Supporting Information

Helicobacter pylori strains vary cell shape and flagellum number to maintain robust motility in viscous environments

Laura E. Martinez^{1,2**}, Joseph M. Hardcastle^{3**}, Jeffrey Wang², Zachary Pincus⁴, Jennifer Tsang⁵, Timothy R. Hoover⁵, Rama Bansil^{3*}, and Nina R. Salama^{1,2*}

¹Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA 98195 USA; ²Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA; ³Department of Physics, Boston University, Boston, MA 02215 USA; ⁴Department of Developmental Biology and Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; ⁵Department of Microbiology, University of Georgia, Athens, GA 30602, USA. **L.E.M. and J.M.H. contributed equally to the research as first co-authors.

Corresponding Authors: *Nina R. Salama, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Mailstop C3-168, Seattle, WA 98109-1024, USA. Phone: 206-667-1540. Fax: 206-667-6524. Email: nsalama@fhcrc.org

*Rama Bansil, Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA. Phone: 617-353-2969. Fax 617-353-9393. Email: <u>rb@bu.edu</u>

Supporting information inventory:

Legends for Videos 1-6.

Table supplements:

Table S1. Bacterial strains used in this study.

Table S2. Primers used in this study.

Table S3. Percent track linearity for wild-type and straight rod mutants swimming in broth and viscous media.

Table S4. Average cell body and helical parameters of flagellar mutants.

Supplemental figures:

Figure S1. Individual cell trajectories of tracked bacteria show diverse swimming patterns.

Figure S2. Wild-type *H. pylori* speed distributions reflect temporal variation of individual bacteria in broth and a gel-like PGM solution.

Figure S3. Straight rod mutants show similar flagella parameters to wild-type H. pylori.

Figure S4. Deletion of *csd6* results in straight rod morphology in the PMSS1 strain background.

Figure S5. Straight rods show increased fractions of immobilized bacteria in viscous PGM media.

Figure S6. Straight rods show similar temporal variation in swimming speed to wild-type in broth and a gel-like PGM solution.

Figure S7. Flagellar mutants display increased cell length and helical parameters relative to wild-type B128.

Videos 1 – 4. Related to Figs 4 and 5.

Video 1. The motility of wild-type LSH100 suspended in a viscous solution of PGM at 15 mg mL^{-1} .

Video 2. The motility of LSH100 $\triangle csd6$ straight rods suspended in a viscous solution of PGM at 15 mg mL⁻¹.

Video 3. The motility of wild-type PMSS1 suspended in a viscous solution of MC at 10 mg mL⁻¹.

Video 4. The motility of PMSS1 $\Delta csd6$ straight rods suspended in a viscous solution of MC at 10 mg mL⁻¹.

Videos 5 - 6. Related to Figs 8 and 9.

Video 5. The motility of wild-type B128 suspended in a viscous solution of PGM at 15 mg mL⁻¹. Video 6. The motility of B128 sRNA_T flagellar mutant suspended in a viscous solution of PGM at 15 mg mL⁻¹. Table S1. Bacterial strains used in this study

Strain Name	Genotype or Description	Shape phenotype	Reference or Source		
LSH100	Wild-type <i>H. pylori</i> , NSH57 <i>fliM</i> mutation repaired	helical	Lowenthal et al., 2009		
B128	Wild-type H. pylori	helical	Mc Clain <i>et al.</i> , 2009		
PMSS1	Wild-type <i>H. pylori</i>	helical	Lee <i>et al.</i> , 1997; Arnold <i>et al.</i> , 2011		
TSH17	∆csd6∷cat in LSH100	straight	Sycuro <i>et al.</i> , 2013		
LMH6	∆ <i>csd6∷cat</i> in PMSS1	straight	This study		
LMH9	∆ <i>motB∷tn</i> in LSH100	helical	Salama <i>et al.</i> , 2004; This study		
fliO _{ΔC}	$fliO_{\Delta C}$ in B128 C-terminal deletion: amino acids 217 to 283 were replaced with a FLAG tag	helical	Tsang and Hoover, 2014		
sRNA_T	sRNA_T::aphA-3 in B128	helical	This study		

