Cell Reports, Volume 15

Supplemental Information

Independent Regulation of Type VI Secretion

in Vibrio cholerae by TfoX and TfoY

Lisa C. Metzger, Sandrine Stutzmann, Tiziana Scrignari, Charles Van der Henst, Noémie Matthey, and Melanie Blokesch

SUPPLEMENTAL FIGURES AND LEGENDS

Figure S1: Kingdom-wide distribution of TfoX-like proteins, related to Figure 1. (A and B) Sunburst diagram showing the distribution of the two TfoX-like domains among different species. N-terminal domain of TfoX refers to PF04993 and the C-terminal domain to PF04994. Diagram derived from pfam.xfam.org (Pfam version 28.0). The segments are weighted by number of species. *Vibrio* species are highlighted in red. (C) TfoY is dispensable for chitin-induced natural transformation. Comparison of WT, Δ tfoX, and Δ tfoY strains with respect to natural transformability on chitin. Data are average transformation frequencies of at least three biological replicates (±SD). (D) TfoY influences bacterial motility. Comparison of WT, Δ tfoX, and Δ tfoY strain with respect to motility on soft agar. (E) Quantification of *E. coli* prey cells after co-incubation with the indicated *V. cholerae* predator cells (without (-ara) or with (+ara) arabinose). Details as in Figure 1.

Figure S2: The contribution of VasH to TfoX- and TfoY-dependent T6SS activity, related to Figure 2. (A, B, and I) Interspecies killing assay between indicated *V. cholerae* as predator strains and *E. coli* prey. Quantification of surviving prey cells after the co-culturing with predator as described (see Figure 1). (C) TfoX-mediated competence induction does not rely on VasH. Transcript analysis of representative competence genes (*pilA, qstR, comEA*) in *V. cholerae* WT and a *vasH*-minus strain under *tfoX*-non-inducing (-) and *tfoX*-inducing (+) conditions. (D) TfoY-mediated motility enhancement occurs independently of VasH. Motility was scored for the indicated *V. cholerae* strains (as in Figure 1). (E) Transcript analysis in *V. cholerae* WT & Δ vasH. Relative gene expression analyzed by qRT-PCR as in Figure 2 but for the large T6SS cluster. (F) Detection of Hcp protein by western blotting. Cell lysates from the indicated *V. cholerae* strains grown to HCD (+ara) were analyzed for Hcp abundance. (G) Relative gene expression for the auxiliary clusters 1 and 2 comparing WT and an *rpoN*-minus strain. (H) Transcript analysis of the effector (E) and immunity (I) genes of auxiliary cluster 3. All experiments were performed at least three independent times, and error bars indicate standard deviations.

Figure S3: The constitutive T6SS activity of strain V52 depends primarily on TfoY, related to Figure 3. (A) A *tfoY*-minus mutant of V52 is severely impaired for interbacterial killing. Predator and prey were co-incubated on plain LB agar plates. *V. cholerae* predator strains tested (from 1 to 4 on X-axis): A1552, V52 Δ rhh, V52 Δ rhh Δ tfoY, and V52 Δ vipB (T6SS-minus). Quantification of prey survival as described in Figure 1. (B) Relative expression of selected target genes as quantified by qRT-PCR in *V. cholerae* strains V52 Δ rhh, V52 Δ rhh Δ tfoY, A1552-Tn*tfoX*-strep and A1552-Tn*tfoY*-strep. Cells were grown to HCD in the presence of arabinose. Data are averages of three independent experiments (±SD).

Figure S4: TfoY-mediated phenotypes and the contribution of low c-di-GMP levels to interbacterial killing, related to Figure 4. (A) Lowering the c-di-GMP levels within the cells increases bacterial motility. The indicated V. cholerae strains were spotted onto motility agar supplemented with arabinose to induce vdcA (a diguanylate cyclase) or *cdpA* (a phosphodiesterase) where indicated (Tn-*vdcA* and Tn-*cpdA*). Motility induction is indicated on the Y-axis. (B) The translational fusion between TfoY and mCherry remains full functionality. Interspecies killing assay between a WT, TfoY- (TntfoY-strep), and TfoY-mCherry-expressing (TntfoY-mCherry-strep) V. cholerae strain as predator and E. coli prey. (C) Low c-di-GMP levels lead to interbacterial killing. E. coli and the indicated V. cholerae strains (all carrying a gene encoding a functional translation fusion between tfoY and mCherry at the indigenous tfoY locus) were co-incubated on arabinose-lacking (-ara) or arabinose-containing (+ara) LB agar plates. (D) Expression of the phosphodiesterase cdpA results in TfoY-dependent interbacterial killing. E. coli and the indicated V. cholerae strains (WT or *tfoY*-minus mutant Δ tfoY) expressing a diguarylate cyclase (Tn-*vdcA*) or a phosphodiesterase (Tn-*cdpA*) were co-incubated on arabinose-containing (+ara) LB agar plates. Details as in Figure 1. (E) Detection of TfoY-mCherry produced by c-di-GMP phosphodiesterase-expressing cells. VdcA or cdpA expression was induced by arabinose where indicated. The WT strain, which lacks the tfoY-mCherry fusion construct, served as negative control. Western blot analysis was performed as described for Figure 3C except that mCherry-specific antibodies were utilized. A nonspecific cross-reaction (marked with an asterisk) serves as a loading control. (F) Hemolytic activity of the indicated strains was tested on blood agar plates. The WT and an hlyA-mutant served as the positive and negative control, respectively. (G) Activity of the lecithinase (thermolabile hemolysin) was assessed on egg yolk plates. The WT and a lec-minus strain served as controls.

