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Experimental Procedures

General. Unless otherwise noted, all chemicals and reagents were obtained from commercial
suppliers (Sigma-Aldrich, VWR, Alfa Aesar) and used without further purification. Silica gel
chromatography purifications were carried out using AMD Silica Gel 60, 230-400 mesh. 'H
spectra were recorded on a Varian Inova 300 MHz or 500 MHz, or Bruker Prodigy 400 MHz
instrument in CDCls, and are referenced to the residual solvent peak. Synthetic reactions were
monitored using thin layer chromatography (Merck 60 gel plates) using an UV-lamp for

visualization.

Chromatography. Analytical high-performance liquid chromatography (HPLC) was carried out
using an Agilent 1200 series, and a Kromasil 100 C18 column (4.6 x 50 mm, 5 um). Semi-
preparative HPLC was performed using an Agilent XDB-C18 (9.4 x 250 mm, 5 um). Analytical
chiral HPLC was conducted using a supercritical fluid chromatography (SFC) system with
isopropanol and liquid CO, as the mobile phase. Chiral OB-H and AS-H columns were used to
separate aziridine and amido-alcohol enantiomers (4.6 x 150 mm, 5 pm). Olefins were all
commercially available; amido-alcohol®’ and aziridine® standards were prepared as
reported. %ee was calculated by dividing the major peak area by the sum of the peak areas

determined by SFC chromatography.

Cloning and site-directed mutagenesis. pET22b(+) was used as a cloning and expression
vector for all enzymes described in this study. Site-directed mutagenesis was performed using a
modified QuikChange™ mutagenesis protocol. The PCR products were gel purified, digested

with Dpnl, repaired using Gibson Mix ™, and directly transformed into E. coli strain BL21(DE3).



Determination of P450 concentration. Concentration of P450/P411 enzymes in whole cell
experiments was determined from ferrous carbon monoxide binding difference spectra using
previously reported extinction coefficients for cysteine-ligated (e = 91,000 M~ cm™ ') and serine-
ligated enzymes (e = 103,000 M ¢cm™).% When purified enzymes were used, concentration of
P450/P411 enzymes was accomplished by quantifying the amount of free hemin present in

purified protein using the pyridine/hemochrome assay.>*

Protein expression and purification. Enzymes used in purified protein experiments were
expressed in E. coli strain BL21(DE3) transformed with plasmid encoding P450 or P411 variants.
Expression and purification were performed as described except that the shake rate was lowered
to 130 RPM during expression.> Following expression, cells were pelleted and frozen at -20 °C.
For purification, frozen cells were resuspended in buffer A (20 mM tris, 20 mM imidazole, 100
mM NaCl, pH 7.5, 4 mL/g of cell wet weight), loaded with 300 pg/ml hemin, and disrupted by
sonication (2 x 1 min, output control 5, 50% duty cycle; Sonicator 3000, Misonix, Inc.). To pellet
insoluble material, lysates were centrifuged (20,000 x g for 0.5 h at 4 °C). Proteins were
expressed in a construct containing a 6x-His tag and were consequently purified using a nickel
NTA column (1 mL HisTrap HP, GE Healthcare, Piscataway, NJ) using an AKTAxpress purifier
FPLC system (GE healthcare). P450 or P411 enzymes were then eluted on a linear gradient from
0% buffer B (20 mM tris, 300 mM imidazole, 100 mM NaCl, pH 7.5) to 100 % buffer B over 10
column volumes (P450/P411 enzymes elute at around 80 mM imidazole). Fractions containing
P450 or P411 enzymes were pooled, concentrated, and subjected to three exchanges of

phosphate buffer (0.1 M potassium phosphate (KPi), pH 8.0) to remove excess salt and



imidazole. Concentrated proteins were aliquoted, flash-frozen on powdered dry ice, and stored at

-20 °C until later use.