Targeted disruption primers

Gene name	<i>H. pylori</i> gene annotation	Primer	Sequence
csd6	HPG27_477 ^a (HP0518) ^b	476F	gcgcgctctagAAGGAAGAAAAGAGCTTGC ^c
		478R	GCTGGTAGGCTTTGTAATC
motB	HPG27_772 ^a	771F	TCATTATCATCGTGCCTA
	(HP0816) ^b	773R	AAATTGGTGCTCACTTCT
Name	HPnc Number/ Alternative ID		Sequence
		sRNA_T up F	AGT TTC ACA GCG CAT TAT AAG
sRNA_T	HPnc7700; Adjacent gene HP1439 ^b /HPr07 (16S rRNA))	sRNA_T up R	GTA TAA CAT AGT ATC GAC TGA CAA GTT TGA TGA GCA GGA
		sRNA_T down F	GAA TTG TTT TAG TAC CTA GGC GAA TGT TAA AAG CTT TTC TC
		sRNA_T down R	ATA CAC GAA GAA CCT TAC CTA
		kan F	GTC GAT ACT ATG TTA TAC
		kan R	CTA GGT ACT AAA ACA ATT C

^aGene annotation in the human clinical isolate G27 (Baltrus *et al.*, 2009). ^bGene annotation in the human clinical isolate 26695 (Tomb *et al.*, 1997). ^cGene specific sequences are in uppercase and sequences added for cloning are in lower case.

Table S3. Percent track linearity for wild-type and straight rod mutants swimming in broth and
 viscous media.

Solution Strain		n	Average %TL	K-S p-value ^c for %TL	
		B128	99	59%	
	LSH100	WT	100	54%	0.468
BB10		Δcsd6	100	57%	
	PMSS1	WT	100	67%	0.024
		$\Delta csd6$	100	60%	
		B128	100	77%	
	LSH100	WT	100	81%	0.281
PGM ^a 15 mg mL ⁻¹		∆csd6	100	78%	
	PMSS1	WT	100	89%	0.367
		$\Delta csd6$	100	87%	
		B128	100	74%	
	LSH100	WT	100	82%	0.581
PGM 30 mg mL ⁻¹		$\Delta csd6$	100	78%	
	PMSS1	WT	100	83%	0.367
		$\Delta csd6$	100	81%	
	LSH100	WT	100	68%	0.581
MC ^b 10 mg mL ⁻¹		∆csd6	100	66%	
WIC TO Mg ML	PMSS1	WT	100	81%	0.699
		$\Delta csd6$	100	77%	
	LSH100	WT	100	56%	0.010
MC 15 mg mL ⁻¹		$\Delta csd6$	100	69%	
	PMSS1	WT	48	81%	0.687
		Δcsd6	48	76%	

^aPGM: Purified gastric mucin at pH 6.0. ^bMC: Methylcellulose.

^cK-S test used to compare WT to mutant percent track linearity (%TL); p-values < 0.05 are considered significant.

 Table S4. Average cell body and helical parameters of flagellar mutants.

	Average cell body parameters from Cell Tool ^a				Average helical parameters ^b		
Strain	n	Cell length (µm)	Side Curvature	Cell diameter (µm)	n	Helical radius (µm)	Helical pitch (µm)
Wild-type B128	274	2.82	3.08	0.58	272	0.10	2.4
B128 fliO _{ΔC}	307	3.25	3.98	0.66	296	0.17	2.6
B128 sRNA_T	326	3.41	3.94	0.60	305	0.14	2.5

^aCell body measurements acquired from CellTool. ^bHelical parameter measurements acquired from fitting centerlines to a sinusoid.

