Supporting Information for

Fuel-Controlled Reassembly of Metal-Organic Architectures

Christopher S. Wood, Colm Browne, Daniel M. Wood, and Jonathan R. Nitschke*

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK

*e-mail: jrn34@cam.ac.uk

Contents

1.	General Experimental Section	
2.	Synthesis of 2	4
3.	Synthesis of 3	6
4.	Synthesis of 5	
5.	Preparation of C ₆₀ ⊂5	
6.	Synthesis of 6	
7.	Electronic Absorption Spectra of 2 and 3	14
8.	¹ H NMR of De-threading/Rethreading of 2	
9.	Host-Guest Chemistry of 5	
10.	PPh ₃ Fueled Uptake and Release of C ₆₀	
11.	ESI-Mass Spectroscopy	
12.	References	

1. General Experimental Section

Tetrakis(acetonitrile)copper(I) hexafluorophosphate, Tetrakis(acetonitrile)copper(I) trifluoromethanesulfonate, *p*-methoxyaniline, 2-pyridinecarboxaldehyde, and acetonitrile were purchased from Sigma-Aldrich and used as received. 1^{1} , 4^{2} , ReCat, 3^{3} and MoCat⁴ were prepared according to literature procedure.

NMR spectra were recorded on a Bruker Avance DRX-400, Bruker Avance 500 BB ATM, or Bruker Avance 500 Cryo spectrometers. Chemical shifts for ¹H and ¹³C were reported in ppm on the δ scale; ¹H and ¹³C were referenced to the solvent residual peak. Coupling constants (J) are reported in hertz (Hz). The following abbreviations are used to describe signal multiplicity for ¹H and ¹³C spectra: s: singlet, d: doublet, t: triplet, m: multiplet, br: broad. Maximum gradient strength was 6.57 G/cmA. The standard Bruker pulse program, ledbpgp2s, employing a stimulated echo and longitudinal eddy-current delay (LED) using bipolar gradient pulses for diffusion using 2 spoil gradients was utilized. Rectangular gradients were used with a total duration of 1.5 ms. Gradient recovery delays were 875-1150 µs. Diffusion times were 100 ms. Individual rows of the S4 quasi-2D diffusion databases were phased and baseline corrected. High resolution electrospray ionization mass spectrometery (HRMS) experiments were performed on a Thermo Scientific LTQ Orbitrap instrument. Samples were diluted in acetonitrile, and introduced into the ion source at flow rates of 5-10 μ L/min. The parameters for tube lens voltage (60 V), capillary voltage (-0.05 V) as well as ion optic were optimized for maximum abundances of the desired complex ions. Gas flow rates were optimised to the normalised values of: sheath gas (4.0) and auxiliary gas (5.0). Multiple scans (up to 21) were averaged to improve signal-to-noise ratio. Absorbance spectra were measured with a Perkin Elmer Lambda 750 UV/Vis/NIR spectrometer. Elemental analyses were obtained on an Exeter Analytical CE-440 Elemental Analyser.

2 (20 mg, 3.5 µmol) was dissolved in DCM (5 mL) under a N₂ atmosphere. 2pyridinecarboxaldehyde (3.8 mg, 3.5 µmol) and *p*-anisidine (4.3 mg, 3.5 µmol) were added and the mixture stirred for five minutes. Cu(MeCN)₄PF₆ (13.15 mg, 3.5 µmol) was added and the mixture stirred at 303 K overnight. Solvent was removed under reduced pressure and the resulting residue was washed with Et₂O (3 x 5 mL). Drying under vacuum gave **2** as a brown solid (33.4 mg, 96%). ¹H NMR (500 MHz, CD₃CN) δ 8.80 (s, br, 1H, H_Q), 8.33 (d, *J* = 8.0 Hz, 2H, H_A), 8.18 (t, *J* = 7.9 Hz, 2H, H_B), 8.02-8.12 (m, 1H,H_{M-P}), 7.90-7.98 (m, 1H, H_{M-P}), 7.74 (d, *J* = 7.7 Hz, 2H, H_C), 7.68 – 7.50 (m, 1H, H_{M-P}), 7.17 (m, 2H, H_R), 6.81 (m, 4H, H_{F, S}) , 6.61 (d, *J* = 8.1 Hz 4H, H_G), 4.34 (s, 4H, H_E), 4.02 (s, 4H, H_D), 3.90 (t, *J* = 6.5 Hz, 4H, H_H), 3.76 (br, 3H, H_T), 1.76-1.83 (m, , 4H, H_I), 1.53-63 (m, , 4H, H_J), 1.43-1.52 (m, , 8H, H_{K,L}),¹³C NMR (126 MHz, CD₃CN) δ 161.39, 159.69, 158.62, 155.54, 152.21, 151.88, 150.04, 140.62, 140.06, 138.89, 130.38, 129.54, 128.87, 128.47, 124.73, 124.49, 121.62, 115.42, 114.99, 72.79, 70.93, 68.58, 56.23, 29.42, 29.24, 29.09, 26.28. ESI-MS: 841.3389 [**2**]⁺. Elemental

