Manuscript Title: A thaumatin-like protein of *Ocimum basilicum* confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis

Author List: Rajesh Chandra Misra, Sandeep, Mohan Kamthan, Santosh Kumar and Sumit Ghosh*

Supplementary Information

Supplementary Figure S1-S7 Supplementary Table S1-S2

```
Ocimumbasilicum AGX15390.1
                                    MISLKFIST----LLPF-LLLLHA-ATAIRFDIONKCSYTIWPAVLP--- 41
ObTLP1_JQ793640_
                                    MNSLKFIST----LLPFLLLLLHA-ATAIRFDIQNK@SYTIWPAVLP--- 42
Thaumatococcusdaniellii_P02884
                                    MAATTCFFF----LFPF-LLLLTL-SRAATFEIVNRCSYTVWAAASKGD- 43
Solanumnigrum_AGH14263.1_
                                   MGYL-RSSF-----VFFLLAFVTY-TYAATIEVRNNCPYTVWAASTPI-- 41
                                   MGYS-RSSF-----VFFLLTFVTY-TYATSFEVRNNCPYTVWAASTPI-- 41
Solanumnigrum AAL87640.1
                                   MGNL-RSSF-----VFFLLALVTY-TYAATIEVRNNCPYTVWAASTPI-- 41
Nicotianatabacum P14170.2
                                   MGYL-TMAFG--LPVFLLLTLFSS-AHAATFEIRNNCPYTVWAAASP--- 43
Actinidiachinensis_AGC39177.1_
Ficuspumilavar.Awkeotsang_ABB8
                                   MGSLANLSII--FSLIFLTLFFSS-SNAASFEIRNECSYPVWAAASP--- 44
Camelliasinensis_ABE01396.1_
                                   MSFPKSLTIL--FPLLF-TLLIPF-TNAATFAVLNKCTYTVWAAASP--- 43
Arabidopsisthaliana_CAA61411.1
                                   MANLLVSTF----IFSALLLIST-ATAATFEILNQCSYTVWAAASP--- 41
Glycinemax_P25096.1_
                                    -----ARFEITNRCTYTVWAASVPV-- 20
Vitisvinifera AAQ10092.1
                                   MGLCKILSI---SSFLLTALFFTP-SYAATFNIQNHCSYTVWAAAVP--- 43
                                    MSTFKSLSL---SALLFIAFLFTC-ARGATFNIINNCPFTVWAAAVP--- 43
Actinidiachinensis_AGC39176.1_
Fragariaxananassa_AAF13707.1_
                                    MSLLKNLP----TVLSILYFAAST-VNAATFNKKNNCPFTVWAGAVP--- 42
Sambucusnigra AAK59275.1
                                    MGFLKSLPI---SIFFVIALISSS-AYAANFNIRNNCPFTVWAAAVP--- 43
Vincetoxicummongolicum_AD03289
                                    MN-FHHFSS---LLVLVLSCLFAT-SYAATFVVTNNCQYPVWAAGVPV-- 43
Oryzasativa_P31110.1_
                                    MASPATSSAV--LVVVLVATLAAGGANAATFTITNRCSFTVWPAATP--- 45
Pyruspyrifolia_AEO36939.1_
                                   MSMMKNQVA--SLLGLTLAILFFSGAHAAKITFTNNCPYTVWPGTLTGDQ 48
Arachisdiogoi_ACT11052.1_
                                   MAITR-----VVLSLSFA-FFLCVAHGAQITLTNKCSYTVWPGSQANAN 43
                                   MASSSSSSTNSLLISTFIFLTIFSPSQALIFTFVNNCPYTVWPAIIPNGG 50
Medicagotruncatula_AFK44890.1_