Reaction screening in 96-well plate format. Site-saturation mutagenesis libraries were
generated by employing the “22c-trick” method.*® E. coli libraries were generated and cultured
in 300 pL of LB with 0.1 mg mL™" ampicillin and stored as glycerol stocks at -80 °C in 96-well
plates. 50 uL of the pre-culture was transferred to a 1000 puL of Hyperbroth using a multichannel
pipette. The cultures were incubated at 37 °C, 220 rpm, 80% humidity for 3 hours. The plates
were cooled on ice for 15 minutes before expression was induced (0.5 mM IPTG, ImM 5-
aminolevulinic acid, final concentrations). Expression was conducted at 20 °C, 120 rpm, 20 h.
The cells were pelleted (3000 x g, 5 min) and re-suspended in 40 pL/well GOX solution (14,000
U/ml catalase (Sigma 02071) and 1000 U/ml glucose oxidase (Sigma G7141)). The 96-well plate
was transferred to an anaerobic chamber. In the anaerobic chamber, 300 uL per well argon
sparged reaction buffer (4 : 1, M9-N : 250 mM glucose in M9-N) was added followed by 4-
methylstyrene (300 mM, 10 pL/well) and tosyl azide (100 mM, 10 pL/well). The plate was
sealed with aluminum sealing tape, removed from the anaerobic chamber, and shaken at 40 rpm.
After 16 hours, the seal was removed and 400 puL of acetonitrile was added to each well. The
contents of each well were mixed by pipetting up and down using a multichannel pipette. Then
the plate was centrifuged (4000 x g, 5 minutes) and 500 pL of the supernatant was transferred to

a shallow-well plate for analysis by HPLC.



Typical procedure for small-scale aziridination bioconversions under anaerobic conditions
using whole cells and purified enzymes. E. coli BL21(DE3) cells containing P450 or P411
enzymes were grown from glycerol stock overnight in 5 ml Luria broth with 0.1 mg mL"
ampicillin (37 °C, 250 rpm). The preculture was used to inoculate 45 mL of Hyperbroth medium
(prepared from AthenaES© powder, 0.1 mg mL™" ampicillin) in a 125 mL Erlenmeyer flask; this
culture was incubated at 37 °C, 220 rpm for 2 h and 30 min. After, the cultures were cooled on
ice and induced with 0.5 mM IPTG and 1 mM 5-aminolevulinic acid (final concentration).
Expression was conducted at room temperature, 120 rpm, 20 h. The cultures were then
harvested and resuspended to ODgop= 30 in M9-N. Aliquots of the cell suspension (4 mL) were
used to determine the P450 or P411 expression level after lysis.

E. coli cells (ODgoo= 30) were made anaerobic by sparging with argon in a sealed 6 mL
crimp vial for at least 30 minutes. To a 2 mL crimp vial was then added glucose (250 mM in M9-
N, 40 pL) and the GOX solution described previously (20 pL). The headspace of the sealed 2
mL reaction vial was made anaerobic by flushing argon over the solution. Resuspended cells
(320 pL), followed by olefin substrate (10 pL, 300 mM in DMSO), then tosyl azide (10 uL, 100
mM in DMSO) were added to 2 mL reaction vial via syringe under continuous flow of argon.
Final concentrations of reagents were typically: 2.5 mM tosyl azide, 7.5 mM olefin, 25 mM
glucose. The no enzyme control experiment was conducted using E. coli BL21 (DE3) cells
containing empty pET22b(+) vector with the same reaction conditions as described above.
Purified enzyme reactions were conducted as described previously, using 2.5 mM TsNs and 7.5
mM olefin.® Sodium dithionite (5 mM) was used as reductant for reactions with hemin,
myoglobin, cytochrome ¢, CYP119, and P450gns. The reactions were quenched by adding

acetonitrile (460 uL) and the resulting mixture was transferred to a microcentrifuge tube and



centrifuged at 14,000 rpm for 5 minutes. The solution (540 pL) was transferred to an HPLC vial,
charged with internal standard (60 pL, 10 mM 1,3,5-trichlorobenzene in acetonitrile), and
analyzed by HPLC.

Reactions for chiral HPLC analysis were performed on a 2 mL scale using the same
concentration of reagents and a similar procedure as described above. Briefly, cells containing
P450 or P411 enzymes were expressed and resuspended to an ODgpo= 30 in M9-N, and then
degassed by sparging with argon in a sealed 6 mL crimp vial for at least 30 minutes. To a 6 mL
crimp vial was then added glucose (250 mM in M9-N, 200 puL) and the GOX mixture described
previously (100 uL). The headspace of the sealed 2 mL reaction vial was made anaerobic by
flushing argon over the solution. Resuspended cells (1600 uL), followed by olefin substrate (50
puL, 300 mM in DMSO), then tosyl azide (50 pL, 100 mM in DMSO) were added to 6 mL
reaction vial via syringe under continuous flow of argon. Reactions were quenched with 2 mL
acetonitrile, extracted with ethyl acetate, dried and resuspended in acetone (200 pL), and purified
by C18 semi-preparative HPLC. The purified material was dried, resuspended in acetonitrile, and

analyzed by SFC for enantioselectivity.



