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S7. Mathematical framework for assigning statistical significance
to nanopore event subpopulation detection

The goal is to identify a mathematical criterion upon which to make the call that a molecular
species is present, and also to assess the statistical significance of that call. We can formulate
the problem as follows. First, we identify two categories of molecules in bulk solution: type
1 are all the background molecules (e.g., unbound DNA, free PNA, free PEG-bound PNA,
etc.), and type 2 are the molecules of interest (i.e, DNA/PNA-PEG complexes). Our goal
is to detect the presence of type 2 molecules in bulk solution (future work will provide tools
with which to estimate its concentration). An event is called type 1 or 2 if the molecule
captured in that event is type 1 or 2, respectively. Based on data from control experiments,
we try to identify an event signature that is almost absent in type 1 events but is present in
a significant fraction of type 2 events. An event is “tagged” if the signature is present in that
event. An example signature might be δG > x, for some identified threshold conductance
shift x. Shifts are typically larger for larger molecules going through a pore of a given size; so,
this criterion is intuitive since sequence-specific labels (PNA-PEG) bound to a DNA create
larger features. Note that our formulation does not require δG to be the variable used to
establish the signature; the signature can be based on any variable or set of variables used
to quantitate each event in the recorded set.

We define the variables

q1 = Pr(tagged | type 1 event), q2 = Pr(tagged | type 2 event).

If we view “tagging” as labeling an event as type 2, then q1 is the false positive probability
and (1 − q2) is the false negative probability. The challenge is to select an event signature
such that q1 is very small, and q2 − q1 � q1 (the larger, the better). Let p = the probability
that a capture event is type 2, and q(p) = the probability that a capture event is tagged.
Probability p is related to concentrations in bulk solution as

p =
[type 2]r2

[type1]r1 + [type 2]r2
,

with capture rate constants ri, i = 1, 2 in units of capture rate per unit concentration. The
probability q that a capture event is tagged is a function of p, given by the equation:

q(p) = q1 + p ∗ (q2 − q1).
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Each event is either tagged or not. Let

X =

{
1, tagged
0, untagged

X has a Bernoulli distribution with probability q(p). We study the quantity

Q(p) =
Number of tagged events

Total number of events
=

1

N

N∑
j=1

Xj

where N is total number of all events (tagged or not). The true mean of X is q(p), while
Q(p) is a sample mean of X. Also, Q(p)N has a binomial distribution with parameters N
and q(p). When there are no type 2 molecules in bulk solution, we have p = 0 and

Q(0) ≈ q(0) = q1

When there are type 2 molecules in bulk solution, we have p > 0 and

Q(p) ≈ q(p) = q1 + p(q2 − q1)

The general idea is as follows

• In a control experiment with p = 0, Q(0) is determined with good accuracy from a
large number of capture events;

• In a detection experiment with unknown p, Q(p) is computed from the capture events
over a prescribed time period;

• Based on the confidence interval of Q(p) (which we estimate below), we decide whether
or not Q(p) > Q(0) is statistically sound (and thus, p > 0 is statistically sound).

Note that if q1 is very small, and q2− q1 � q1, then Q(p) > Q(0) can hold even with a small
number of events. The key is whether Q(p)−Q∗ > Q(0) is still true, with Q∗ the 99% (for
example) confidence interval for Q(p).

Estimating the confidence interval of Q(p)

Simplifying notation, denote probability q = q(p) and random variable Q = Q(p). Since QN
has a binomial distribution with parameters N and q, the mean and standard deviation of
Q are

mean(Q) = q, std(Q) =

√
q(1− q)
N

Since q is unknown, we can instead use the observed (computed) value for the random
variable Q (still denoted Q) to approximate q in the standard deviation of Q, given by

std(Q) ≈
√
Q(1−Q)

N
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Normal approximation

We approximate the distribution of Q(p) using a normal distribution with the same mean
and variance. Let zα/2 be the critical value of the standard normal distribution for a given
error level α. Then zα/2 is defined as

Pr
(
Y > zα/2

)
=
α

2

where Y is a standard normal distribution (mean = 0, variance = 1). For specific confidence
intervals we can quantitate zα/2, such as

• For α = 0.05, zα/2 = 1.96, which corresponds to 95% confidence interval.

• For α = 0.02, zα/2 = 2.3263, which corresponds to 98% confidence interval.

• For α = 0.01, zα/2 = 2.5758, which corresponds to 99% confidence interval.

An approximate confidence interval is

Q± zα/2

√
Q(1−Q)

N

Again, Q here is actually an observed value of random variable Q(p) from a given experiment.
For the chosen α (confidence interval),

Q(p) > Q(0) is statistically sound if Q− zα/2
√
Q(1−Q)/N > Q(0).