                                                                  : *.* :.:*..
Ocimumbasilicum_AGX15390.1_
                                    ----HGGGRRLDSGQTWTLSFQNGPKLAKVWARTN@TFDSSGKGK@LTGD 87
                                    ----HGGGRRLDSGQTWTLSFQNGPKLAKVWARTNCTFDSSGKGKCLTGD 88
ObTLP1_JQ793640_
Thaumatococcusdaniellii_P02884
                                    -AALDAGGRQLNSGESWTINVEPGTKGGKIWARTDCYFDDSGRGICRTGD 92
Solanumnigrum_AGH14263.1_
                                    ----GGGRRLDRGQTWVINAPRGTSMARIWGRTNCNFDGAGRGSCQTGD 86
Solanumnigrum_AAL87640.1_
                                    ----GGGRRLDRGQTWVINAPRGTSMARIWGRTNCNFDGAGRGSCQTGD 86
Nicotianatabacum P14170.2
                                    ----GGGRRLDRGQTWVINAPRGTKMARVWGRTNCNFNAAGRGTCQTGD 86
Actinidiachinensis_AGC39177.1_
                                    ----GGGRRLNSKQQWNLNVAAGTKMARIWGRTKCNFDGSGRGHCETGD 88
Ficuspumilavar.Awkeotsang ABB8
                                    ----GGGRRLDPTONWILNVPAGTSMARIWGRTNCNFDGAGRGRCOTGD 89
Camelliasinensis ABE01396.1
                                    ----GGGMRLDPGQSWTVNVNPGTTQARIWGRTNCNFDANGNGQCQTGD 88
                                    -----GGGRRLDAGQSWRLDVAAGTKMARIWGRTNCNFDSSGRGRCQTGD 86
Arabidopsisthaliana_CAA61411.1
                                    ----GGGVQLNPGQSWSVDVPAGTKGARVWARTGCNFDGSGRGGCQTGD 65
Glycinemax P25096.1
Vitisvinifera_AAQ10092.1_
                                    ----GGGMQLGSGQSWSLNVNAGTTGGRVWARTNCNFDASGNGKCETGD 88
Actinidiachinensis_AGC39176.1_
                                    ----GGGKRLDRGQNWIINPGAGTKGARVWARTGCNFDGAGRGKCQTGD 88
Fragariaxananassa_AAF13707.1_
                                    ----GGGKQLGTGQTWTINVAAGTKGARIWPRTNCNFDGAGRGRCQTGD 87
Sambucusnigra_AAK59275.1_
                                    ----GGGRQLNRGQVWSLDVPAGTRGARIWARTNCNFDGAGRGRCQTGD 88
Vincetoxicummongolicum_AD03289
                                    -----GGGRRLDRGQVWRLEVPAGTKQARIWGRTNCNFDASGRGKCETGD 88
                                    ----VGGGVQLSPGQTWTINVPAGTSSGRVWGRTGCSFDGSGRGSCATGD 91
Oryzasativa_P31110.1_
                                    KPQLSLTGFELASKASQSVDAP-FPWSGRFWGRTRCSTNAAGKFTCETAD 97
Pyruspyrifolia_AE036939.1_
Arachisdiogoi_ACT11052.1_
                                    SAQLSTTGFELPTGQSKTVDVP-APWSGKFWARTGCS-NNNGVFSCATAD 91
Medicagotruncatula AFK44890.1
                                    FPVLSSSGFELRHFTHLSIPVPDTHWAGRAWARTGCS-TANNKFSCLTGD 99
                                           * .*
                                                               .: * ** *
                                                                            . * *.*
                                                     :
```