Synthesis of substrates and standards. All olefins presented in main text Table 3 were
obtained from commercial sources (Sigma Aldrich).

OH

MeO

N-(2-hydroxy-2-(4-methoxyphenyl)ethyl)-4-methylbenzenesulfonamide (2). Synthesized as
previously reported.

'H NMR (400 MHz, CDCls): & 7.72 (d, 2H, J = 8.1 Hz), 7.29 (d, 2H, ] = 8.3 Hz), 7.19 (d, 2H, J
= 8.6 Hz), 6.84 (d, 2H, 8.6 Hz), 5.06 (dd, 1H, J = 8.1, 4.6 Hz), 4.73 (dd, 1H, ] = 8.7, 3.7 Hz),
3.78 (s, 3H), 3.20 (ddd, 1H, J=13.3, 8.1, 3.7 Hz), 3.01 (ddd, 1H, J = 13.2, 8.6, 4.6 Hz), 2.42 (s,
3H)

C NMR (101 MHz, CDCl;): 6 159.66, 143.69, 136.86, 133.00, 129.90, 127.26, 127.21, 114.16,
72.50, 55.44, 50.30, 21.66

HRMS (FAB+): calculated for C;¢H;sNO4S ([M+H]+): 320.0956; found: 320.0950

NTs

jon

N-(p-Tolylsulfonyl)-2-(p-methylphenyl)aziridine (4). Synthesized as previously reported™
with spectral data in agreement with literature reported data.>'

'"H NMR (300 MHz, CDCL): & 7.86 (d, 2H, J = 8.3 Hz), 7.32 (d, 2H, J = 8.3 Hz), 7.10 (s, 4H),
3.74 (dd, 1H, J= 7.2, 4.5Hz), 2.97 (d, 1H, J= 7.2 Hz), 2.43 (s, 3H), 2.38 (d, 1H, J = 4.5 Hz),
2.31 (s, 3H).

NTs

o

N-(p-Tolylsulfonyl)-2-phenylaziridine (6). Synthesized as previously reported®* with spectral
data in agreement with literature reported data.>'°



'"H NMR (300 MHz, CDCL): § 7.87 (d, 2H, J = 8.3 Hz), 7.19-7.36 (m, 7H), 3.77 (dd, 1H, J =
7.2,4.5 Hz), 2.98 (d, 1H, J= 7.2 Hz), 2.43 (s, 3H), 2.39 (d, 1H, J = 4.5 Hz)

NTs

MeO :

N-(p-Tolylsulfonyl)-2-(p-methoxyphenyl)aziridine (S1). Synthesized as previously reported™
with spectral data in agreement with literature reported data.>'

'"H NMR (500 MHz, CDCL): & 7.87 (d, 2H, J = 8.3 Hz), 7.34 (d, 2H, J= 8.5 Hz), 7.14 (d, J =
8.7 Hz, 2H), 6.83 (d, J=8.7, 2H), 3.78 (s, 3H), 3.75 (dd, 1H, J = 7.2, 4.5 Hz), 2.97 (d, 1H, J =
7.2 Hz), 2.4 (s, 3H), 2.39 (d, 1H, J = 4.5 Hz)

NTs

o

N-(p-Tolylsulfonyl)-2-(p-chlorophenyl)aziridine (S2). Synthesized as previously reported*
with spectral data in agreement with literature reported data.®'’

'"H NMR (300 MHz, CDCL): & 7.86 (d, 2H, J = 8.3 Hz), 7.34 (d, 2H, J = 7.9 Hz), 7.26 (d, 2H, J
= 8.5Hz), 7.15 (d, 2H, J = 8.5 Hz), 3.73 (dd, 1H, J = 7.2, 4.4 Hz), 2.98 (d, 1H, J = 7.2 Hz), 2.44
(s, 3H), 2.34 (d, 1H, J = 4.4 Hz)

NTs

N-(p-Tolylsulfonyl)-2-(m-chlorophenyl)aziridine (S3). Synthesized as previously reported™
with spectral data in agreement with literature reported data.>"!

