## Evaluation of CM5 Charges for Non-Aqueous Condensed Phase Modeling

## Supporting Information

Leela S. Dodda, Jonah Z. Vilseck, Kara J. Cutrona and William L. Jorgensen\*

Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107

| Table S1: Comparison of Previous and Recomputed OPLS-AA Heats of Vaporization                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (kcal/mol) and Densities (g/cm <sup>3</sup> ) for 22 Organic Liquids at 25°Cpp 3                                                                                                                            |
| Table S2: Mean Unsigned Errors in Computed Liquid Properties from CM5 Scale Factors                                                                                                                         |
| Optimized Independently for Each Moleculepp 4                                                                                                                                                               |
| Table S3: Computed Heats of Vaporization (kcal/mol) and Densities (g/cm <sup>3</sup> ) for 1.14*CM5 and       Computed Heats of Vaporization (kcal/mol) and Densities (g/cm <sup>3</sup> ) for 1.14*CM5 and |
| 1.20*CM5 chargespp 5                                                                                                                                                                                        |
| Table S4: MUE in GB/SA Free Energies of Hydration Calculated Using CM1A and CM5                                                                                                                             |
| Charges Scaled by Different Scale Factorspp 6                                                                                                                                                               |
| <b>Figure S1.</b> Dimers of <i>N</i> -methylacetamide with $\pi$ -type hydrogen bonds observed in 1.14*CM1A                                                                                                 |
| pure liquid simulationspp 7                                                                                                                                                                                 |
| Figure S2. Radial distribution functions from OPLS-AA, OPLS/1.14*CM1A and                                                                                                                                   |
| OPLS/1.27*CM5 pure liquid simulationspp 8                                                                                                                                                                   |

| Figure S3. Interpolated MUEs for heats of vaporization to determine an optimal CM5 scaling        |
|---------------------------------------------------------------------------------------------------|
| factorpp 9                                                                                        |
| Figure S4. Signed errors of computed liquid properties comparing 1.14*CM5, 1.20*CM5, and          |
| 1.27*CM5 scaled CM5 charge modelspp 10                                                            |
| Figure S5. Signed errors in computed free energies of self-solvation with OPLS-AA,                |
| 1.14*CM1A, and 1.20*CM5 chargespp 11                                                              |
| Figure S6. MUE in free energies of hydration calculated using GB/SA methodology for CM1A          |
| and CM5 charge models with different scaling factorspp 12                                         |
| <b>Figure S7.</b> CM <i>x</i> MUEs in GB/SA free energies of hydration for compound classespp 13  |
| Figure S8. Signed errors in computed heats of vaporization (kcal/mol), density, free energies of  |
| hydration (kcal/mol) and free energy of self-solvation (kcal/mol) for molecules in the validation |
| set with OPLS-AA (orange), and 1.20*CM5 (blue) chargespp 14                                       |

|                                        | $\Delta H_{vap}$ |          |                    | Density        |          |                    |
|----------------------------------------|------------------|----------|--------------------|----------------|----------|--------------------|
| Molecule Name                          | <b>OPLS-AA</b>   | Previous | Expt. <sup>a</sup> | <b>OPLS-AA</b> | Previous | Expt. <sup>a</sup> |
| acetic acid                            | 12.26            | 12.51    | 12.49              | 1.066          | 1.059    | 1.044              |
| acetone                                | 7.23             | 7.24     | 7.48               | 0.797          | 0.795    | 0.784              |
| acetonitrile                           | 7.57             | 7.59     | 8.01               | 0.759          | 0.765    | 0.776              |
| aniline                                | 11.88            | 12.78    | 12.60              | 1.013          | 1.036    | 1.017              |
| benzonitrile                           | 12.52            | 12.55    | 12.54              | 0.994          | 0.995    | 1.001              |
| cyclohexane                            | 7.56             | 7.80     | 7.86               | 0.752          | 0.755    | 0.774              |
| diethylamine                           | 7.68             | 7.84     | 7.48               | 0.706          | 0.709    | 0.699              |
| diethyl ether                          | 6.90             | 6.80     | 6.56               | 0.707          | 0.708    | 0.708              |
| N,N-dimethylacetamide                  | 13.44            | 11.99    | 11.75              | 0.963          | 0.911    | 0.936              |
| ethanethiol                            | 6.67             | 6.79     | 6.58               | 0.859          | 0.855    | 0.833              |
| ethanol                                | 10.29            | 10.29    | 10.11              | 0.798          | 0.799    | 0.785              |
| furan                                  | 6.91             | 6.77     | 6.56               | 0.935          | 0.943    | 0.931              |
| hexane                                 | 7.54             | 8.07     | 7.54               | 0.640          | 0.677    | 0.661              |
| methanol                               | 9.00             | 8.95     | 8.95               | 0.779          | 0.779    | 0.786              |
| methyl acetate                         | 7.99             | 7.74     | 7.72               | 0.943          | 0.929    | 0.928              |
| nitroethane                            | 9.78             | 9.99     | 9.94               | 1.024          | 1.029    | 1.040              |
| <i>N</i> -methylacetamide <sup>b</sup> | 13.87            | 13.55    | 13.30              | 0.917          | 0.907    | 0.894              |
| phenol                                 | 14.58            | 14.09    | 13.82              | 1.052          | 1.050    | 1.058              |
| propylamine                            | 7.90             | 7.80     | 7.47               | 0.719          | 0.717    | 0.711              |
| pyridine                               | 9.76             | 9.80     | 9.61               | 0.968          | 0.977    | 0.978              |
| pyrrole                                | 10.32            | 10.60    | 10.80              | 0.971          | 0.987    | 0.966              |
| tetrahydrofuran                        | 7.52             | 7.49     | 7.61               | 0.853          | 0.855    | 0.884              |
| MUE                                    | 0.35             | 0.20     |                    | 0.014          | 0.013    |                    |