Supplementary Figure S1. Amino acid sequence comparison of *O. basilicum* ObTLP1 with PR5 members of other plant species. Multiple sequence alignment was carried out by using ClustalW2 program (http://www.ebi.ac.uk/Tools/msa/clustalw2/). Identical amino acid residues are depicted as *, while conserved and semi-conserved substitutions are marked as : and ., respectively. Sixteen cysteine resides that are conserved in TLPs are highlighted.

Ocimumbasilicum AGX15390.1 ObTLP1 J0793640 Solanumnigrum AAL87640.1 Nicotianatabacum P14170.2 Actinidiachinensis_AGC39177.1_ Ficuspumilavar.Awkeotsang ABB8 Camelliasinensis_ABE01396.1_ Arabidopsisthaliana CAA61411.1 Glycinemax P25096.1 Vitisvinifera AAQ10092.1 Actinidiachinensis AGC39176.1 Fragariaxananassa_AAF13707.1_ Sambucusnigra AAK59275.1 Vincetoxicummongolicum AD03289 Oryzasativa P31110.1 Pyruspyrifolia_AE036939.1_ Arachisdiogoi ACT11052.1 Medicagotruncatula AFK44890.1

Ocimumbasilicum AGX15390.1 ObTLP1_JQ793640 Thaumatococcusdaniellii_P02884 Solanumnigrum_AGH14263.1_ Solanumnigrum_AAL87640.1_ Nicotianatabacum_P14170.2 Actinidiachinensis_AGC39177.1_ Ficuspumilavar.Awkeotsang_ABB8 Camelliasinensis_ABE01396.1_ Arabidopsisthaliana CAA61411.1 Glycinemax P25096.1 Vitisvinifera AAQ10092.1 Actinidiachinensis AGC39176.1 Fragariaxananassa AAF13707.1 Sambucusnigra_AAK59275.1_ Vincetoxicummongolicum AD03289 Oryzasativa_P31110.1_ Pyruspyrifolia_AE036939.1_ Arachisdiogoi_ACT11052.1_ Medicagotruncatula_AFK44890.1_

CGG-OLNCTTFG-SPPHTKAEYGLNDFGRKDY--YDVSVLDGYNLPMEMT 133 CGG-OLNCTTFG-SPPHTKAEYGLNDFGRKDY--YDVSVLDGYNLPMEMT 134 CGG-VLOCTGWG-KPPNTLAEYALNOFSNLDF--WDISLVDGFNIPMTFA 132 CGG-VLQCTGWG-KPPNTLAEYALDQFSGLDF--WDISLVDGFNIPMTFA 132 CGG-VLECKGWG-VPPNTLAEYALNQFGNLDF--FDISLVDGFNIPMDFS 134 CGG-LLQCQGWG-NPPNTLAEHALNQFGNLDF--YDISLVDGFNIPMSFG 135 CNG-LLQCQGYG-KAPNTLAEFALNQPNNLDF--VDISNVDGFNIPMDFS 134 CSG-GLOCTGWG-OPPNTLAEYALNOFNNLDF--YDISLVDGFNIPMEFS 132 CGG-VLDCKAYG-APPNTLAEYGLNGFNNLDF--FDISLVDGFNVPMDFS 111 CGG-LLQCTAYG-TPPNTLAEFALNQFSNLDF--FDISLVDGFNVPMAFN 134 CNG-LLOCOAFG-OPPNTLAEYALNOFNNLDF--FDISLVDGFNVAMEFS 134 GG-LLQCQGYG-QPPNTLAEYALNQYMNRDF--YDISLIDGFNVPMDFS 133 CNG-LLSCOAYG-APPNTLAEYALNOFNNLDF--FDISLVDGFNVAMDFS 134 CNG-LLOCKNFG-SPPNTLAEFALNQFANKDF--FDISLVDGFNVPMDFS 134 CAG-ALSCTLSG-OKPLTLAEFTIG--GSODF--YDLSVIDGYNVAMSFS 135 CGSGQVACNGAGAIPPATLVEITIAANGGQDF--YDVSLVDGFNLPMSVA 145 GN-HLECSGAGEATPASLMEFTIASNGGQDF--YDVSNVDGFNVPSSIT 138 CGN-SLQCHGAGGSPPATLVQFDVH-HGNKDFSSYSVSLVDGFNTPLTVT 147 * * : : : *: .:* :.*:* . * . . * PTAN--GCTRSVKCAAEDIVANCPSQLKVDGG-----CQNPCTVFK 172 PTTN--GCTRSVKCAAEDIVANCPSQLKVDGG-----CQNPCTVFK 173 PTTR--GC-RGVRCAAD-IVGQCPAKLKAPGG------GCNDACTVFQ 175 PTNPSGGKCHSIQCTAN-INGECPAALRVPGG-----CNNPCTTFG 172 PTNPSGGKCHSIQCTAN-INGECPAALRVPGG------CNNPCTTFG 172 PTNPSGGKCHAIHCTAN-INGECPRELRVPGG------CNNPCTTFG 172 PTRSPSGKCRPISCTAN-IIGQCPNPLKTAGG-----CHNPCTVFK 174 PTR---GGCKVIGCTAD-INGOCPNELRTPGG------CONPCTVFK 172 PTT---AVCKSLRCAAN-IVGECPAELQTPGG------CNNPCTVYK 171 PTS---SNCHRILCTAD-INGOCPNVLRAPGG-----CNNPCTVF0 169 PTSN--GCTRGISCTAD-INGOCPSELKTQGG------CNNPCTVFK 149 PTSN--GCTRGISCTAD-IVGECPAALKTTGG------CNNPCTVFK 172 PTSG--GCTRGIKCTAN-INEOCPNELRAPGG------CNNPCTVFK 172 PVSN--GCTRGIRCTAD-INGQCPAQLRAPGG------CNNACTVSK 171 PTG---GCARGIOCTAD-INGOCPNELRAPGG-----CNNPCTVYR 171 PTSN--GCSRGIKCAAQ-INRECPNQLKAPGG------CNNPCTVFK 172 PQGGT-GDCKPSSCPAN-VNAACPAQLQVKA--ADGTVIA-CKSACLAFG 190 PQGGS-GACNVASCPAN-INAACPAALQFKG--SDGSVIG-CKSACVEFG 183 PHEGK-GECPVVGCKAD-LVASCPPVLQHRVPMGHGPVVA-CKSGCEAFH 194