'"H NMR (400 MHz, CDCL): & 7.87 (d, 2H, J = 8.3 Hz), 7.35 (d, 2H, J = 7.7 Hz), 7.19 — 7.26
(m, 3H), 7.12 (dt, 1H, J = 6.8, 1.8 Hz), 3.73 (dd, 1H, J = 7.2, 43 Hz), 2.97 (d, 1H, J = 7.2 Hz),
2.44 (s, 3H), 2.35 (d, 1H, J = 4.4 Hz)




NTs
S

Z

N-(p-Tolylsulfonyl)-2-(m-methylphenyl)aziridine (S4). Synthesized as previously reported™
with spectral data in agreement with literature reported values.>'?

'"H NMR (400 MHz, CDCL): & 7.87 (d, 2H, J = 8.3 Hz), 7.33 (d, 2H, J = 8.6 Hz), 7.01 — 7.20 (m,
4H), 3.74 (dd, 1H, J = 7.2, 4.5 Hz), 2.96 (d, 1H, J = 7.2 Hz), 2.43 (s, 3H), 2.38 (d, 1H, J
= 4.5 Hz), 2.30 (s, 3H)

NTs

jog

N-(p-Tolylsulfonyl)-2-(2,4-dimethylphenyl)aziridine (S5). Synthesized as previously
reported.>

'"H NMR (400 MHz, CDCL): & 7.90 (d, 2H, J = 8.4 Hz), 7.34 (d, 2H, J = 8.5 Hz), 6.91 — 7.00 (m,
3H), 3.84 (dd, 1H, J = 7.2, 4.6 Hz), 2.97 (d, 1H, J = 7.2 Hz), 2.44 (s, 3H), 2.35 (s, 3H), 2.32 (d,
1H, J = 4.6 Hz), 2.28 (s, 3H)

“C NMR (101 MHz, CDCL,): 6 144.72, 137.95, 136.72, 135.15, 130.89, 130.32, 129.84, 128.11,
126.82, 125.98, 39.61, 35.07, 21.75, 21.11, 19.08

HRMS (FAB+): calculated for C;7H,0NO,S ([M+H]+): 302.1215; found: 302.1210

OH
NHTs

N-(2-hydroxy-2-phenylpropyl)-4-methylbenzenesulfonamide (S6). Synthesized as previously
reported.

'H NMR (400 MHz, CDCI3): & 7.67 (d, 2H, J = 8.3 Hz), 7.24 — 7.38 (m, 7H), 4.59 (s, 1H), 3.22
(dd, 1H,J=12.8,8.5Hz),3.12 (dd, 1H,J=12.8,4.8 Hz),2.42 (s, 3H), 1.56 (s, 3H)

“C NMR (101 MHz, CDCL,): 6 144.87, 143.73, 136.73, 129.93, 128.75, 127.60, 127.19, 124.93,
73.81, 53.99, 27.62, 21.68

HRMS (FAB+): calculated for C;¢H20NO3S ([M+H]+): 306.1164; found: 306.1160




sopl

N-(p-Tolylsulfonyl)-2-(2-naphthyl)aziridine (S7). Synthesized as previously reported® with
spectral data in agreement with literature reported values.>'

'"H NMR (400 MHz, CDCI3): § 7.90 (d, 2H, J = 8.3 Hz), 7.75 — 7.81 (m, 3H), 7.73 (s, 1H), 7.45
—7.49 (m, 2H), 7.33 (d, 2H, J = 8.3 Hz), 7.25 — 7.30 (m, 1H), 3.93 (dd, 1H, J= 7.2, 4.4 Hz), 3.07
(d, 1H, J=7.2 Hz),2.50 (d, 1H, J = 4.5 Hz), 2.42 (s, 3H)

Table S1. Mutations present in P450gy3; variants used in this work.