							A1552-	A1552-	A1552-							
		ID (locus					TntfoX+ara_	TntfoX+ara_	TntfoX+ara_	AVG A1552-	TfoX-				AVG	TfoY-
		tag;	A1552	A1552	A1552	AVG	Exp1	Exp2	Exp3	TntfoX+ara	induced	A1552-	A1552-	A1552-	A1552-	induced
cluster	gene	Heidelberg	(WT)	(WT)	(WT)	A1552	(Borgeaud	(Borgeaud	(Borgeaud <i>et</i>	(Borgeaud et	(TfoX+ /	TntfoY	TntfoY	TntfoY	TntfoY	(TfoY+ /
names	names	et al., 2000)	+ara Exp1	+ara Exp2	+ara Exp3	(WT) +ara	et al., 2015)	et al., 2015)	al., 2015)	al., 2015)	WT)	+ara Exp1	+ara Exp2	+ara Exp3	+ara	WT)
	tfoX	VC1153	8128.63	9285.04	10233.82	9215.83	29170.99	25425.36	25921.82	26839.39	2.91	5798.01	6251.69	6184.87	6078 19	0.66
	tfoY	VC1722	7491.01	6985.98	7931.44	7469.48	996.62	1176.54	1354.46	1175.87	0.16	31298.07	33495.54	35071.18	33288.26	4.46
	hcp1	VC1415	120.58	137.72	86.41	114.90	4772.38	6025.73	3508.95	4769.02	41.51	3356.54	3977.41	3539.18	3624.38	31.54
A	vgrG1	VC1416	108.31	106.99	103.51	106.27	1263.24	1134.86	1042.16	1146.75	10.79	620.53	761.19	710.67	697.46	6.56
Auxiliary	tap1	VC1417	124.66	97.88	118.81	113.78	585.63	471.75	444.47	500.62	4.40	470.19	491.62	527.85	496.56	4.36
cluster 1	tseL	VC1418	488.43	503.06	586.85	526.11	2287.81	2180.67	1810.62	2093.03	3.98	3503.05	3966.05	4746.79	4071.96	7.74
	tsiV1	VC1419	92.99	124.06	126.01	114.35	654.32	921.72	658.51	744.85	6.51	794.65	958.46	1323.49	1025.53	8.97
	hcp2	VCA0017	135.90	159.34	87.31	127.52	4629.17	5281.16	3434.10	4448.14	34.88	3432.48	3975.34	3540.46	3649.43	28.62
Auviliany	vgrG2	VCA0018	18.39	19.35	22.50	20.08	482.01	404.49	449.15	445.22	22.17	203.26	231.35	140.33	191.65	9.54
Auxiliary	vasW	VCA0019	34.74	35.28	27.00	32.34	271.28	338.18	290.07	299.84	9.27	648.14	678.57	687.49	671.40	20.76
cluster 2	vasX	VCA0020	346.40	359.66	303.32	336.46	1744.09	1784.70	1512.36	1680.38	4.99	2604.85	2566.57	2630.24	2600.55	7.73
	tsiV2	VCA0021	271.81	319.82	263.72	285.12	684.60	862.04	695.94	747.53	2.62	1007.12	1128.88	1203.76	1113.25	3.90
	PAAR1	VCA0105	83.79	78.53	129.61	97.31	357.43	231.14	266.68	285.08	2.93	258.49	296.42	239.46	264.79	2.72
		VCA0106	91.96	100.16	144.01	112.04	618.23	434.81	402.36	485.13	4.33	316.79	369.75	418.42	368.32	3.29
	vipA	VCA0107	50.07	59.18	47.70	52.32	1341.25	1093.18	1058.53	1164.32	22.25	418.03	515.38	525.28	486.23	9.29
	vipB	VCA0108	180.86	187.80	180.91	183.19	3384.56	2519.80	2610.66	2838.34	15.49	1337.71	1502.76	1396.87	1412.45	7.71
		VCA0109	56.20	76.26	46.80	59.75	1068.81	747.41	855.02	890.41	14.90	493.20	572.18	431.29	498.89	8.35
	vasA	VCA0110	120.58	118.37	123.31	120.75	1586.91	1307.26	1319.37	1404.51	11.63	730.98	686.83	757.02	724.94	6.00
	vasB	VCA0111	33.72	35.28	29.70	32.90	626.38	591.11	487.74	568.41	17.28	257.72	322.24	294.82	291.60	8.86
	fha	VCA0112	84.81	87.64	81.91	84.79	1009.43	842.14	884.26	911.94	10.76	520.82	549.46	608.96	559.75	6.60
	vasD	VCA0113	75.62	66.01	79.21	73.61	664.80	632.79	542.72	613.44	8.33	418.80	466.84	442.88	442.84	6.02
Large/	vasE	VCA0114	87.88	96.74	87.31	90.64	839.44	1128.23	935.72	967.80	10.68	579.88	679.60	576.77	612.08	6.75
maior	vasF	VCA0115	43.94	51.22	39.60	44.92	465.71	521.01	479.56	488.76	10.88	312.18	327.41	293.54	311.04	6.92
clustor	clpV	VCA0116	289.18	332.34	274.52	298.68	1832.57	2443.07	2014.14	2096.59	7.02	1326.97	1808.48	1462.53	1532.66	5.13
cluster	vasH	VCA0117	197.21	253.81	244.82	231.95	1305.16	1833.96	1505.34	1548.15	6.67	1062.34	1369.53	1180.58	1204.15	5.19
	vasl	VCA0118	39.85	46.66	29.70	38.74	310.86	440.49	333.35	361.57	9.33	233.95	235.48	215.00	228.14	5.89
	vasJ	VCA0119	139.99	166.17	117.91	141.36	773.08	1092.23	895.95	920.42	6.51	741.72	941.94	749.29	810.98	5.74
	vasK	VCA0120	525.22	680.61	460.84	555.56	2522.99	3768.33	2609.49	2966.94	5.34	2324.88	3200.72	2822.07	2782.56	5.01
	vasL	VCA0121	330.05	374.45	288.02	330.84	936.08	1589.56	1180.18	1235.27	3.73	1122.17	1591.58	1350.53	1354.76	4.09
	vasM	VCA0122	38.83	34.14	33.30	35.43	64.04	92.83	101.76	86.21	2.43	92.81	124.97	124.88	114.22	3.22
	vgrG3	VCA0123	790.89	931.01	806.46	842.79	1636.97	2488.54	1864.42	1996.65	2.37	1963.61	2550.04	2471.89	2328.51	2.76
	tsiv3	VCA0124	345.38	586.15	477.94	469.82	826.64	1108.33	800.04	911.67	1.94	715.64	1093.76	1084.03	964.48	2.05
Auxiliary	PAAR2	VCA0284	157.36	166.17	284.42	202.65	235.18	222.61	216.39	224.73	1.11	293.77	361.49	379.80	345.02	1.70
cluster 3	tseH	VCA0285	182.91	146.82	275.42	201.72	308.53	294.61	271.36	291.50	1.45	423.40	424.49	561.32	469.74	2.33
- chuster-5	tsiH	VCA0286	161.45	129.75	221.42	170.87	239.84	306.92	232.76	259.84	1.52	505.48	527.77	690.07	574.44	3.36

