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Supplementary Figure 1: The quantum circuit for implementing the diagonal unitary operator of given circulant
Hamiltonian. The eigenvalues of given circulant can be calculated by the function f(x) efficiently classically.
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Supplementary Figure 2: The ideal theoretical and experimentally reconstructed density matrices for the evolution
states of CTQWs on K4. (a) The evolution state |ϕout〉3 = 1

2
[1,−1,−1,−1]′ (corresponding to ρ3). (b) The evolution state |ϕout〉4 =

1√
2

[0, 0,−1,−1]′ (corresponding to ρ4). Both of the real and imaginary parts of the density matrices are obtained through the maximum

likelihood estimation technique, and shown as Re(ρ) and Im(ρ) respectively. The achieved fidelities are 88.63±1.24% and 91.53±0.43%
respectively.
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Node/T 0 1
8
π 2

8
π 3

8
π 4

8
π 5

8
π 6

8
π 7

8
π π

P1,ideal 1 0.625 0.25 0.625 1 0.625 0.25 0.625 1
P2,ideal 0 0.125 0.25 0.125 0 0.125 0.25 0.125 0
P3,ideal 0 0.125 0.25 0.125 0 0.125 0.25 0.125 0
P4,ideal 0 0.125 0.25 0.125 0 0.125 0.25 0.125 0
P1,exp 0.8225 0.5014 0.2139 0.5759 0.8482 0.4583 0.2414 0.549 0.858
P2,exp 0.003 0.1388 0.2254 0.1455 0.0078 0.2167 0.2375 0.1324 0.0114
P3,exp 0.1598 0.153 0.2659 0.2105 0.1284 0.1333 0.2299 0.1912 0.1193
P4,exp 0.0148 0.2068 0.2948 0.0681 0.0156 0.1917 0.2912 0.1275 0.0114

Node/T 0 1
8
π 2

8
π 3

8
π 4

8
π 5

8
π 6

8
π 7

8
π π

P1,ideal 0.5 0.25 0 0.25 0.5 0.25 0 0.25 0.5
P2,ideal 0.5 0.25 0 0.25 0.5 0.25 0 0.25 0.5
P3,ideal 0 0.25 0.5 0.25 0 0.25 0.5 0.25 0
P4,ideal 0 0.25 0.5 0.25 0 0.25 0.5 0.25 0
P1,exp 0.4386 0.2796 0.0682 0.2927 0.4375 0.2823 0.0669 0.2338 0.434
P2,exp 0.4189 0.2607 0.0746 0.2717 0.4103 0.3008 0.0605 0.2 0.4415
P3,exp 0.1031 0.2156 0.3945 0.2482 0.0679 0.2058 0.4108 0.2923 0.0566
P4,exp 0.0395 0.2441 0.4627 0.1874 0.0842 0.2111 0.4618 0.2738 0.0679

Node/T 0 1
8
π 2

8
π 3

8
π 4

8
π 5

8
π 6

8
π 7

8
π π

P1,ideal 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
P2,ideal 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
P3,ideal 0 0 0 0 0 0 0 0 0
P4,ideal 0 0 0 0 0 0 0 0 0
P1,exp 0.4147 0.3918 0.3865 0.4289 0.4156 0.382 0.4058 0.4356 0.4123
P2,exp 0.4627 0.474 0.4679 0.4348 0.4359 0.4697 0.4507 0.4189 0.4416
P3,exp 0.0601 0.0671 0.0722 0.0782 0.0898 0.0877 0.0792 0.0933 0.0823
P4,exp 0.0625 0.0671 0.0734 0.0581 0.0587 0.0606 0.0642 0.0522 0.0639

Node/T 0 1
8
π 2

8
π 3

8
π 4

8
π 5

8
π 6

8
π 7

8
π π

P1,ideal 0.5 0.125 0.25 0.625 0.5 0.125 0.25 0.625 0.5
P2,ideal 0.5 0.625 0.25 0.125 0.5 0.625 0.25 0.125 0.5
P3,ideal 0 0.125 0.25 0.125 0 0.125 0.25 0.125 0
P4,ideal 0 0.125 0.25 0.125 0 0.125 0.25 0.125 0
P1,exp 0.4178 0.1655 0.1969 0.4932 0.4729 0.1492 0.1977 0.4217 0.4332
P2,exp 0.3541 0.548 0.2749 0.1504 0.3824 0.6258 0.2503 0.1085 0.4308
P3,exp 0.1376 0.1015 0.211 0.1467 0.0594 0.1047 0.2316 0.2796 0.0734
P4,exp 0.0904 0.185 0.3171 0.2096 0.0853 0.1203 0.3205 0.1902 0.0626