Enzyme Mutations relative to wild-type P450gu3

P450gu3 none

P450sm3-T268A T268A

P411gy; C400S

P411gy3-T268A T268A, C400S

P450su3-CIS V78A, F87V, P142S, T175l, A184V, S226R, H236Q,

P450gy3-CIS-T438S
P411gy3-CIS-T438S
P-1263F

P-1263F-A328V
P-1263F-A328V-L437V
P411gy3-CIS A268T T438S
P411gy3; H2-A-10

P411gy3; H2-5-F10

P411gy3; H2-4-D4

E252G, T268A, A290V, L353V, 1366V, E442K
P450gm3-CIS T438S

P450sm3-CIS C400S T438S

P411gus-CIS T438S 1263F

P411su3-CIS T438S 1263F A328V
P411su3-CIS T438S 1263F A328V L437V
P411su3-CIS A268T T438S

P411gws-CIS L75A L181A

P411gus-CIS L75A 1263A L437A
P411gus-CIS L75A M177A L181A L437A




Table S2. Panel of P450pMm3 purified enzymes tested for aziridination reactivity with
4-methoxystyrene 1.

0.3 mol% Enzyme
/©/\ + TsN3 ——>»
MeO anaerobic

4 hours, RT

NTs OH

MeO MeO

2

Entry Enzyme TTN 2
1 P411gus-CIS T438S 15
2 P450gus-CIS T438S <1
3 P450gms-CIS T438S C400H 3

4 P450gu3-CIS T438S C400D 4

5 P450gms-CIS T438S C400M 4

6 P411gms-CIS A268T T438S <1
7 P411gus-H2-5-F10 8

8 P411gus-H2-A-10 4

9 P411gus-H2-4-D4 5
10 P4508M3 <1
11 P411sus 3
12 P450gms-T268A 2
13 P411gus-T268A 4
14 P411gus-CIS T438S 1263F 150
15 P411sus-CIS T438S 1263F V87F 19
16 P411gus-CIS T438S 1263F A268T <1

| Table S3. Heme and other heme-containing proteins tested for activity in the above reaction
(Table S2) with 4-methoxystyrene. Myoglobin and cytochrome ¢ were purchased as lyophilized
powder from Sigma Aldrich. P450gnsmutants were expressed and purified as described in the

methods section; P450cyp;19 was expressed and purified as described previously.

S14

Entry  Catalyst TTN 2
1 Hemin <1

2 Hemin + BSA <1

3 Myoglobin (horse heart) <1

4 Cytochrome c¢ (bovine heart) <1

5 CYP119 C317S 7

6 CYP119 T213A C317H <1

7 P450Rhf <1

8 P450gn T275A <1

10



Figure S1. Demonstration of enzymatic synthesis and degradation of aziridine S1 in
reaction conditions

A. HPLC chromatogram (220 nm) of controls.

Co-injection of 4-methoxystyrene (Sigma Aldrich) and synthetic standard S1, confirmed by
NMR.
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B. HPLC chromatograms (220 nm) of P411-enzymatic reaction with 4-methoxystyrene 1 and
tosyl azide as substrates analyzed at different time points. Putative aziridine S1 and amido-

alcohol 2 are marked with arrows.
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C. HPLC chromatograms (220 nm) of synthetic standard S1, synthesized as previously

reported,® in reaction conditions without P411 catalyst at several time points. Putative aziridine

S1 and amido-alcohol 2 are marked with arrows.
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Figure S2. A. Demonstration of enzymatic production of 2.

Chromatogram traces are shown for the selected ion at 320 m/z in negative ionization mode.
Top: synthetic standard of 2 prepared as stated above. Middle: enzymatically produced 2.
Bottom: mixture of enzyme reaction and synthetic 2, showing coelution.
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B. Detection of aziridine mass peak in pure sample of amido-alcohol 2.

Amido-alcohol 2 gives a mass peak of 304 m/z (mass corresponding to S1) when analyzed by
LC-MS with positive electrospray (PES) ionization. This phenomenon is thought to occur via
acid-catalyzed dehydration of the amido-alcohol in the MS system.
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C. Demonstration of enzymatic production of 4.

Chromatogram traces are shown for the selected ion at 288 m/z in positive ionization mode.
Top: synthetic standard of 5 prepared as stated above. Middle: enzymatically produced 4. The
peak at retention time 3.33 is thought to be aziridine that degraded to the corresponding amido-
alcohol as described in Figure S1 above. Bottom: mixture of enzyme produced and synthetic 4,
showing coelution.
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Figure S3. Comparison of P -1263F productivity in vitro (purified protein) and in whole
cells.
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Determination of Initial Rates