Table S1: RNA-seq expression data for the T6SS gene clusters in WT compared to TfoX[#]- and TfoY-induced cells.

TfoX-induced data are from a previous study (Borgeaud et al., 2015).

	Numbers of plaques [#] (±SD)	Statistics compared to strain V52∆rhh	Relative population size compared to <i>Klebsiella</i> negative control
V52∆rhh	17 (± 11)		10.2%
V52∆rhh∆tfoY	159 (± 25)	** $(p = 0.00619)$	95.2%
Klebsiella sp.	167 (± 18)	** (<i>p</i> = 0.00129)	100%

Table S2: Bacterial cytotoxicity against the amoeba Dictyostelium discoideum

Average number of plaques from three independent experiments with three replicates each \pm standard deviation (SD).

Table S3: V. cholerae strains and plasmids used in this study

Strains or Plasmid	Genotype*/description	Internal strain No	Reference	
A1552 (WT)	Wild-type, O1 El Tor Inaba; Rif ^R	MB_1	(Yildiz and Schoolnik, 1998)	
A1552-TntfoX-strep	A1552 containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>tfoX-strep</i> ; Rif ^R , Gent ^R	MB_3420	This study	
A1552-TntfoY	A1552 containing mini-Tn7-araC-P _{BAD} -tfoY; Rif ^R , Gent ^R	MB_2979	This study	
A1552-TntfoY-strep	A1552 containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>tfoY-strep</i> ; Rif ^R , Gent ^R	MB_2978	This study	
A1552-TntfoY- mCherry-strep	A1552 containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>tfoY-mCherry-strep</i> ; Rif ^R , Gent ^R	MB_4322	This study	
A1552-Tn-vdcA	A1552 containing mini-Tn7-araC-P _{BAD} -vdcA; Rif ^R , Gent ^R	MB_2947	This study	
A1552-Tn-cdpA	A1552 containing mini-Tn7-araC-P _{BAD} -cdpA; Rif ^R , Gent ^R	MB_2948	This study	
A1552∆hapR	A1552∆VC0583; Rif [®]	MB_3	(Meibom et al., 2005)	
A1552∆hapR- Tn <i>tfoY-strep</i>	A1552 Δ hapR containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>tfoY-strep</i> ; Rif ^R , Gent ^R	MB_4267	This study	
A1552∆hlyA	A1552 deleted for VCA0219 (TransFLP); Rif ^R	MB_3935	This study	
A1552∆lec	A1552 deleted for VCA0218 (TransFLP); Rif ^R	MB_4189	This study	
A1552∆qstR	A1552∆VC0396; Rif [®]	MB_600	(Lo Scrudato and Blokesch, 2013)	
A1552∆qstR-Tn <i>tfoY-</i> <i>strep</i>	A1552 Δ qstR containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>tfoY-strep</i> ; Rif ^R , Gent ^R	MB_3772	This study	
A1552∆rpoN	A1552 deleted for VC2529 (TransFLP); Rif ^R	MB_4034	This study	
A1552∆rpoN- Tn <i>tfoX-strep</i>	A1552ΔrpoN (TransFLP) containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>tfoX-strep</i> ; Rif ^R , Gent ^R	MB_4088	This study	
A1552∆rpoN-Tn <i>tfoY-</i> strep	A1552ΔrpoN (TransFLP) containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>tfoY-strep</i> ; Rif ^R , Gent ^R	MB_4089	This study	
A1552∆tfoX	A1552∆tfoX (TransFLP); Rif [®]	MB_1447	(Borgeaud et al., 2015)	
A1552∆tfoX-Tn <i>tfoY-</i> <i>strep</i>	A1552∆tfoX (TransFLP) containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>tfoY-strep</i> ; Rif ^R , Gent ^R	MB_3418	This study	
A1552ΔtfoY	A1552 Δ VC1722 (deleted using suicide plasmid pGP704-28- SacB- $\Delta t f \sigma Y$); Rif ^R	MB_828	This study	
A1552∆tfoY-Tn <i>tfoX-</i> <i>strep</i>	A1552 Δ tfoY containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>tfoX-strep</i> ; Rif ^R , Gent ^R	MB_3419	This study	
A1552∆tfoY-Tn- vdcA	A1552 Δ tfoY containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>vdcA</i> ; Rif ^R , Gent ^R	MB_3945	This study	
A1552∆tfoY-Tn- cdpA	A1552 Δ tfoY containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>cdpA</i> ; Rif ^R , Gent ^R	MB_3946	This study	
A1552∆tseH∆tsiH	A1552 deleted for VCA0285 and VCA0286 (TransFLP); Rif ^R	MB_4131	This study	
A1552∆tseH∆tsiH- Tn <i>tfoX-strep</i>	A1552 Δ tseH Δ tsiH (TransFLP) containing mini-Tn7- <i>araC</i> - P _{RAD} - <i>tfoX</i> -strep: Rif ^R . Gent ^R	MB_4185	This study	
A1552 Δ tseH Δ tsiH- Tn <i>tfoY-strep</i>	A1552 Δ tseH Δ tsiH (TransFLP) containing mini-Tn7- <i>araC</i> - Ppagetfoy-strep: Rif ^R Gent ^R	MB_4186	This study	
A1552∆vasH	A1552 deleted for VCA0117 (TransFLP); Rif ^R	MB 3928	This study	
A1552∆vasH-	A1552ΔvasH (TransFLP) containing mini-Tn7- araC-P _{BAD} -	MB 3936	This study	
TntfoX-strep	tfoX-strep -strep; Rif ^K , Gent ^K		i nis study	
A1552ΔvasH-Tn <i>tfoY-</i> strep	A1552 Δ vasH (1ransFLP) containing mini-1n/- <i>araC</i> -P _{BAD} - <i>tfoY-strep</i> ; Rif ^R , Gent ^R	MB_3937	This study	
A1552∆vasK	A1552∆VCA0120; Rif [®]	MB_585	(Borgeaud et al., 2015)	