Analysis (%) calcd for $C_{49}H_{54}CuF_6N_4O_5P\cdot MeCN\cdot Et_2O$: C 59.6, H 5.51, N 5.67; found: C 60.01, H 5.44, N: 5.58.

Figure S2. (i) 13 C NMR spectrum of 2.

PPh₃ (0.26 g, 1 mmol) and Cu(MeCN)₄PF₆ (0.18 g 0.5 mmol) were dissolved in a 1:1 mixture of MeCN/DCM (20 mL). *p*-Anisidine (0.62 g, 0.5 mmol) and 2-pyridinecarboxaldehyde (44 μ L, 0.5 mmol) were added and the resulting orange solution heated at 308 K for 5 hours. Solvent was removed under reduced pressure and the residue washed with Et₂O (3 x 5mL). Drying under vacuum gave **3** as an orange solid (0.45 g, 93%). ¹H NMR (400 MHz, Acetonitrile-*d*₃) δ 8.81 (s, 1H, H_D), 8.40 (d, *J* = 5.0 Hz, 1H, H_H), 8.05 (m, 1H, H_F), 7.99 (d, J = Hz, 1H, He), 7.48 (m, 1H, H_G), 7.42 (t, *J* = 7.5 Hz, 6H, H_K), 7.27 (t, *J* = 7.6 Hz, 12H, H_J), 7.18 (d, *J* = 8.5 Hz, 2H, H_C), 7.11 (br, 12H, H_I), 6.78 (d, *J* = 8.5 Hz, 2H, H_B), 3.78 (s, 3H, H_A). ¹³C NMR (101 MHz, CD₃CN) δ 161.32, 158.52, 151.92, 151.03, 141.55, 139.95, 134.10, 134.03, 133.21, 132.98, 131.34, 129.95, 129.73, 128.73, 125.12, 115.48, 56.40. ³¹P NMR (162 MHz, 298 K, DMSO): δ = 1.23 (br, s, PPh₃) -144.0 ppm (heptet, J = 710.3 Hz, PF₆). ESI-MS: 799.2055 [**3**]⁺; Elemental Analysis (%) calcd for C₅₁H₄₈CuF₆N₂OP₃·MeCN: C 62.63, H 5.06, N 4.13; found: C 62.68, H 4.98, N: 4.17.

Figure S5. ³¹P NMR spectrum of 3.

4 (4.0 mg, 5.6 umol), 6-methyl-2-formylpyridine (1.4 mg, 11.2 umol) and Cu(MeCN)₄OTf (2.1 mg, 5.6 umol) were dissolved in DMSO (0.6 mL) then heated at 70°C under N₂ for 16h. The resultant dark red solution was added to a saturated solution of aqueous KPF₆ (3 mL) to precipitate a red solid. The precipitate was isolated over Celite, washed with water (2 x 2 mL) and then dissolved in a 1:1 solution of MeCN/DCM (3 mL). The solution was reduced to dryness to give a red solid (5.4 mg, 1.55 umol, 85%); ¹H NMR (500 MHz, DMSO-*d*₆) δ = 9.80 (1H, m, **5**), 9.49 (1H, m, **11**), 8.32 (1H, t, *J* = 7.5 Hz, **3**), 8.23 (1H, d, *J* = 5.0 Hz, **4**), 7.81-7.98 (5H, m, 2, **6-7**), 3.42-3.71 (4H, bm, **9**), 2.49 (3H, m, **1**), 2.05-2.30 (6H, m, **8**), 1.20-1.49 (6H, m, **10**); ¹³C NMR (125 MHz, DMSO-*d*₆) δ = 160.22, 157.87, 150.44, 147.02, 145.73, 140.96, 139.22, 139.03, 138.04, 137.89, 133.86, 128.92, 126.77, 121.69, 115.38, 96.01, 24.74, 18.65, 17.09, 15.09; *m/z* (HRMS) = 986.9924 [**5**]³⁺; Elemental Analysis (%) calcd for C₁₇₄H₁₆₈Cu₃F₁₈N₂₄Ni₃P₃·6DMSO·H₂O: C 57.52, H 5.35, N 8.66; found: C 57.52, H 5.35, 8.66.