All initial rate experiments were conducted in an anaerobic chamber. Initial rate measurements
were accomplished using 0.2 mol% purified enzymes in 400 pL scale reactions. A sealed 6-mL
vial charged with glucose (250 mM, 480 plL), NADPH (100 mM, 480 pL), and potassium
phosphate buffer (0.1 M, pH = 8.0, 3240 pL) was sparged for at least 30 minutes with argon.
After the degassing was complete, the reaction solution, 2-mL vials charged with GOX solution
(20 pL), and purified protein (250 uM in potassium phosphate buffer), kept on ice, were brought
into the anaerobic chamber. The reaction solution (350 puL) was added to each 2-mL vial and
allowed to equilibrate in the anaerobic chamber for 30 minutes. Reaction vials were then placed
on a shaker (40 rpm), charged with 10 pL purified protein (250 uM in potassium phosphate
buffer) and 4-methyl styrene substrate (10 pL, 300 mM in DMSO) followed by tosyl azide (10

pL, 100 mM in DMSO). Reactions were set up in duplicate and products quantified at 1-2
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minute intervals by quenching with acetonitrile (460 pL). The resulting mixture was removed
from the anaerobic chamber, transferred to a microcentrifuge tube and centrifuged at 14,000 rpm
for 5 minutes. The solution (540 pL) was transferred to an HPLC vial, charged with internal
standard (60 puL, 10 mM 1,3,5-trichlorobenzene in acetonitrile), and analyzed by HPLC. The
rates of aziridination and azide reduction for different enzyme variants are presented in Table S4.

The rate of azide reduction was determined in the presence of olefin 3 (7.5 mM).

Table S4. Initial rates of aziridination and azide reduction for engineered enzymes

Initial rates determined as described above. Total turnover (TTN) values were determined using
the same method as described for initial rates, with the exception that reactions were allowed to
proceed for 4 hours in the anaerobic chamber.

NTs

/@/\ 0.2 mol% Enzyme /@/Q SO,NH,
+ TsN, > +
10 mM NADPH /©/
anaerobic
3 4 7

Enzvime TOF4 TOF7  TOF4/ TTN 4/

M (min") (min') TOF7 TIN4 TIN7 TIN 7
P-1263F 15 29 051 150 280 0.52
P-1263F-A328V 16 26 0.62 145 290 0.50
P-1263F-A328V-L437V 24 29 0.83 185 250 0.73
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Figure S4. Data used to determine initial rates
Blue diamonds represent tosyl sulfonamide 7 and green triangles represent aziridine 4 for all
plots.
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C) P-1263F-A328V-L437V
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Figure SS5. Activity and selectivity of P-1263F-A328V-L437V with increased substrate
loading. Reactions were performed with whole E. coli cells expressing P-I1263F-A328V-L437V
as described in the general methods, except substrate loading was increased to final
concentrations of 7.5 mM tosyl azide and 15 mM olefin. % ee determined by SFC analysis and
calculated as (S — R)/(S + R).

I P-1263F-A328V-L437V TS SO,NH,
| P + TsNg ———> /©/\l . | AN
Whole cells

R R Me Z

R=Me, 3

R=H,5 7

R=Me, 4
38% yield (960 TTN) 42% yield

99% ee (S)

R=H,6
40% vyield (1,000 TTN) 35 % yield
99% ee (S)

20



Figure S6. Comparison of active site residues in P411gy;3-CIS and P-1263F

A) P411Mm3-CIS structure (PDB ID: 4H23) with 1263 shown as van Der Waals spheres in gold,
L437 and A328 shown in pink. B) P-I263F structure (PDB ID: 4WG2) showing the active site
and residues F263, A328 and L437 in pink.
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L437
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A328
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F263
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UV-Visible absorbance spectroscopy under anaerobic conditions.

A sealed 6-mL vial charged with potassium phosphate buffer (0.1 M, pH =8.0,4 mL) and a
sealed 2-mL vial charged with NADPH (100 mM, 1 mL) were sparged for at least 20 minutes
with argon. In parallel, purified full-length P-I1263F (200 uM, 25 pL) or heme domain only P-
[263Fpeme (250 uM, 20 pl) was added to a semi-micro cuvette. The cuvette was sealed with a
cap equipped with rubber septa and the headspace was purged with argon for at least 10 minutes.
After degassing was complete, potassium phosphate buffer (880 uL), followed by NADPH (100
mM, 100 pL), were added to the anaerobic cuvette containing protein via syringe under a
continuous stream of argon. UV-vis spectra of the protein sample was recorded until a stable

ferrous state was reached, or for 20 minutes if no ferrous state was observed.