Table S1. Comparison of Previous and Recomputed OPLS-AA Heats of Vaporization (kcal/mol) and Densities (g/cm<sup>3</sup>) for 22 Organic Liquids at 25°C.

<sup>a</sup> Refs. 32-40. <sup>b</sup> At 100°C.

 Table S2. Mean Unsigned Errors in Computed Liquid Properties from CM5 Scale Factors

|                       | Independent  | MUE                         |                |
|-----------------------|--------------|-----------------------------|----------------|
| Molecule              | Scale Factor | $\Delta H_{vap}$ (kcal/mol) | $\rho(g/cm^3)$ |
| acetic acid           | 1.16         | 0.05                        | 0.04           |
| aniline               | 1.12         | 0.09                        | 0.01           |
| benzonitrile          | 0.93         | 0.25                        | 0.01           |
| acetonitrile          | 1.14         | 0.04                        | 0.02           |
| cyclohexane           | 0.39         | 0.08                        | 0.02           |
| diethylamine          | 1.30         | 0.13                        | 0.00           |
| N,N-dimethylacetamide | 0.97         | 0.20                        | 0.00           |
| diethyl ether         | 0.87         | 0.09                        | 0.02           |
| methyl acetate        | 0.92         | 0.18                        | 0.01           |
| ethanol               | 1.27         | 0.08                        | 0.00           |
| ethanethiol           | 1.23         | 0.01                        | 0.03           |
| furan                 | 0.99         | 0.00                        | 0.00           |
| hexane                | 0.79         | 0.03                        | 0.02           |
| acetone               | 1.08         | 0.04                        | 0.03           |
| methanol              | 1.29         | 0.27                        | 0.02           |
| nitroethane           | 1.09         | 0.06                        | 0.01           |
| N-methylacetamide     | 1.01         | 0.07                        | 0.03           |
| phenol                | 1.25         | 0.07                        | 0.01           |
| propylamine           | 1.34         | 0.68                        | 0.01           |
| pyridine              | 1.01         | 0.06                        | 0.02           |
| pyrrole               | 1.16         | 0.08                        | 0.01           |
| tetrahydrofuran       | 1.12         | 0.43                        | 0.03           |

