microarray datasets at all ten depths and compared the predicted
values with those observed from simulation. We further used the four mRNA-seq datasets
for mouse and human (which were not used for fitting) as additional cross-validation. For
each species, only one value of κ is calculated globally, and this value is used for all principal
components, read depths, and datasets (for humans, κ = 71.25 and for mice, κ = 69.30).

Principal values and error in non-negative matrix factorization

Non-negative matrix factorization (NMF) was performed on normalized read count ma-
trices generated from microarray database. Three “deep” NMF vectors were computed
from the original data and three “shallow” NMF vectors were computed from simulated
mRNA-seq data with 45,000 reads. The pair of computations shared the same random ini-
tialized state. Each shallow NMF vector from the simulated shallow mRNA-seq data was
matched with a corresponding deep vector. Our algorithm determined matches by finding
the one-to-one mapping that minimized the summed squared differences between the deep
and corresponding shallow NMF vectors. The normalized error was computed as the magni-
tude of the difference between the matched NMF parts divided by the magnitude of the deep
NMF part. The sum of the normalized errors was computed for three different initialization
states. The median of the summed errors was used in Figure S5B.
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