The negative control (no reductant) and positive control (dithionite-reduced protein) experiments
were performed in a similar manner except degassed potassium phosphate buffer (100 uL,
negative control) or degassed dithionite solution (100 mM, 100 pL, positive control) was added

to the protein sample instead of NADPH.
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Figure S7. UV-vis absorbance spectra of full-length P-1263F and P-1263F}eme proteins after
addition of NADPH. Representative UV-vis absorbance spectra are shown for purified protein
in the presence of no reductant (Fe"", green), NADPH (blue), and dithionite (Fe", red). In the
case of full-length P-1263F, the Fe" (426 nm) Soret band is observed when either NADPH or
dithionite is used as reductant. The shoulder at 404 nm observed in the NADPH spectrum is due
to incomplete reduction of full-length P-1263F under the experimental conditions. For P-
1263Fpeme, only the Fe!l (404 nm) Soret band is observed when NADPH is used as the reductant.
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Figure S8. Demonstration of enzymatic production of 6.

Chromatogram traces are shown for the selected ion at 274 m/z in positive ionization mode.
Top: synthetic standard of 6 prepared as stated above. Middle: enzymatically produced 6.
Bottom: mixture of enzyme reaction and synthetic 6, showing coelution.
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Figure S9. Demonstration of enzymatic production of S2.

Chromatogram traces are shown for the selected ion at 308 m/z in positive ionization mode.
Top: synthetic standard of S2 prepared as stated above. Middle: enzymatically produced S2.
Bottom: mixture of enzyme reaction and synthetic S2, showing coelution.
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Figure S10. Demonstration of enzymatic production of S4.

Chromatogram traces are shown for the selected ion at 288 m/z in positive ionization mode.
Top: synthetic standard of S4 prepared as stated above. Middle: enzymatically produced S4.
Bottom: mixture of enzyme reaction and synthetic S4, showing coelution.
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Figure S11. Demonstration of enzymatic production of SS.

Chromatogram traces are shown for the selected ion at 302 m/z in positive ionization mode.
Top: synthetic standard of SS prepared as stated above. Middle: enzymatically produced SS.
Bottom: mixture of enzyme reaction and synthetic S§, showing coelution.
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Figure S12. Demonstration of enzymatic production of S6

Chromatogram traces are shown for the selected ion at 304 m/z in negative ionization mode.
Top: synthetic standard of S6 prepared as stated above. Middle: enzymatically produced S6.
Bottom: mixture of enzyme reaction and synthetic S6, showing coelution.
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Figure S13. Demonstration of enzymatic production of S7.

Chromatogram traces are shown for the selected ion at 324 m/z in positive ionization mode.
Top: synthetic standard of S7 prepared as stated above. Middle: enzymatically produced S7.
Bottom: mixture of enzyme reaction and synthetic S7, showing coelution.
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Assignment of absolute stereochemistry. Absolute stereochemistry of enzymatically produced
aziridine 6 was assigned by chiral HPLC analysis and optical rotation. In particular, absolute
stereochemistry of 6 was previously assigned by chiral HPLC using Chiracel OJ column
(isopropanol/ n-hexane mobile phase), with (S)-6 the earlier eluting enantiomer.>” Analytically
enantiopure 6 produced by P-1263F-A328V-L437V (whole cells) was subjected to the same
chiral HPLC conditions and observed to be the earlier eluting enantiomer (Figure S14), leading
to an assignment of (§)-6. Further support for this assignment came from measuring optical
rotation. The optical rotation values for enantiomers of 6 have been previously reported: (R)-6
[ap”*] -80.25 (¢ =0.8, CHCL) and (S)-6 [op™] +26.7 (¢ =0.7, CHCIL;).>® Optical rotation
measurement of analytically enantiopure 6 produced by P-I263F-A328V-L437V gave [op™]
+80.2 (¢ =1.2, CHCIs), revealing it to be (§)-6. Similarly, the optical rotation of P-I263F-
A328V-L437V produced 4 (analytically enantiopure) was measured to be [ap>] +106.1 (c
=0.45, CHCls). By analogy, the configuration of enzymatically preferred (+)-4 is assigned as (S)-

4.

NTs wNTs
[ [
= =
(-)-6 (+)-6
/@/QNTS /@/ﬂﬂs
(-4 (+)-4
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Figure S14. Assignment of absolute stereochemistry of enzymatically produced aziridine 6
by chiral HPLC (Chiracel OJ, 30% isopropanol : 70% n-hexane, 210 nm).