Strains or Plasmid	Genotype*/description	Internal strain No	Reference	
A1552∆vasK-Tn <i>tfoY-</i> strep	A1552 Δ vasK containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>tfoY-strep</i> ; Rif ^R , Gent ^R	MB_3578	This study	
A1552∆vipA	A1552ΔVCA0107 (TransFLP); Rif ^R	MB_3042	(Borgeaud et al., 2015)	
A1552∆vipA-TntfoY- strep	A1552 Δ vipA containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>tfoY-strep</i> ; Rif ^R , Gent ^R	MB_3580	This study	
A1552∆vipB	A1552∆VCA0108; Rif [®]	MB_598	(Borgeaud et al., 2015)	
A1552∆vipB-Tn <i>tfoY-</i> strep	A1552 Δ vipB containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>tfoY-strep</i> ; Rif ^R , Gent ^R	MB_3579	This study	
A1552-tfoY-mCherry	A1552 carrying <i>tfoY-mCherry</i> translational fusion (TransFLP); Rif ^R	MB_4262	This study	
A1552-tfoY- mCherry-Tn-vdcA	A1552-tfoY-mCherry containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>vdcA</i> ; Rif ^R , Gent ^R	MB_4324	This study	
A1552-tfoY- mCherry-Tn- <i>cdpA</i>	A1552-tfoY-mCherry containing mini-Tn7- $araC$ -P _{BAD} - cdpA; Rif ^R , Gent ^R	MB_4325	This study	
A1552-vipA- sfGFPv2	A1552 carrying <i>vipA-sfgfp</i> translational fusion (TransFLP), as previously described (Borgeaud et al., 2015); this fusion version (v2) has 3 bp of the linker region removed; Rif ^R	MB_3909	This study	
A1552-vipA- sfGFPv2-Tn <i>tfoX-</i> strep	A1552-vipA-sfGFPv2 containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>tfoX</i> - <i>strep</i> ; Rif ^R , Gent ^R	MB_3961	This study	
A1552-vipA- sfGFPv2-Tn <i>tfoY-</i> strep	A1552-vipA-sfGFPv2 containing mini-Tn7 <i>araC</i> -P _{BAD} - <i>tfoY-strep</i> Rif ^R , Gent ^R	MB_3962	This study	
A1552∆hapR-vipA- sfGFPv2	A1552-vipA-sfGFPv2 (TransFLP) Δ VC0583 (deleted using suicide plasmid pGP704-28-SacB- Δ hapR); Rif ^R	MB_4217	This study	
A1552∆hapR-vipA- sfGFPv2-Tn <i>tfoX-</i> strep	A1552 Δ hapR-vipA-sfGFPv2 containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>tfoX-strep</i> ; Rif ^R , Gent ^R	MB_4261	This study	
A1552∆hapR-vipA- sfGFPv2-Tn <i>tfoY-</i> strep	A1552 Δ hapR-vipA-sfGFPv2 containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>tfoY-strep</i> ; Rif ^R , Gent ^R	MB_4260	This study	
SA5Y∆vipA-dsRED	SA5Y Δ vipA- <i>dsRED;</i> Kan ^R , Gent ^R	MB_3052	(Borgeaud et al., 2015)	
V52∆rhh	V52 Δ rhh; Str ^R	MB_3778	(Basler et al., 2012)	
V52∆rhh-Tn <i>tfoY-</i> strep	V52 Δ rhh containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>tfoY-strep</i> ; Str ^R , Gent ^R	MB_4209	This study	
V52∆rhh∆tfoY	V52 Δ rhh Δ VC1722 (deleted using suicide plasmid pGP704- 28-SacB- Δ tfoY); ; Str ^R	MB_4179	This study	
V52∆rhh∆tfoY- Tn <i>tfoY-strep</i>	V52 Δ rhh Δ tfoY containing mini-Tn7- <i>araC</i> -P _{BAD} - <i>tfoY-strep</i> ; Str ^R , Gent ^R	MB_4211	This study	
V52∆rhh∆tfoX	V52 Δ rhh Δ VC1153 (deleted using suicide plasmid pGP704- 28-SacB- Δ tfoX); Str ^R	MB_4383	This study	
E. coli & others				
SM10λpir	thi-1 thr leu tonA lacY supE recA::RP4-2-Tc::Mu, Kmr (λpir); Kan ^R	MB_647	(Simon et al., 1983)	
TOP10	F- mcrA Δ (mrr-hsdRMS-mcrBC) φ80lacZ Δ M15 Δ lacX74 nupG recA1 ara Δ 139 Δ (ara-leu)7697 galE15 galK16 rpsL(Str ^R) endA1 λ ⁻	MB_741	Invitrogen	
TOP10-TnKan	TOP10 containing mini-Tn7-aph (Kan ^R); Str ^R , Kan ^R , Gent ^R	MB_4119	This study	
DH5a	F^- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG φ80lacZΔM15 Δ(lacZYA-argF) U169 hsdR17 (r _K ⁻ m _K ⁺) phoA, λ-	MB_736	(Yanisch-Perron et al., 1985)	
S17-1λpir	Tpr Smr recA thi pro hsdR2M1 RP4:2-Tc:Mu:Kmr Tn7 (λpir); Str ^R	MB_648	(Simon et al., 1983)	