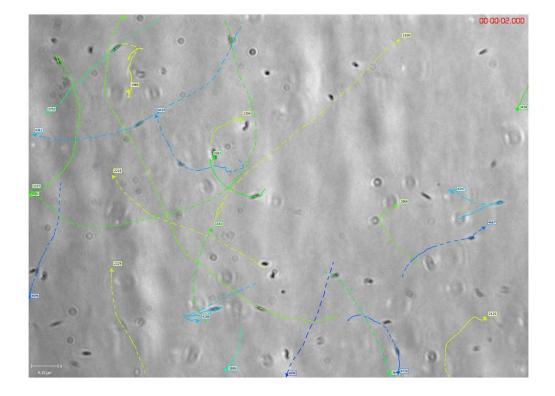


Figure S1. Individual cell trajectories of tracked bacteria show diverse swimming patterns.

Snapshot images were superimposed with the tracks (including track identification numbers) acquired from the entire video for individual wild-type bacteria (LSH100) tracked by live-cell video microscopy, swimming in a viscous solution of PGM (15 mg mL⁻¹). Videos were obtained at 60X and recorded at 100 ms intervals over a 10 s period (10 fps). Videos were then uploaded to Volocity (v6.1) to track individual bacterial cells according to size (area (μ m²)) and pixel intensity (see Experimental Procedures). Each single cell tracked was visually inspected to exclude bacteria that displayed less than 1.5 μ m in displacement, and overlapping tracks for the same bacterial cell or joined tracks between bacteria were discarded. As shown, some bacteria swim in relatively straight lines, others in loose or tight curves, and some reverse direction.

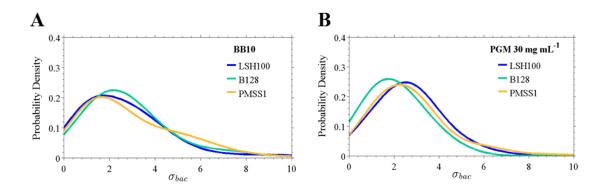
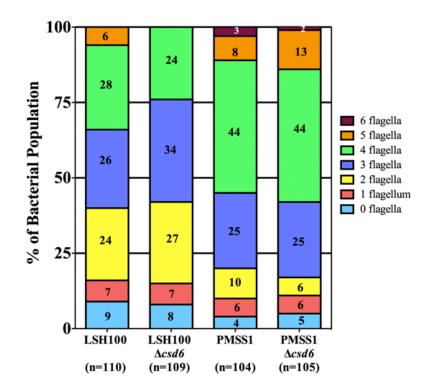



Figure S2. Wild-type *H. pylori* speed distributions reflect temporal variation of individual bacteria in broth and a gel-like PGM solution. (A) Smooth histograms summarizing the standard deviation distributions acquired for each individual bacterium's speed trajectory, σ_{bac} , of LSH100, B128, and PMSS1 in broth (BB10) (A) and in PGM solutions at 30 mg mL⁻¹ (B). In BB10, all strains show similar distributions: K-S p=0.46 for LSH100 vs. B128; K-S p=0.57 for LSH100 vs. PMSS1; and K-S p=0.28 for B128 vs. PMSS1. In PGM 30 mg mL⁻¹, LSH100 and PMSS1 show similar temporal speed variation distributions (K-S p=0.89), while B128 shows a significantly different temporal speed variation distribution from both strains (p<0.05).

Figure S3. Straight rod mutants show similar flagellum parameters to wild-type *H. pylori.* Individual bacteria for wild-type LSH100 and PMSS1 and their respective isogenic straight rods mutants were analyzed for the number of flagella from TEM images and are reported as percent of the total bacterial population examined (n=104-110).