Racemic synthetic aziridine 6, tg = 16.7 min and 21.0 min.
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Figure S15. Enantioselectivity for enzyme-catalyzed formation of amido-alcohol 2.
Selectivity was assessed by SFC using Chiralpak AS-H column with 25% isopropanol :

supercritical CO; mobile phase. Representative chromatograms are shown below.
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Figure S16. Enantioselectivity for enzyme-catalyzed formation of aziridine 4.
Selectivity was assessed by SFC using Chiralpak OB-H column with 20% isopropanol : 80%
supercritical CO; mobile phase. Representative chromatograms are shown below.
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P-1263F-A328V
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Figure S17. Enantioselectivity for enzyme-catalyzed formation of 6.
Selectivity was assessed by SFC using Chiralpak OB-H column with 15% isopropanol : 85%
supercritical CO; mobile phase. Representative chromatograms are shown below.
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P-1263F-A328V
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Figure S18. Enantioselectivity for enzyme-catalyzed formation of S2-S7.
Selectivity was assessed by SFC using either chiral AS-H (S2, S6, S7) or OB-H column (S3, S4,

S5) with isopropanol and supercritical CO, as mobile phase. Representative chromatograms are
shown below.
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Racemic synthetic standard S3

DAD1 A, Sig=210,8 Ref=360,100 (CA\CHEM32\1\DATA\KELLYZ\2014-12-09 16-29-43\3-CHLOROAZ-S3C6-12MIN20.D)
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2 6.745 MM 0.3482 1.12303e4 537.54370 50.0568
P-1263F-A328V-1.437V produced S3
DAD1 A, Sig=210,8 Ref=360,100 (C:A\CHEM32\\DATAKELLYZ\2014-12-10 15-40-43\RZ-A10-3CHLOROAZ D}
: |
o
<
& &
& S
&
é -‘t é 8! 1IO min
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
e | === === | === e | === |
1 5.145 MM 0.3705 57.96660 2.60781 2.6655
2 6.516 MM 0.6276 2116.71973 56.21136 97.3345
Racemic synthetic standard S4
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P-1263F-A328V-L437V produced S4

DAD1 A, Sig=210,8 Ref=360,100 (CACHEM32A1\DATA\KELLYZ\2014-12-09 15-01-33\RZ-A10-3MEAZ.D)
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Racemic synthetic standard S5
DUAU1T A, 51g=210,8 Rer=360, 100 (CACHEMIZ\DA | AKELL YZ\Z2014-12-08 10-15-36\DIMEAL-53CB-2UMINT0.D}
mAU K
5007 .Q‘ﬂ:\‘ .;Sb&
400 &
300
200 |
100 — - . -
o 2 a4 e T s T 12 14 16 18 min
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
e e [eermres [e=—rnares fommmans |
1 6.545 MM 0.3348 9287.48535 462.29697 49.9416
2 8.226 MM 0.4250 9309.19922 365.07251 50.0584
P-1263F-A328V-L437V produced S5
DAD1 A, Sig=210,8 Ref=360,100 (CA\CHEM32\I\DATA\KELLYZ\2014-12-09 15-01-33\RZ-A10-DIMEAZ.D}
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Racemic synthetic standard S6

DAD1 A, Sig=210,8 Ref=360,100 (CACHEM32\I\DATA\KELLYZ12014-12-18 16-35-13\AMEAA-STANDARDZ2.D}
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Racemic synthetic standard S7
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P-1263F-A328V-L437V produced S7
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Figure S19: Calibration curves for aziridine and amido-alcohol products
Calibration curves show response factor (the ratio of product area to internal standard area, y-
axis) and concentration of product (x-axis).
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Aziridines 4 and S4. Calibration curve constructed using 4.
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Sulfonamide 7.

Aziridines S2 and S3.
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Aziridine S5.

Amido-alcohol Sé6.
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Aziridine S7.

y = 5.5306x
R% =0.99586

o

0 0.05 0.1 0.15 0.2 0.25 0.3
Concentration, mM

[ e
= N A~ O ®©

[ee]

Response factor
o o
(o)}

o o
o N D

45



'H (400 MHz, CDCL;) and C (101 MHz, CDCLs) spectra
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