Strains or Plasmid	Genotype*/description	Internal strain No	Reference		
<i>Klebsiella</i> sp.	Klebsiella species; gfp^+	MB_4331	(Benghezal et al., 2006) (P. Cosson, Geneva)		
Plasmids					
pBAD/myc-HisA	pBR322-derived expression vector; $araBAD$ promoter (P _{BAD}); Amp ^R	MB_24	Invitrogen		
pBAD-tfoX-strep	<i>tfoX</i> in pBAD/Myc-HisA with C-terminal <i>Strep</i> -tagII, arabinose inducible; Amp ^R	MB_3616	This study		
pBAD-tfoY	<i>tfoY</i> in pBAD/Myc-HisA without tag, arabinose inducible; Amp ^R	MB_768	This study		
pBAD-tfoY-strep	<i>tfoY</i> in pBAD/Myc-HisA with C-terminal <i>Strep</i> -tagII, arabinose inducible; Amp ^R	MB_2945	This study		
pBAD <i>-tfoY-strep-</i> CSmal	pBAD- <i>tfoY-strep</i> including SmaI site between tfoY gene and <i>Strep</i> -tagII; Amp ^R	MB_4385	This study		
pBAD- <i>tfoY-mCherry</i> - strep	<i>tfoY-mCherry</i> (translational fusion) in pBAD/Myc-HisA with C-terminal <i>Strep</i> -tagII, arabinose inducible; Amp ^R	MB_4386	This study		
pBAD-vdcA	<i>vdcA</i> in pBAD/Myc-HisA without tag, arabinose inducible; Amp ^R	MB_2066	This study		
pBAD-cdpA	<i>cdpA</i> in pBAD/Myc-HisA without tag, arabinose inducible; Amp ^R	MB_2065	This study		
pGP704-mTn7-minus SacI	pGP704 with mini- <i>Tn</i> 7; Amp ^R , Gent ^R	MB_645	(Müller et al., 2007)		
pGP704-mTn <i>tfoX-</i> <i>strep</i>	pGP704 with mini-Tn7 carrying <i>araC</i> and P _{BAD} -driven <i>tfoX-strep</i> ; Amp ^R , Gent ^R	MB_3664	This study		
pGP704-mTn <i>tfoY</i>	pGP704 with mini-Tn7 carrying <i>araC</i> and P_{BAD} -driven <i>tfoY</i> ; Amp ^R , Gent ^R	MB_2953	This study		
pGP704-mTn <i>tfoY-</i> <i>strep</i>	pGP704 with mini-Tn7 carrying <i>araC</i> and P _{BAD} -driven <i>tfoY</i> - <i>strep</i> ; Amp ^R , Gent ^R	MB_2941	This study		
pGP704-mTntfoY- mCherry-strep	pGP704 with mini-Tn7 carrying <i>araC</i> and P _{BAD} -driven <i>tfoY</i> - <i>mCherry-strep</i> ; Amp ^R , Gent ^R	MB_4387	This study		
pGP704-mTn-vdcA	pGP704 with mini-Tn7 carrying <i>araC</i> and P_{BAD} -driven <i>vdcA</i> ; Amp ^R , Gent ^R	MB_2943	This study		
pGP704-mTn-cdpA	pGP704 with mini-Tn7 carrying <i>araC</i> and P_{BAD} -driven <i>cdpA</i> ; Amp ^R , Gent ^R	MB_2944	This study		
pGP704-TnKan	pGP704 with mini-Tn7 carrying <i>aph</i> (Kan ^R) gene; Amp ^R , Gent ^R , Kan ^R	MB_4117	This study		
pUX-BF-13	<i>ori</i> R6K, helper plasmid with Tn7 transposition function; Amp ^R	MB_457	(Bao et al., 1991)		
pGP704-Sac28	Suicide vector, <i>ori</i> R6K, <i>sacB</i> ; Amp ^R	MB_649	(Meibom et al., 2004)		
pGP704-28-SacB- Δ <i>tfoY</i>	pGP704-Sac28 with gene fragment resulting in a 180 bp deletion within <i>VC1722</i> ; Amp ^R	MB_1133	This study		
p28-hapR (pGP704- 28-SacB-Δ <i>hapR</i>)	pGP704-Sac28 with gene fragment resulting in a deletion from amino acid 10 downwards of <i>hapR</i> ; Amp ^R	MB_1106	(Meibom et al., 2005)		
p28-tfoX (pGP704- 28-SacB-Δ <i>tfoX</i>)	pGP704-Sac28 with a gene fragment resulting in a deletion of amino acids 6-196 of TfoX; Amp ^R	MB_1013	This study		
pBR-FRT-Kan-FRT2	pBR322 derivative containing improved FRT- <i>aph</i> -FRT cassette, used as template for TransFLP; Amp ^R , Kan ^R	MB_3782	This study		
pBR-FRT-Cat-FRT2	pBR322 derivative containing improved FRT- <i>cat</i> -FRT cassette, used as template for TransFLP; Amp ^R , Cm ^R	22 derivative containing improved FRT- <i>cat</i> -FRT e, used as template for TransFLP; Amp ^R , Cm ^R MB_3783 T			

*VC numbers according to (Heidelberg et al., 2000).