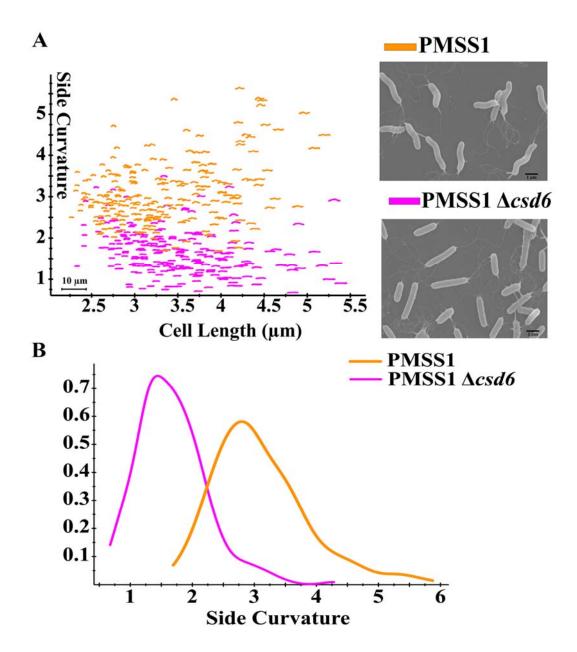


Figure S4. Deletion of *csd6* results in straight rod morphology in the PMSS1 strain background. (A) Scatter plot of side curvature vs. cell length (μ m) for wild-type PMSS1 (n=222) and the *csd6* targeted deletion mutant generated in the PMSS1 strain background (n=228). Each point represents the outline of individual bacteria captured by phase contrast microscopy (100X). Inset panel: SEM images of PMSS1 (top) and PMSS1 $\Delta csd6$ (bottom). Scale bar = 1 μ m. (B) Smooth histogram of side curvature frequency distribution of the same populations shown in A. Statistical test of the Kolmogorov-Smirnov (K-S) distance shows p <0.00001 for side curvature distributions.

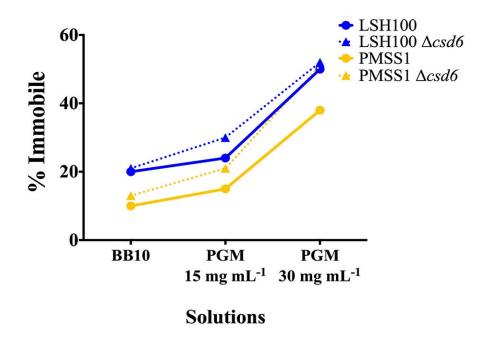


Figure S5. Straight rods show increased fractions of immobilized bacteria in viscous PGM media. The percentage of immobilized bacteria was calculated by dividing the total number of nonmotile cells (bacteria that exhibit displacements $< 0.3 \mu m$) by the total bacterial population examined, as described in the Experimental Procedures. Data shown are from the same experiments in Figures 5-7 and Table 3.

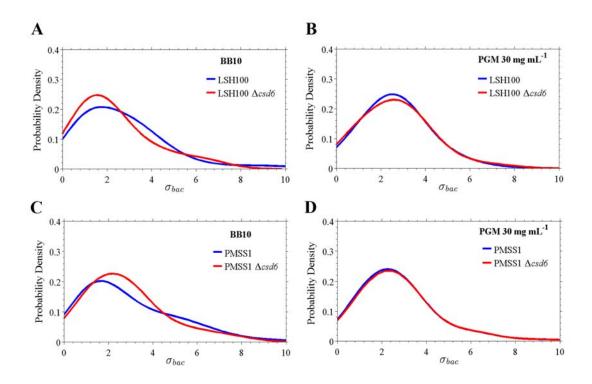


Figure S6. Straight rods show similar temporal variation in swimming speed to wild-type in broth and a gel-like PGM solution. Smooth histograms summarizing the standard deviation distributions acquired for each individual bacterium's speed trajectory, σ_{bac} , of wild-type *H*. *pylori* strains and isogenic $\Delta csd6$ straight rod mutants in LSH100 (A,B) and PMSS1 (C,D) strains in broth (BB10) and in gel-like PGM solutions at 30 mg mL⁻¹. The distributions show similar temporal speed variation profiles between wild-type and straight rod mutants, where K-S p = 0.14 (broth) and p = 0.79 (PGM at 30 mg mL⁻¹) for LSH100 vs. LSH100 $\Delta csd6$, and p = 0.34 (broth) and p = 0.19 (PGM at 30 mg mL⁻¹) for PMSS1 vs. PMSS1 $\Delta csd6$.