*

Supplementary Figure S1. Continued.

```
Ocimumbasilicum AGX15390.1
ObTLP1_JQ793640_
Thaumatococcusdaniellii_P02884
Solanumnigrum_AGH14263.1_
Solanumnigrum_AAL87640.1_
Nicotianatabacum_P14170.2
Actinidiachinensis_AGC39177.1_
Ficuspumilavar.Awkeotsang ABB8
Glycinemax_P25096.1
Vitisvinifera AAQ10092.1
Actinidiachinensis_AGC39176.1_
Fragariaxananassa AAF13707.1
Sambucusnigra_AAK59275.1_
Vincetoxicummongolicum_AD03289
Oryzasativa_P31110.1_
Pyruspyrifolia AE036939.1
Arachisdiogoi_ACT11052.1
Medicagotruncatula_AFK44890.1_
```

```
Ocimumbasilicum AGX15390.1
ObTLP1 JQ793640
Thaumatococcusdaniellii P02884
Solanumnigrum AGH14263.1
Solanumnigrum AAL87640.1
Nicotianatabacum P14170.2
Actinidiachinensis_AGC39177.1
Ficuspumilavar.Awkeotsang ABB8
Camelliasinensis_ABE01396.1_
Arabidopsisthaliana CAA61411.1
Glycinemax_P25096.1_
Vitisvinifera_AAQ10092.1_
Actinidiachinensis_AGC39176.1_
Fragariaxananassa_AAF13707.1_
Sambucusnigra_AAK59275.1_
Vincetoxicummongolicum_AD03289
Oryzasativa P31110.1
Pyruspyrifolia AE036939.1
Arachisdiogoi ACT11052.1
Medicagotruncatula AFK44890.1
```