EXTENDED EXPERIMENTAL PROCEDURES

Bacterial strains, plasmids, and growth conditions

V. cholerae strains and plasmids are listed in Table S3. *Escherichia coli* strains DH5 α (Yanisch-Perron et al., 1985), TOP10 (Invitrogen), and S17-1 λ pir (Simon et al., 1983) were used for cloning purposes and served as donors in bacterial mating experiments, respectively. A V52 Δ rhh (Δ *rtxA* Δ *hlyA* Δ *hapA*) strain served as the parental strain for T6SS activity and amoebal killing (see below), in accordance with previous protocols (Bachmann et al., 2015; Miyata et al., 2011).

V. cholerae and *E. coli* strains were grown aerobically in LB medium or on LB agar plates at 30°C or 37°C unless otherwise stated. LB motility soft agar plates contained reduced agar concentrations (0.3%) compared to standard LB agar plates (1.5%). When required, arabinose (for the expression of *tfoX*, *tfoY*, *tfoY-mCherry*, *vdcA*, and *cpdA* under the control of the P_{BAD} promoter) or antibiotics were added to the growth medium at the following concentrations: L-arabinose 0.02% or 0.2%, ampicillin 50 µg/ml or 100 µg/ml, kanamycin 75 µg/ml, streptomycin 100 µg/ml, chloramphenicol 2.5 µg/ml, and gentamicin 50 µg/ml. For *E. coli* counter-selection after tri-parental mating with *V. cholerae*, Thiosulfate Citrate Bile Salts Sucrose (TCBS) agar plates were used and prepared following the manufactures' instructions (Sigma-Aldrich/Fluka, Buchs, Switzerland). Half-concentration defined artificial seawater (0.5x DASW; (Meibom et al., 2005)) was used for chitin-induced natural transformation experiments.

Genetic engineering of strains and plasmids

All DNA manipulations were performed according to standard molecular biology protocols. Enzymes were purchased from the following companies and used as recommended by the manufacturer: Pwo polymerase (Roche), Taq polymerase (Promega), and restriction enzymes (New England Biolabs). Genetically engineered bacterial strains and plasmids were screened by colony PCR followed by Sanger sequencing (Microsynth, Switzerland).

To genetically modify *V. cholerae* strains, a gene disruption method based on the counter-selectable suicide plasmid pGP704-Sac28 (Meibom et al., 2004) or a transformation-based genetic engineering method (TransFLP; (Blokesch, 2012; Borgeaud and Blokesch, 2013; De Souza Silva and Blokesch, 2010)) was utilized. The latter technique was also used to replace the *tfoY* gene of *V. cholerae* A1552 with a translational *tfoY-mCherry* fusion allele at the gene's native locus. The plasmids pBR-FRT-Kan-FRT2 and pBR-FRT-Cat-FRT2 served as templates for the addition of the flippable antibiotics cassette.

Plasmid pBAD-*tfoX-strep* was constructed by amplification of the *tfoX* gene with *Strep-tagII*-encoding primers using the genomic DNA (gDNA) of *V. cholerae* strain A1552 as the template. The restriction enzyme-digested PCR product was cloned into the appropriately digested plasmid pBAD/MycHisA (Table S3). The *tfoY* gene was amplified using gDNA from *V. cholerae* strain A1552 and cloned after restriction enzyme digestion into the plasmid pBAD/MycHisA, resulting in plasmid pBAD-*tfoY* (Table S3). The same strategy was employed to obtain plasmids pBAD-*vdcA* and pBAD-*cdpA* (Table S3). The *Strep-tagII*-encoding sequence was added to *tfoY* by inverse PCR using overlapping oligonucleotides. The template was subsequently digested by *Dpn*I, and the non-digested PCR fragment was column-purified and used directly to transform chemically competent *E. coli* cells.

The plasmid pBAD-*tfoY-mCherry-strep* was constructed in two steps. First, a *Sma*I restriction site was introduced in-between the *tfoY* open reading frame and the *Strep-tagII* by inverse PCR on plasmid pBAD-*tfoY-strep*, as described above, resulting in plasmid pBAD-*tfoY-strep*-CSmaI. Subsequently, the mCherry-encoding gene was amplified using phosphorylated primers and cloned into the *Sma*I-digested pBAD-*tfoY-strep*-CSmaI plasmid.

The fragments containing *araC*, the arabinose-inducible promoter P_{BAD} , and the *tfoX-strep*, *tfoY-strep*, *tfoY-mCherry-strep*, *vdcA* or *cdpA* gene were amplified from the corresponding pBAD plasmids (Table S3) and cloned into the mini-Tn7-containing delivery plasmid (Table S3). For the insertion of this mini-Tn7 transposon into the *V*. *cholerae* chromosome, a triparental mating strategy was employed (Bao et al., 1991). The donor plasmids are indicated in Table S3.