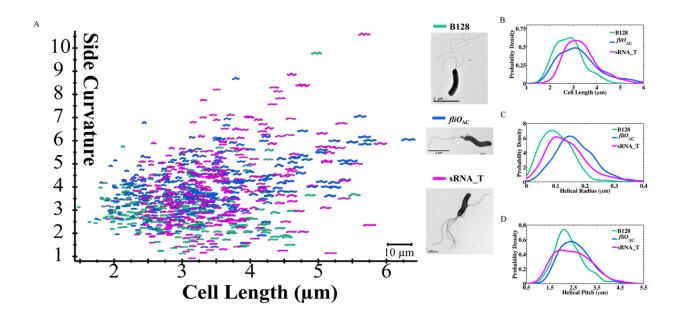


Figure S7. Flagella mutants display increased cell length and helical parameters relative to wild-type B128. (A) Side curvature vs. cell length (μ m) of individual bacterial cells imaged by phase contrast microscopy for B128 (n=274), *fliO*_{Δ C} (n=307), and sRNA_T (n=326) bacteria. Inset panel: TEM images of each. Scale bar = 1 μ m for sRNA_T and 2 μ m for B128 and *fliO*_{Δ C}. Data shown are morphology analyses from two independent cultures for each strain. (B-D) Smooth histograms summarizing probability density distributions of cell length (μ m) (B), helical radius (μ m) (C), and helical pitch (μ m) (D) measurements acquired for wild-type B128 (n=272), *fliO*_{Δ C} (n=296), and sRNA_T (n=305).

References

- Arnold, I.C., Lee, J.Y., Amieva, M.R., Roers, A., Flavell, R.A., Sparwasser, T., and Müller, A. (2011) Tolerance rather than immunity protects from *Helicobacter pylori*-induced gastric preneoplasia. *Gastroenterology* 140(1): 199-209.
- Baltrus, D.A., Amieva, M.R., Covacci, A., Lowe, T.M., Merrell, D.S., Ottemann, K.M., *et al.* (2009) The complete genome sequence of *Helicobacter pylori* strain G27. *J. Bacteriol.* **191(1):** 447-448.
- Lee, A., O'Rourke, J., De Ungria, M.C., Robertson, B., Daskalopoulos, G., and Dixon, M.F. (1997) A standardized mouse model of *Helicobacter pylori* infection: introducing the Sydney strain. *Gastroenterology* **112(4)**: 1386-1397.
- Lowenthal, A.C., Hill, M., Sycuro, L.K., Mehmood, K., Salama, N.R., and Ottemann, K.M. (2009) Functional analysis of the *Helicobacter pylori* flagellar switch proteins. *J. Bacteriol.* **191(23):** 7147-7156.
- McClain, M.S., Shaffer, C.L., Israel, D.A., Peek, Jr., R.M., and Cover, T.L. (2009) Genome sequence analysis of *Helicobacter pylori* strains associated with gastric ulceration and gastric cancer. *BMC Genomics* 10: 3.
- Salama, N.S., Shepherd, B., and Falkow, S. (2004) Global Transposon Mutagenesis and Essential Gene Analysis of *Helicobacter pylori*. J. Bacteriol. **186(23)**: 7926-7935.
- Sycuro, L.K., Rule, C.S., Petersen, T.W., Wyckoff, T.J., Sessler, T., Nagarkar, D.B., et al. (2013) Flow cytometry based enrichment for cell shape mutants identifies multiple genes that influence *Helicobacter pylori* morphology. *Mol. Microbiol.* 90(4): 869-83.
- Tomb, J.F., White, O., Keriavage, A.R., Clayton, R.A., Sutton, G.G., Fleischmann, R.D., *et al.* (1997) The complete genome sequence of the gastric pathogen *Helicobacter pylori*. *Nature* **388 (6642):** 539-47.
- Tsang, J. and Hoover, T.R. (2014) Requirement of the flagellar protein export apparatus component FliO for optimal expression of flagellar genes in *Helicobacter pylori*. J. *Bacteriol.* **196(15):** 2709-17.
- Volocity: Improvisation PE. 2011. Volocity 3D Rendering and Image Analyses Program. Version 6.1.