TTEYCCHAGK-----CRPTDMSRFFKSRCRDAFTYPQDDPTST--FTCPE 215 TTEYCCHAGE----CRPTDMSRFFKSRCRDAFTYPQDDPTST--FTCPE 216 TSEYCCTTGK-----CGPTEYSRFFKRLCPDAFSYVLDKPT-T--VTCPG 217 GQQYCCTQGP----CGPTELSRFFKQRCPDAYSYPQDDPTST--FTCPS 215 GQQYCCTQGP----CGPTELSKFFKQRCPDAYSYPQDDPTST--FTCPS 215 GQQYCCTQGP----CGPTFFSKFFKQRCPDAYSYPQDDPTST--FTCPG 215 TQEYCCTQGP----CGPTNYSRFFKERCRDAYSYPQDDPTST--FTCPG 217 TNEFCCTNGOG---SCGPTNFSKFFKDRCRDAYSYPODDPTST--FTCPA 217 TDQYCCNSGS-----CGPTDYSRFFKQRCPDAYSYPKDDPPST--FTCNG 192 TDEYCCNSGS-----CNATDYSRFFKTRCPDAYSYPKDDQTST--FTCPA 215 TDOYCCNSGN-----CGPTDYSRFFKTRCPDAYSYPKDDQTST--FTCPG 215 TDQYCCNSGH-----CGPTDYSRFFKSRCPDAYSYPKDDATSTVLFTCPG 216 TNEYCCTNGQG---TCGPTNFSRFFKERCRDAYSYPODDPTST--FTCPG 216 TDQYCCNSGR-----CSPTNFSSFFKKRCPDAYSYPKDDQTST--FTCPA 215 -----RCPDAYLFPEDNTKTH---ACSG 167 DSKYCCTPPNNTPETCPPTEYSQFFEQQCPQAYSYAYDDKNST--FTCSG 238 TPEYCCTGDHNTAATCPATNYSEFFSNQCPNAYSYAYDDKRGT--FTCSG 231 SDEHCCRNHFNNPQTCKPTVYSKFFKDACPATFTFAHDSPSLI--HQCSS 242 * • • *

ST-SYRVVF	P	225
ST-SYRVVF	P	226
SS-NYRVTF	PTALELEDE	235
GSTNYRVVF	PNGVTSPNLPLERPASTDKVAN	247
DSTNYRVVF	PNGVTSPNFPLEMPSSTDEVAK	247
GSTNYRVIF	PNGQAHPNFPLEMPGS-DEVAK	246
GS-NYRVTF	PNGSPHFPLEMYGESDVE	244
GA-NYKVVF	PRASAHFPLEMVKSASES	244
GT-NYAITF	P	226
TNYRVVF	PRSRLGATGSHQLPIKMVTEEN	244
GT-DYRVVF	P	202
GT-NYEVVF	P	225
GT-NYKVVF	P	225
GT-NYRVVF	P	226
GT-NYRVVF	P	226
GT-NYRVVF	P	225
NS-NYQVVF	P	177
GP-DYVITF	² P	248
SP-NYAINF	P	241
PG-ELKVIF	сн	252

**

Supplementary Figure S1. Continued.

Key:

Sec. struc: Helices labelled H1, H2, ... and strands by their sheets A, B, ... Helix Strand Motifs: β beta turn γ gamma turn == beta hairpin Disulphides: 1 disulphide bond Residue contacts: to ligand PDB SITE records: ▼ AC1 ▼ AC2 ▼ AC3

Supplementary Figure S2. A schematic presentation of the secondary structural elements in ObTLP1. α -helices are labeled with the letter 'H', and β -strands are lettered in uppercase. β , γ , and hairpin turns are also labeled. Eight disulphide bonds are mentioned with numbers 1 to 8. The secondary structure of *O. basilicum* ObTLP1 was determined using the PDBsum tool.