Node/T 0 1
8
π 2

8
π 3

8
π 4

8
π 5

8
π 6

8
π 7

8
π π

P1,ideal 0.25 0.5 0.25 0 0.25 0.5 0.25 0 0.25
P2,ideal 0.25 0 0.25 0.5 0.25 0 0.25 0.5 0.25
P3,ideal 0.25 0.5 0.25 0 0.25 0.5 0.25 0 0.25
P4,ideal 0.25 0 0.25 0.5 0.25 0 0.25 0.5 0.25
P1,exp 0.2642 0.4163 0.2227 0.0172 0.2191 0.4136 0.2167 0.0591 0.2476
P2,exp 0.2724 0.0156 0.3 0.4678 0.2367 0.0227 0.2808 0.4864 0.199
P3,exp 0.2561 0.5525 0.2409 0.0043 0.3145 0.5545 0.2266 0.0227 0.3204
P4,exp 0.2073 0.0156 0.2364 0.5107 0.2297 0.0091 0.2759 0.4318 0.233

Node/T 0 1
8
π 2

8
π 3

8
π 4

8
π 5

8
π 6

8
π 7

8
π π

P1,ideal 0.25 0.625 0.5 0.125 0.25 0.625 0.5 0.125 0.25
P2,ideal 0.25 0.125 0 0.125 0.25 0.125 0 0.125 0.25
P3,ideal 0.25 0.125 0 0.125 0.25 0.125 0 0.125 0.25
P4,ideal 0.25 0.125 0.5 0.625 0.25 0.125 0.5 0.625 0.25
P1,exp 0.2056 0.4226 0.3307 0.1129 0.168 0.4883 0.3425 0.1321 0.3347
P2,exp 0.1542 0.2469 0.0906 0.0887 0.127 0.1596 0.0827 0.0566 0.3431
P3,exp 0.2477 0.1674 0.0354 0.1411 0.3238 0.1643 0.0276 0.1358 0.1715
P4,exp 0.3925 0.1632 0.5433 0.6573 0.3811 0.1878 0.5472 0.6755 0.1506

Supplementary Table 1: The ideal theoretical and experimental probability distributions of CTQWs on K4

graph with various initial states. The six sub-tables from the top down correspond to CTQWs with initial states |ϕini〉1 =
[1, 0, 0, 0]′, |ϕini〉2 = 1√

2
[1, 1, 0, 0]′, |ϕini〉3 = 1√

2
[1,−1, 0, 0]′, |ϕini〉4 = 1√

2
[1,−i, 0, 0]′, |ϕini〉5 = 1

2
[1, i, 1, i]′ and |ϕini〉6 =

1
2

[1, i, i,−1]′ respectively. In each sub-table, the first four rows show ideal results and the second four rows show experimental
results.
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Supplementary Note 1 Complexity analysis of “swap test”

Unlike the sampling problem we discussed in the main text, the scenario of “SWAP test”, where we compare two
unitary processes Q†DQ and Q†D̃Q, could sometimes be easier for a classical computer. Imagine we start each process
in the state |φini〉 = |ψini〉 = |0〉⊗n. Then the overlap O between the resulting output states approximated by the
SWAP test satisfies

O = | 〈0|⊗n (Q†DQ)(Q†D̃Q) |0〉⊗n |2

= | 〈+|⊗nDD̃ |+〉⊗n |2 =
∣∣ 1

2n

∑
x∈{0,1}n

DxxD̃xx

∣∣2, (1)

where Dxx is the value at position x on the diagonal of D. O can be approximated by a classical algorithm up to
O(1/ poly(n)) additive error. The algorithm simply takes the average of poly(n) values of the product DxxD̃xx for
uniformly random x. For each x, this value can be computed exactly in polynomial time.

This highlights that the complexity of comparing Q†DQ |φini〉 and Q†D̃Q |ψini〉 depends on the choice of input states
|φini〉 and |ψini〉. In full generality, one could allow these to be arbitrary states produced by a polynomial-time quantum
computation; the state comparison problem would then be BQP-complete, but for rather trivial reasons. We expect
that the problem would remain classically hard for choices of initial states relevant, for example, to quantum-chemistry
applications. On the other hand, the SWAP test can still be used as in the main text to compare the evolution of two
Hamiltonians, one of which is not circulant but is efficiently implementable. In this case, the comparison problem is
also BQP-complete, and hence expected to be hard for a classical computer.

Supplementary Note 2 Further details on circulant graphs and other examples

A circulant graph of N vertices is fully described by an N -by-N symmetric circulant adjacency matrix C defined
as follows.

C =


c0 c1 c2 . . . cN−1

cN−1 c0 c1 . . . cN−2

cN−2 cN−1 c0 . . . cN−3

...
...

...
. . .

...
c1 c2 c3 . . . c0

 (2)

where cj = cN−j , j = 1, 2, · · · , N − 1. Obviously, every circulant matrix can be generated given any row of the matrix
– conventionally we use the first row of the matrix, denoted as rC . It is clear that C has at most N distinct eigenvalues
which are given by λm =

∑N−1
k=0 ckω

−mk, where ω = exp(2πi/N) and m = 0, 1, . . . , N − 1 [1]. If C is singular, some
of the eigenvalues of C are zeros. The complete graph and complete bipartite graph are straightforward examples of
circulant graphs with few distinct eigenvalues.

