

Figure S2. MLKL N-terminal domain (MLKL²⁻¹⁷⁸) functions similar with full length MLKL^{E/D}. (A) Representative traces of MLKL²⁻¹⁷⁸ in Na⁺/K⁺ mixture solutions under indicated membrane potentials. For the Na⁺/K⁺ mixture solutions, the *cis* side solutions contain 10 mM Na⁺ and 5 mM K⁺. The *trans* side solutions contain 120 mM Na⁺ and 30 mM K⁺. (B) Current-voltage plots of MLKL²⁻¹⁷⁸ channels in the indicated solutions. The asymmetric Na⁺ solutions contain 15:150 mM (*cis:trans*) Na⁺. The reversal potentials in the two types of solutions are approximate -65 mV, indicating a cation selectivity of MLKL²⁻¹⁷⁸ channels. (C) A similar strategy shown in Figure 3 was performed to investigate

 Mg^{2+} permeability of MLKL²⁻¹⁷⁸. MLKL²⁻¹⁷⁸ mediates typical step-like currents in the presence asymmetric Na⁺ or Na⁺/K⁺ solutions. The frequent and continuous outward currents indicate that the MLKL²⁻¹⁷⁸ channels were incorporated into the membranes. The membrane potential was then changed to the corresponding equilibrium potential, -65 mV, to eliminate the currents. Inward step-like signals appeared when 20 mM (final concentration) Mg²⁺ was added to the *cis* side, indicating presence of Mg²⁺ currents (n > 4). (D) MLKL2-178 cannot induce currents in Na⁺/Ca²⁺ mixture solutions. (E) A similar strategy shown in Figure 3 was performed to investigate Ca²⁺permeability of MLKL²⁻¹⁷⁸. Representative step-like currents in the asymmetric 15:150 mM (*cis:trans*) Na⁺ solutions indicate the formation of MLKL²⁻¹⁷⁸ channels in the lipid membranes. Next, the holding potential was changed to -65 mV, the Na⁺ equilibrium potential, to eliminate the Na⁺ signals. Additional supplementation of 10 mM and 20 mM (final concentration) Ca²⁺ was added to the *cis* side sequentially.