Supplementary Figure S3. Phenotypic and molecular characterization of *ObTLP1*-expressing Arabidopsis transgenic lines. (A) Photographs of vector control and ObTLP1-expressing Arabidopsis transgenic lines, taken at different growth stages. (B) Photographs of mature green and dry pods are shown. (C) Relative transcript level of Arabidopsis AtOSM34 (AT4G11650), an ortholog of *ObTLP1*, was determined by qRT-PCR analysis. Data are mean \pm s.d. from three biological replicates. (D) Southern blotting to determine transgene copy number in ObTLP1-expressing Arabidopsis transgenic lines. Genomic DNA (15 µg) was digested with XbaI and BamHI, precipitated with Ethanol/Sodium Acetate and electrophoresed on 0.8% Agarose gel. After depurination and denaturation, resolved DNAs were transferred onto Hybond N+ (GE Healthcare) following capillary method, and UV cross-linked. ObTLP1 cDNA (725 bp) was DIG labelled and hybridized to membrane (DIG-System; Roche Diagnostics). Prehybridisation and hybridisation were performed at 65°C with standard buffer (5X SSC, 0.1% N-lauroylsarcosine, 0.02%SDS, 1% blocking reagent-Roche-11096176001). Detection was performed using an alkaline phosphatase-conjugated anti-digoxigenin antibody at 1:5000 dilutions (Roche-11093274910). After washing, blot was developed following colorimetric detection method using NBT and BCIP in detection buffer (0.1M Tris-HCl, pH-9.5 and 0.1M NaCl).

Supplementary Figure S4. Validation of the 3D structural model of ObTLP1. (A) Ramachandran plot was generated using PROCHECK program of Structure Analysis and Verification Server (SAVES) for the modeled ObTLP1. 94.1% of residues were found in the most favoured regions, 5.4% of residues were in the most allowed regions, and 0.5% of residues were found in the outlier regions. ProSA results showed that 3D model of ObTLP1 is very close to native structure (2VHK) determined by X-ray crystallography. (B) Z-score plot showing the quality of the predicted model in NMR region (dark blue). (C) Energy plot showing all residues of predicted model at very stable position (dark green).

Supplementary Figure S5. Identification of stably expressed reference genes, following NormFinder and geNorm programs, for qRT-PCR analysis in *O. basilicum.* (A) Most stably expressed gene has lowest NormFinder stability value. (B) Inter-group variances for the reference genes obtained from NormFinder analysis. Error bars present the average of intra-group variance. An ideal reference gene has close to zero inter-group variation and low intra-group variation. cDNAs were prepared from total of sixteen samples comprising of two groups (normal and treated tissues) with eight samples each. (C) Expression stability (M) of the reference gene.

Supplementary Figure S6. Identification of stably expressed reference genes of Arabidopsis for qRT-PCR analysis. (A-B) NormFinder stability values of the reference genes for normal (A) and *S. sclerotiorum*-infected (B) leaf tissues. (C-D) Expression stability (M) of the reference genes determined following geNorm program for normal (C) and *S. sclerotiorum*-infected (D) leaf tissues. Twelve and six cDNA samples were used for normal (A, C) and *S. sclerotiorum*-infected (B, D) tissues, respectively.

Supplementary Figure S7. Full-length gels of main figures Fig. 5B and 5C.

Parameter	Vector control	TH1	TH2
Pods/plant	17.14 ± 2.38	17.79 ± 2.97	18.29 ± 2.61
Weight of mature green	3.13 ± 0.04	3.14 ± 0.04	3.12 ± 0.02
pod (mg)			
Weight of dry pod (mg)	1.12 ± 0.05	1.14 ± 0.04	1.13 ± 0.04
Seeds/pod	37.79 ± 3.72	39.5 ± 3.48	38.71 ± 3.34
100 seeds weight (mg)	2.03 ± 0.09	2.08 ± 0.13	2.06 ± 0.09

Supplementary Table S1. Phenotypic evaluation of *ObTLP1*-expressing Arabidopsis plants

*Data are the mean \pm s.d. (n=14).