**Optimized Independently for Each Molecule.** 

|                                |          | $\Delta H_{vap}$ |                    |          | Density  |                    |
|--------------------------------|----------|------------------|--------------------|----------|----------|--------------------|
| Molecules                      | 1.14*CM5 | 1.20*CM5         | Expt. <sup>a</sup> | 1.14*CM5 | 1.20*CM5 | Expt. <sup>a</sup> |
| acetic acid                    | 12.10    | 13.16            | 12.49              | 1.072    | 1.082    | 1.044              |
| aniline                        | 12.89    | 13.69            | 12.60              | 0.816    | 0.828    | 0.784              |
| benzonitrile                   | 14.28    | 14.81            | 12.54              | 0.760    | 0.785    | 0.776              |
| acetonitrile                   | 7.97     | 8.80             | 8.01               | 1.013    | 1.023    | 1.017              |
| cyclohexane                    | 7.69     | 7.56             | 7.86               | 1.008    | 1.011    | 1.001              |
| diethylamine                   | 6.88     | 7.22             | 7.48               | 0.755    | 0.750    | 0.774              |
| N,N-dimethylacetamide          | 13.83    | 14.73            | 11.75              | 0.684    | 0.692    | 0.699              |
| diethyl ether                  | 7.03     | 7.14             | 6.56               | 0.707    | 0.710    | 0.708              |
| methyl acetate                 | 9.17     | 9.56             | 7.72               | 0.962    | 0.981    | 0.936              |
| ethanol                        | 7.91     | 8.96             | 10.11              | 0.852    | 0.854    | 0.833              |
| ethanethiol                    | 6.41     | 6.47             | 6.58               | 0.758    | 0.774    | 0.785              |
| furan                          | 6.86     | 7.03             | 6.56               | 0.934    | 0.942    | 0.931              |
| hexane                         | 7.40     | 7.44             | 7.54               | 0.640    | 0.640    | 0.661              |
| acetone                        | 7.91     | 8.36             | 7.48               | 0.727    | 0.747    | 0.786              |
| methanol                       | 6.73     | 7.71             | 8.95               | 0.973    | 0.984    | 0.928              |
| nitroethane                    | 10.35    | 10.96            | 9.94               | 1.041    | 1.053    | 1.040              |
| N-methylacetamide <sup>b</sup> | 15.99    | 17.16            | 13.30              | 0.950    | 0.952    | 0.894              |
| phenol                         | 12.47    | 13.13            | 13.82              | 1.040    | 1.045    | 1.058              |
| propylamine                    | 6.14     | 6.49             | 7.47               | 0.675    | 0.684    | 0.711              |
| pyridine                       | 10.38    | 10.78            | 9.61               | 0.971    | 0.983    | 0.978              |
| pyrrole                        | 10.38    | 11.37            | 10.80              | 0.969    | 0.983    | 0.966              |
| tetrahydrofuran                | 7.62     | 7.83             | 7.61               | 0.848    | 0.856    | 0.884              |
| MUE                            | 0.89     | 1.06             |                    | 0.022    | 0.023    |                    |

Table S3. Computed Heats of Vaporization (kcal/mol) and Densities (g/cm<sup>3</sup>) for 1.14\*CM5 and 1.20\*CM5 charges at 25°C.

<sup>a</sup> Refs. 32-40. <sup>b</sup> At 100°C.

Table S4. MUE in GB/SA Free Energies of Hydration Calculated Using CM1A and CM5

| CM1A                |         | CM5                 |      |  |
|---------------------|---------|---------------------|------|--|
| <b>Scale Factor</b> | MUE     | <b>Scale Factor</b> | MUE  |  |
| 1.00                | 1.19    | 1.00                | 1.82 |  |
| 1.03                | 1.15    | 1.09                | 1.37 |  |
| 1.04                | 1.14(4) | 1.18                | 1.08 |  |
| 1.05                | 1.14(3) | 1.19                | 1.08 |  |
| 1.06                | 1.15    | 1.20                | 1.07 |  |
| 1.07                | 1.16    | 1.21                | 1.06 |  |
| 1.08                | 1.17    | 1.22                | 1.06 |  |
| 1.09                | 1.20    | 1.23                | 1.07 |  |
| 1.18                | 1.55    | 1.24                | 1.07 |  |
| 1.27                | 2.10    | 1.27                | 1.10 |  |
| 1.36                | 2.88    | 1.36                | 1.37 |  |

Charges Scaled by Different Scale Factors.<sup>a</sup>

<sup>a</sup> Optimal Scale Factors are highlighted in bold.



**Figure S1.** Dimers of *N*-methylacetamide with  $\pi$ -type hydrogen bonds observed in 1.14\*CM1A pure liquid simulations.



**Figure S2.** Radial distribution functions from OPLS-AA, OPLS/1.14\*CM1A and OPLS/1.27\*CM5 pure liquid simulations.



**Figure S3.** Interpolated MUEs for heats of vaporization to determine an optimal CM5 scale factor. The red dashed line represents a quadratic fit of the data.



Figure S4. Signed errors of computed liquid properties comparing 1.14\*CM5 (orange), 1.20\*CM5 (green) and 1.27\*CM5 (blue) scaled CM5 charge models.



**Figure S5.** Signed errors in computed free energies of self-solvation with OPLS-AA (orange), 1.14\*CM1A (green), and 1.20\*CM5 (blue) charges.



**Figure S6.** MUEs in free energies of hydration calculated using GB/SA methodology for CM1A and CM5 charge models with different scaling factors. Dashed lines represent quadratic fits of the data.



Figure S7. CMx MUEs in GB/SA free energies of hydration for compound classes.



**Figure S8.** Signed errors in computed heats of vaporization (kcal/mol), density, free energies of hydration (kcal/mol) and free energy of self-solvation (kcal/mol) for molecules in the validation set with OPLS-AA (orange), and 1.20\*CM5 (blue) charges.