Figure S6. ¹H NMR spectrum of **5**.

Figure S7. ¹³C NMR spectrum of 5.

5. Preparation of C₆₀⊂5

4 (4.0 mg, 5.6 umol), 6-methyl-2-formylpyridine (1.4 mg, 11.2 umol), Cu(MeCN)₄OTf (2.1 mg, 5.6 umol) and C₆₀ (6.7 mg, 9.3 umol) were mixed in DMSO (0.6 mL), sonicated and then heated at 70°C under N₂ for 16h. The resultant dark red solution was filtered through Celite to remove undissolved C₆₀ and then added to a saturated solution of aqueous KPF₆ (3 mL) to precipitate a red solid. The precipitate was isolated over Celite, washed with water (2 x 2 mL) and then dissolved in a 1:1 solution of MeCN/DCM (3 mL). The solution was reduced to dryness to give a red solid (6.7 mg, 1.65 umol, 88%); ¹H NMR (500 MHz, DMSO- d^7) δ = 9.76 (1H, m, **5**), 9.44 (1H, m, **11**), 8.32 (1H, t, *J* = 7.5 Hz, **3**), 8.23 (1H, d, *J* = 5.0 Hz, **4**), 7.73-7.97 (5H, m, **2**, **6-7**), 3.43-3.70 (4H, bm, **9**), 2.57 (3H, m, **1**), 2.03-2.30 (6H, m, **8**), 1.16-1.49 (6H, m, **10**); ¹³C NMR (125 MHz, DMSO- d^6) δ = 160.26, 157.90, 150.42, 147.30, 145.71, 140.78, 139.65, 139.20, 139.02, 138.12, 137.95, 133.84, 128.91, 126.73, 121.63, 115.30, 96.06, 24.94, 18.66, 17.07, 15.01; *m/z* (HRMS) = 1227.3265 [C₆₀⊂**5**]³⁺; Elemental Analysis (%) calcd for C₂₃₄H₁₆₈Cu₃F₁₈N₂₄Ni₃P₃·17H₂O: C 63.65, H 4.59, N 7.61; found: C 62.84, H 4.96,N 8.43.

Figure S8. ¹H NMR spectrum of $C_{60} \subset 5$.

Figure S9. ¹³C NMR spectrum of C_{60} – 5.

4 (1.4 mg, 1.9 umol), 6-methyl-2-formylpyridine (0.5 mg, 4.2 μmol), PPh₃ (2.0 mg, 1 μmol) and Cu(MeCN)₄PF₆ (1.4 mg, 3.8 µmol) were mixed in DMSO (0.6 mL), sonicated and then heated at 70°C under N₂ for 16 h. The resultant dark red solution was added to a saturated solution of aqueous KPF₆ (3 mL) to precipitate a red solid. The precipitate was isolated over Celite, washed with water (2 x 2 mL) and then dissolved in a 1:1 solution of MeCN/DCM (3 mL). The solution was reduced to dryness to give a red solid (1.4 mg, 1.65 μ mol, 77 %); ¹H NMR (500 MHz, DMSO- d^7) $\delta = 9.58$ (1H, m, **11**), 9.41 (1H, m, **5**), 8.22-8.24 (1H, m, Hz, **3**), 8.16-18 (1H, d, J = 7.2 Hz, 4), 7.54-7.73 (5H, m, 2, 6-7), 7.45-7.50 (6H, m, c) ,7.39-7.44 (12H, m, b), 7.27-7.32 (12H, m, a), 3.65-3.73 (4H, br, m, 9), 2.30 (3H, br, 1), 2.04-2.07 (6H, m, br 8), 1.52-1.58 (6H, m, 10); ¹³C NMR (125 MHz, DMSO-d⁶) δ 162.28, 158.97, 150.09, 147.45, 145.89, 139.40, 138.25, 138.02, 137.90, 133.49, 133.19, 133.07, 132.67, 132.45, 131.60, 131.53, 130.42, 129.13, 129.08, 128.96, 128.89, 128.07, 127.48, 121.81, 115.27, 96.25, 25.49, 18.83, 17.46, 15.17; 31 P NMR (162 MHz, 298 K, DMSO): $\delta = 1.1$ (br, s, PPh₃) -144.0 (heptet, J = 710.4 Hz, PF₆). m/z (HRMS) = 1049.8109 [6]²⁺; Elemental Analysis (%) calcd for C₁₃₀H₁₄₆Cu₂F₁₂N₈NiO₁₅P₆·15 H₂O: C 58.69, H 5.53, N 4.21; found: C 58.79, H 4.18, N: 4.33.