Sl. No.	Targets		Primer sequences (5' to 3')
			Semi-quantitative RT-PCR
1	<i>ObTLP1</i> (JO793640)	F	ATGAATTCTCTCAAATTCA
		R	TTATGGGCAGAAGACTACC
2	<i>ObACT</i> (DY329457)	F	GCACTTCCTGTGAACAATAG
		R	AGAGGATACATGTTCACCAC
3	AtUBC21 (AT5G25760)	F	GGCATCAAGAGCGCGACTGT
		R	GGCGAGGCGTGTATACATTT
			Quantitative RT-PCR
4	<i>ObTLP1 (JQ793640)</i>	F	AGATGACGCCGACGACTAAC
		R	CGCCGCGCACTTGAC
5	ObEF-1a	F	CCAATCTGACCAGGGTGGTT
		R	GACATGCGTCAGACGGTTGT
6	ObGAPDH	F	GGATGGCATTCCGAGTTCCT
		R	GCCCTCAGACTCCTCCTTGAT
7	ObTIP41	F	CGGATTCCTCATTCGTGGTT
		R	CGGCAAATGGGTTGTCTGA
8	ObTUB	F	CGAGCACGGAGTTGATCCA
		R	GCCGGAAGCCTCATTGAA
9	ObUBC21	F	CCGGTGGCCCCTTTATAAGA
		R	CGACGGCGAGGCTTTTTAA
10	ObUBQ5	F	GCGAAGATGAGACGCTGTTG
	~	R	CCTAGAGGTTGAGGCCAGTGA
11	ObUBO10	F	TGGGTCTCAGTTGTCTGTTGGT
	~	R	CGGCAGGTGAGTTGTTACACA
12	<i>ObACT</i> (DY329457)	F	GGGCTGTTATTTCCTTGCTCAT
	×	R	CGTGCTCAGTGGTGGATCAA
13	AtUBC21 (AT5G25760)	F	CTGAGCCGGACAGTCCTCTT
		R	TAGCGGCGAGGCGTGTATAC
14	AtACT2 (AT3G18780)	F	CCTTTGTTGCTGTTGACTACGA
		R	CTGAATCTCTCAGCACCAA
15	<i>AtEF-1α</i> (AT5G60390)	F	CCCCTTCGTCTTCCACTTCA
		R	CCCTGTGGGAGCAAAGGTAA
16	<i>AtGAPDH</i> (AT1G13440)	F	CAAGGCTGCTGCTCACTTGA
		R	CGAACATGGGCGCATCTT
17	AtTUB4 (AT5G44340)	F	TCGGCGATTCTCCGTTACAG
		R	CAGCGCGAGGAACGTACTTT
18	AtUBQ10 (AT4G05320)	F	GGAGGTGGAGAGTTCTGAC
		R	GCGAAGATCAATCTCTGCT
19	S. sclerotiorum ITS genomic DNA	F	GGTGAACCTGCGGAAGGAT
	(KC748491)	R	AAGAGCAGCTCGCCAAAGC
20	B. cinerea Actin genomic DNA	F	CCGTCTGGATTGGTGGTTCT
	(NW_001814525)	R	CACTTGCGGTGGACAATGG
21	AtVSP1 (AT5G24780)	F	GGGAACGAAGCCGAACTCTT
		R	GGGCACCGTGTCGAAGTTTA
22	AtPR1 (AT2G14610)	F	CTCGGAGCTACGCAGAACAAC
		R	CCGCTACCCCAGGCTAAGTT
23	AtPDF1 (AT5G44420)	F	CGCTGCTCTTGTTCTCTTTGC
		R	CCCTGACCATGTCCCACTTG
24	AtPAL1 (AT2G37040)	F	CCCCTCCGTGGTACAATCAC
		R	CTTCACCGTTGGGACCAGTAG
25	AtBGL2 (AT3G57260)	F	CCTCGACGTTCCCAGTTCAG
		R	ACTTGTCGGCCTCCGTTTG
26	Arabidopsis Rubisco Large Subunit	F	TGTTCTGCCTGTGGCTTCAG
	(Atcg00490)	R	CCCAAGGGTGGCCTAAAGTT

Supplementary Table S2. List of the primers used in this study.

			pET pET-28a(+) cloning
27	<i>ObTLP1</i> (JQ793640)	F	CTGGATCCATGAATTCTCTCAAATTCA
		R	AACTCGAGTTATGGGCAGAAGACTACC
			pBI 121 cloning
28	<i>ObTLP1</i> (JQ793640)	F	GCTCTAGAATGAATTCTCTCAAATTCATCTCC
		R	GGGAAATTTATGGGCAGAAGACTACC