Natural transformation assays

The natural transformability of *V. cholerae* strains grown on chitin surfaces was determined as previously described (De Souza Silva and Blokesch, 2010; Marvig and Blokesch, 2010). To test for chitin-independent transformation, the strains carried an arabinose-inducible copy of *tfoX-strep* (e.g., including the *Strep*-tagII-encoding sequence) or *tfoY-strep* on the chromosome. The assay was performed as previously described (Lo Scrudato and Blokesch, 2012). The gDNA of A1552-lacZ-Kan (Marvig and Blokesch, 2010) served as the transforming material in all transformation assays. Transformation frequencies were calculated as the number of transformants divided by the total number of colony-forming units (CFU). At least three independent biological replicates were performed for

each experiment, and averages of all experiments are indicated in the figure (\pm SD). Statistical analyses of transformation frequencies were performed on log-transformed data using a two-tailed Student's *t*-test. For values below the detection limit, the detection limit value was utilized for statistical calculations.

Interbacterial killing assay

The interbacterial killing assay was performed following a previously established protocol (Borgeaud et al., 2015). Briefly, the predatory *V. cholerae* strain and the *E. coli* prey were mixed at a 10:1 ratio and spotted onto membrane filters on pre-warmed LB agar plates (\pm 0.2% ara). After incubation at 37°C for 4 h, the bacteria were resuspended from the filters, and serial dilutions were spotted onto plain LB (growth control) and antibiotic-containing LB agar plates (to select for the respective *E. coli* prey strains) to enumerate colony-forming units (CFU/ml). At least three biological experiments were performed, and averages of these independent replicates are given throughout the manuscript. Statistically significant differences were determined by the two-tailed Student's *t*-test on log-transformed data. In case the *E. coli* CFUs were below the detection limit of 200 CFU/ml, the value was set to the detection limit to allow statistical analysis.

Motility assay

To assess the motility of *V. cholerae*, 2 μ l of the relevant overnight culture was carefully spotted onto freshly prepared LB motility agar plates and incubated at room temperature for 24 h. The next day, the swarming diameter was scored. The motility induction was calculated by dividing the swarming diameter under induced versus uninduced conditions. All experiments were repeated several times independently (n \geq 3), and averages of all experiments (± standard deviation) are provided. A two-tailed Student's *t*-test was performed for statistical analyses.

Gene expression analysis by qRT-PCR

Quantitative reverse transcription PCR (qRT-PCR)-based transcript scoring in *V. cholerae* was performed following a previously published protocol (Lo Scrudato and Blokesch, 2012). Averages of at least three biologically independent experiments (\pm standard deviation) are provided.

SDS-PAGE and Western Blotting

For the preparation of cell lysates, bacteria were cultivated in LB medium without or with arabinose, as indicated. After harvesting, the bacterial cells were resuspended in an appropriate volume of Laemmli buffer to adjust for the total number of bacteria (based on measurement of the optical density at 600 nm; OD_{600}) and boiled for 15 minutes. Proteins were separated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and subjected to western blotting as previously described (Lo Scrudato and Blokesch, 2012). Primary antibodies against Hcp (see below), *E. coli* Sigma 70 (BioLegend, USA distributed via Brunschwig, Switzerland), or mCherry (BioVision, USA distributed via LubioScience, Switzerland) were diluted at 1:5'000. Goat anti-rabbit horseradish peroxidase (HRP) (diluted 1:20'000; Sigma-Aldrich, Switzerland) and goat anti-mouse HRP (diluted 1:5'000, Sigma-Aldrich, Switzerland) were used as secondary antibodies. Lumi-Light^{PLUS} western blotting substrate (Roche, Switzerland) was used as the HRP substrate and the signals were detected on chemiluminescence-detecting films (Amersham Hyperfilm ECL, GE Healthcare).

Generation of antibodies against Hcp

Anti-Hcp antibodies were raised in rabbits against synthetic peptides (Eurogentec, Belgium). To exclude potential cross-reactions with proteins migrating towards the same position as the target protein, the antibody was tested against the hcp1 hcp2 double knockout strain using western blotting (data not shown).

Epifluorescence microscopy and image analysis

Wide-field microscopy images were acquired using an epifluorescence microscope (Zeiss Axio Imager M2; details are provided elsewhere (Lo Scrudato and Blokesch, 2012)). The bacterial cultures were grown in LB medium (\pm ara) and then mounted onto agarose pads. Image analysis and processing were performed using the Zeiss AxioVision software, ImageJ, and Adobe Illustrator. For comparisons between different culture conditions (e.g., WT versus *hapR*-minus strains grown in the absence or presence of inducible *tfoX* or *tfoY*), the images were acquired using the exact same exposure time. However, the brightness was decreased for the TfoX-induced vipA-sfGFP signal for a better representation. For intraspecies killing, the two strains (predator and non-immune prey) were mixed at a ratio of 1:1 before being applied to an agarose pad. The mixed communities were incubated for 2 h at 24°C before imaging.

Dictyostelium discoideum plaque assay

To determine the cytotoxicity of *V. cholerae* strain V52 (V52 Δ rhh) toward *D. discoideum*, an amoebal plaque assay was performed following a previously described protocol (Pukatzki et al., 2006) with slight modifications. Briefly, bacteria were cultured overnight in LB medium at 30°C and harvested by centrifugation. The cell pellet was resuspended in SorC buffer and diluted to an OD₆₀₀ of 5.5. *D. discoideum* cells were detached, collected by centrifugation, resuspended in SorC buffer, and added to the bacterial suspension to a concentration of 5 x 10² amoebal cells per ml. Subsequently, 200 µl of the homogenate was plated on agar plates made of 5-fold diluted SM medium (SM medium according to (Sussman, 1987)). Plates were incubated for 3 to 5 days at 24°C, followed by the enumeration of the number of *D. discoideum* plaques. Three independent experiments were performed, each containing three technical replicates, and a two-tailed Student's *t*-test was performed to ascertain statistical significance.