Figure S12. ³¹P NMR spectrum of 6.

7. Electronic Absorption Spectra of 2 and 3

Figure S14. Electronic Absorption Spectra of 5 (blue) and C₆₀⊂5 (orange) in DMSO

8. ¹H NMR of De-threading/Rethreading of 2

Figure S15. (i) ¹H NMR spectrum of 2. (ii) – (ix) ¹H NMR spectrum of 2 after 2 – 8 oxidation cycles

Figure S16. Representative ³¹P NMR spectra of the oxidation of dethreaded 2; (i) 2 after the addition of 2 equiv. of PPh₃, (ii) Deathreaded 2 after the addition of MoCat (50 mol %) and heating at 65 °C for 90 minutes, (iii) Deathreaded 2 after 12 hours of heating and catalytic oxidation of PPh₃.

9. Host-Guest Chemistry of 5

Figure S17: Selected region of ¹³C NMR spectra of a) **5** and b) C_{60} **5**, highlighting the resonance corresponding to C_{60} .

Figure S18: ¹H NMR spectra for a) 5 and b) C_{60}

10. PPh₃ Fueled Uptake and Release of C₆₀

Figure S19: i shows the ¹H NMR spectrum of **5** (blue and orange signals correspond to blue and orange labeled protons respectively), ii shows ¹H NMR of C_{60} **5**, iii shows ¹H NMR of reaction mixture after disassembly to a dynamic combinatorial library upon PPh₃ addition, disassembly of **5**, and release of C_{60} , iv shows the mixture after all PPh₃ has been fully converted to OPPh₃ resulting in the reformation of C_{60} **5**, v, vi, and vii show the mixture after two, three, and four PPh₃ addition/oxidation cycles respectively (only peaks which show greatest shift upon C_{60} binding (are shown for clarity).

11. ESI-Mass Spectroscopy

Figure S20: HRMS of $[2]^{3+}$ (top = observed, bottom = theoretical).

Figure S21: HRMS of $[3]^{3+}$ (top = observed, bottom = theoretical).

Figure S22: HRMS of $[5]^{3+}$ (top = observed, bottom = theoretical).

Figure S23: HRMS of $[C_{60} \subset \mathbf{5}]^{3+}$ (top = observed, bottom = theoretical)

Figure S24: HRMS of 6^{3+} (top = observed, bottom = theoretical)

12. References

- Aucagne, V.; Berná J.; Crowley, J.D.; Goldup, S.M.; Hänni, K.D.; Leigh, D.A.; *et al.* Catalytic "Active-Metal" Template Synthesis of [2]Rotaxanes, [3]Rotaxanes, and Molecular Shuttles, and Some Observations on the Mechanism of the Cu(I)-Catalyzed Azide–Alkyne 1,3-Cycloaddition. *J. Am. Chem. Soc.* 2007, 129, 11950-11963.
- Wood, D.M.; Meng, W.; Ronson, T.K.; Stefankiewicz, A.R.; Sanders J.K.M.; , Nitschke, J. R., Guest-Induced Transformation of a Porphyrin-Edged Fe^{II}₄L₆ Capsule into a Cu^IFe^{II}₂L₄ Fullerene Receptor. *Angew. Chem. Int. Ed.* 2015, 54, 3988 - 3992.
- McPherson LD, Drees M, Khan SI, Strassner T, Abu-Omar MM. Multielectron Atom Transfer Reactions of Perchlorate and Other Substrates Catalyzed by Rhenium Oxazoline and Thiazoline Complexes: Reaction Kinetics, Mechanisms, and Density Functional Theory Calculations. *Inorg. Chem.* 2004, 43, 4036-4050.
- Whiteoak, C.J.; Britovsek, G.J.P.; Gibson, V.C.; White, A.J.P. Electronic effects in oxo transfer reactions catalysed by salan molybdenum(vi) cis-dioxo complexes. *Dalton. Trans.* 2009, 2337-2344.