In Matlab, zα/2 =
√

2 · erfcinv(α). The confidence intervals reported in the main text use
the Normal Approximation, though we note that the results were consistent when using the
Wilson confidence interval defined below.

Wilson confidence interval

When q is small and N is not very large, the assumption of normal approximation is not
valid, and a better approximation is to use the Wilson confidence interval. Using b = z2α/2/N ,
the interval is given by (

Q+ b/2

1 + b

)
± zα/2


√

Q(1−Q)
N

+ b
4N

1 + b

 (1)

For the chosen α (confidence interval),

Q(p) > Q(0) is statistically sound if

Q+ b/2− zα/2
√

Q(1−Q)
N

+ b
4N

1 + b

 > Q(0).

We note that one could also use the Clopper-Pearson interval, or the P-value method of
hypothesis testing.
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Estimating the minimum N and recording time T to achieve q(p) > q1

This section provides an approximate method for identify the minimum number of events
required to assert that q(p) > q1. Consider the case that q1 is known and small and q(p) > q1.
Then with probability >99%, the observed value of Q that approximates q(p) will lead us
to Q > q1 when

(Q− q1) ≥ [4 times standard deviation of Q]

which depends on N . Disclaimer: this is a ballpark estimate, which is easy to work with
analytically. The number of events needed satisfies

Q− q1 ≥ 4

√
Q(1−Q)

N

After algebra, this results in

N ≥ 16
Q(1−Q)

(Q− q1)2

For example, assuming the values q1 = 0.5% and Q = 6%, the equation above suggests
N ≥ 300, a reasonable value. From this expression we can also estimate the time T needed
to achieve 99% confidence. If the total capture rate is kc, the time needed is

T =
N

kc
=

16

kc
· Q(1−Q)

(Q− q1)2
.

The value for T is an estimate for the first time to 99% confidence detection, which can serve
as a time-to-results metric for nanopore assays.

Application of Mathematical Framework to data in Figure 5

As described in the main text, we considered DNA/bisPNA-PEG complexes as the molecules
of interest (“type 2”) that signal the presence of a target sequence, utilizing the data shown
in Figure 5. The nanopore initially tested PEG alone and DNA/bisPNA prior to measuring
DNA/bisPNA-PEG, and the DNA/bisPNA data was treated as a negative control (Q(0) =
1.21%) based on using a minimum duration of 50 µsec as the tagging criteria. An error-bar
plot of Q(p)±Q∗ as a function of recording time is shown in Figure S13. The values for Q(p)
and Q∗ are updated at each point in time when a new event is detected. The Q(p) ± Q∗
trend converges to 25.9 ± 3.95% for DNA/bisPNA-PEG 10 kDa and to 6.09 ± 0.95% for
DNA/bisPNA-PEG 5 kDa.
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Figure S13: Evolution of Q(p) ± Q∗ as a function of recording time for the
DNA/bisPNA-PEG 5, 10 kDa data in Fig 5. The envelope width shows the evo-
lution and attenuation of the uncertainty over time, and as compared to the false-positive
threshold (Q(0) = 1.21%) established from the DNA/bisPNA data (red dashed line).

We also examined the margin of robustness of the positive detection result shown in
Figure S13. Specifically, a quantitative test of robustness is to compute the range of criteria
threshold value(s) that preserve the 99%-confidence detection result, using all events that
were recorded for each data set. Using the data from Figure 5, a plot comparing Q(p)−Q∗
for DNA/bisPNA-PEG (5,10 kDa) and Q(0) for DNA/bisPNA was generated while varying
the duration threshold Tcut (µs) used to tag events as type 2 (Fig. S14). Every duration
threshold Tcut for which the Q(p) − Q∗ line exceeds the Q(0) in Figure S14a is a positive
result (99%-confidence detection). Equivalently, Figure S14b shows the Tcut range over which
Q(p)−Q∗ −Q(0) > 0. The trends show that 99% detection confidence in preserved for any
duration threshold in the ranges [28, 2900]µs for DNA/bisPNA-PEG (5 kDa) and [12, 4600]µs
for DNA/bisPNA-PEG (10 kDa). Observe the Tcut values that maximize Q(p)−Q∗ −Q(0)
in Figure S14b provide the most robust choice.
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Figure S14: Examining the margin of robustness for positive detection using a
minimum duration threshold. (a) Q(p)−Q∗ for the DNA/bisPNA-PEG 5, 10 kDa data
and Q(0) for the DNA/bisPNA data in the main text Fig 5, using all events in each case, and
while varying the minimum duration Tcut (µs) for tagging events. (b) The Tcut range over
which Q(p) − Q∗ − Q(0) > 0 (using same data in (a)), and thus over which 99% detection
confidence is achieved.
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