Hemolysin activity on blood agar plates

The hemolytic activity of *V. cholerae* was assayed using trypticase soy agar containing 5% sheep blood (BD, Allschwil, Switzerland) supplemented with 1 mM EDTA. The respective overnight cultures were spotted onto the plates and incubated at 30°C for 24 h to 30 h. The WT and a *hlyA*-minus mutant served as the positive and negative control, respectively.

Lecithinase / thermolabile hemolysin activity on egg yolk plates

To assess the activity of the lecithinase (also known as thermolabile hemolysin/phospholipase), *V. cholerae* bacteria grown overnight were spotted onto egg yolk-containing agar plates and incubated at 30°C for 72 h. Plates were freshly prepared as follows: a 30% egg yolk (Sigma-Aldrich/Fluka, Buchs, Switzerland) suspension in sterile water was prepared and subsequently diluted 1:20 in autoclaved, warm LB agar before plates were poured. The WT and a *lec*-minus mutant strain served as the positive and negative control, respectively.

SUPPLEMENTAL REFERENCES

Bachmann, V., Kostiuk, B., Unterweger, D., Diaz-Satizabal, L., Ogg, S., and Pukatzki, S. (2015). Bile Salts Modulate the Mucin-Activated Type VI Secretion System of Pandemic *Vibrio cholerae*. PLoS Negl. Trop. Dis. *9*, e0004031.

Bao, Y., Lies, D.P., Fu, H., and Roberts, G.P. (1991). An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of Gram-negative bacteria. Gene *109*, 167-168.

Basler, M., Pilhofer, M., Henderson, G.P., Jensen, G.J., and Mekalanos, J.J. (2012). Type VI secretion requires a dynamic contractile phage tail-like structure. Nature *483*, 182-186.

Benghezal, M., Fauvarque, M.O., Tournebize, R., Froquet, R., Marchetti, A., Bergeret, E., Lardy, B., Klein, G., Sansonetti, P., Charette, S.J., *et al.* (2006). Specific host genes required for the killing of *Klebsiella* bacteria by phagocytes. Cell. Microbiol *8*, 139-148.

Blokesch, M. (2012). TransFLP – a method to genetically modify *V. cholerae* based on natural transformation and FLP-recombination. J. Vis. Exp. *68*, e3761.

Borgeaud, S., and Blokesch, M. (2013). Overexpression of the *tcp* gene cluster using the T7 RNA polymerase/promoter system and natural transformation-mediated genetic engineering of *Vibrio cholerae*. PLoS One *8*, e53952.

Borgeaud, S., Metzger, L.C., Scrignari, T., and Blokesch, M. (2015). The type VI secretion system of *Vibrio cholerae* fosters horizontal gene transfer. Science *347*, 63-67.

De Souza Silva, O., and Blokesch, M. (2010). Genetic manipulation of *Vibrio cholerae* by combining natural transformation with FLP recombination. Plasmid *64*, 186-195.

Heidelberg, J.F., Eisen, J.A., Nelson, W.C., Clayton, R.A., Gwinn, M.L., Dodson, R.J., Haft, D.H., Hickey, E.K., Peterson, J.D., Umayam, L., *et al.* (2000). DNA sequence of both chromosomes of the cholera pathogen *Vibrio cholerae*. Nature *406*, 477-483.

Lo Scrudato, M., and Blokesch, M. (2012). The regulatory network of natural competence and transformation of *Vibrio cholerae*. PLoS Genet. *8*, e1002778.

Lo Scrudato, M., and Blokesch, M. (2013). A transcriptional regulator linking quorum sensing and chitin induction to render *Vibrio cholerae* naturally transformable. Nucleic Acids Res. *41*, 3644-3658.

Marvig, R.L., and Blokesch, M. (2010). Natural transformation of *Vibrio cholerae* as a tool-optimizing the procedure. BMC Microbiol. *10*, 155.

Meibom, K.L., Blokesch, M., Dolganov, N.A., Wu, C.-Y., and Schoolnik, G.K. (2005). Chitin induces natural competence in *Vibrio cholerae*. Science *310*, 1824-1827.

Meibom, K.L., Li, X.B., Nielsen, A.T., Wu, C.Y., Roseman, S., and Schoolnik, G.K. (2004). The *Vibrio cholerae* chitin utilization program. Proc. Natl. Acad. Sci. USA *101*, 2524-2529.

Miyata, S.T., Kitaoka, M., Brooks, T.M., McAuley, S.B., and Pukatzki, S. (2011). *Vibrio cholerae* requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect. Immun. *79*, 2941-2949.

Müller, J., Miller, M.C., Nielsen, A.T., Schoolnik, G.K., and Spormann, A.M. (2007). *vpsA-* and *luxO-*independent biofilms of *Vibrio cholerae*. FEMS Microbiol. Lett. *275*, 199-206.

Pukatzki, S., Ma, A.T., Sturtevant, D., Krastins, B., Sarracino, D., Nelson, W.C., Heidelberg, J.F., and Mekalanos, J.J. (2006). Identification of a conserved bacterial protein secretion system in *Vibrio cholerae* using the *Dictyostelium* host model system. Proc. Natl. Acad. Sci. USA *103*, 1528-1533.

Simon, R., Priefer, U., and Pühler, A. (1983). A broad host range mobilization system for *in vivo* genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat. Biotechnol. *1*, 784-791.

Sussman, M. (1987). Cultivation and synchronous morphogenesis of *Dictyostelium* under controlled experimental conditions. Methods Cell Biol. 28, 9-29.

Yanisch-Perron, C., Vieira, J., and Messing, J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene *33*, 103-119.

Yildiz, F.H., and Schoolnik, G.K. (1998). Role of *rpoS* in stress survival and virulence of *Vibrio cholerae*. J. Bacteriol. *180*, 773-784.