There are also some other interesting examples of circulant graph such as self-complementary circulant graphs and
Paley graphs with prime order [2, 3]. Both of these two families of graphs are also strongly regular graphs which
have only three distinct eigenvalues. For example, the Paley graph on 13 vertices has three distinct eigenvalues: 6
(with multiplicity 1) and 1

2

(
−1±

√
13
)

(both with multiplicity 6), and thus the diagonal unitary exp(−itΛ) can be
implemented efficiently. We note here it is required to implement QFT (and its inverse) for the dimension of 13, which
does not have the form of N = 2n. The QFT on general dimensions can be implemented by means of amplitude
amplification with extra qubit registers to perform the computation [4]. Alternatively, approximate versions of the
QFT on general dimensions have also been developed [5].

Supplementary Note 3 Implementation of the diagonal unitary operator

We say that the eigenvalues of a circulant graph can be characterised efficiently, if they can be calculated efficiently
classically. In other words, the eigenvalue matrix Λ of the given circulant Hamiltonian can be efficiently computed, and
thus the diagonal unitary operator exp(−itΛ) can be efficiently implemented [6]. Specifically, there exists a quantum
circuit shown in Supplementary Figure 1, which transforms a computational basis state |x〉, together with a k-qubit
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ancilla |0〉 for k = poly(n), as

|x〉 |0〉 → |x〉 |λx〉
→ e−itλx |x〉 |λx〉
→ e−itλx |x〉 |0〉 = e−itΛ |x〉 |0〉 (3)

where x = 0, 1, . . . , N − 1. Note that here we assume λx can be expressed exactly as a rational number with k bits
of precision. If this is not the case, truncating λx to k bits of precision will introduce an error which can be made
arbitrarily small by taking large enough k = poly(n). The function f(x) returns λx for any given x. λx is always a
real number since the adjacency matrix is symmetric.

For example, for the case of the cycle graph of N = 2n vertices, there are essentially N/2 distinct eigenvalues
simply given by λx = 2 cos (2πx/N), where x = 0, 1, . . . , N − 1. And then f(x) will be the cosine function that can
be computed with a number of operations polynomial in n, using a reversible equivalent of classical algorithms to
compute trigonometric functions, e.g. the Taylor approximation. In general, given a sparse circulant graph which has
only poly(n) 1s in the first row rC of its adjacency matrix, an efficient function f(x) can be given as

f(x) =
∑
y∈S

e2iπxy/N (4)

where S is the set of positions for which the first row in nonzero. f(x) is a sum of |S| = poly(n) numbers, taking
O(poly(n)) time to compute. For a non-sparse circulant graph, its eigenvalues are still possible to be calculated
efficiently classically. Some straightforward examples are complete graph, complete bipartite graph KN,N and cocktail
party graph. Therefore, together with the quantum circuits of QFT and the inverse of QFT, we construct an efficient
quantum circuit for implementing CTQW on the circulant graph whose eigenvalues can be computed efficiently
classically.

Supplementary Note 4 Further experimental results

We present the ideal and experimentally sampled probability distributions of CTQW with initial states |ϕini〉1 =
[1, 0, 0, 0]

′
, |ϕini〉2 = 1√

2
[1, 1, 0, 0]

′
(mentioned in the main text), |ϕini〉3 = 1√

2
[1,−1, 0, 0]

′
, |ϕini〉4 = 1√

2
[1,−i, 0, 0]

′
,

|ϕini〉5 = 1
2 [1, i, 1, i]

′
, |ϕini〉6 = 1

2 [1, i, i,−1]
′
, in Supplementary Table 1. The achieved average fidelities between ideal

and experimental probability distributions are 96.68±0.27%, 95.82±0.25%, 92.61±0.21%, 96.36±0.16%, 98.76±0.17%
and 97.27±0.24% respectively. In the main text, we reconstructed the density matrices for the two quantum states
|ϕout〉1 and |ϕout〉2, through performing quantum state tomography. Here we also present the reconstructed density
matrices for another two evolution states |ϕout〉3 = exp(−iH 3

4π)|ϕini〉1 and |ϕout〉4 = exp(−iH 3
4π)|ϕini〉2, with the

achieved fidelities of 88.63±1.24% and 91.53±0.53% respectively. See in Supplementary Figure 2. The four recon-
structed density matrices ρ1, ρ2, ρ3 and ρ4 for quantum states |ϕout〉1, |ϕout〉2, |ϕout〉3 and |ϕout〉4 are shown as
follows.

ρ1 =


0.4763 −0.1175− 0.1281i −0.1410− 0.0112i −0.1507− 0.3104i

−0.1175 + 0.1281i 0.1354 0.0257 + 0.0115i 0.1620 + 0.0133i
−0.1410 + 0.0112i 0.0257− 0.0115i 0.0841 0.0289 + 0.0797i
−0.1507 + 0.3104i 0.1620− 0.0133i 0.0289− 0.0797i 0.3041

 (5)

ρ2 =


0.3207 0.2801− 0.0479i 0.0665− 0.1666i 0.0851− 0.1810i

0.2801 + 0.0479i 0.2575 0.0812− 0.1135i 0.0989− 0.1245i
0.0665 + 0.1666i 0.0812 + 0.1135i 0.1899 0.2044 + 0.0088i
0.0851 + 0.1840i 0.0989 + 0.1245i 0.2044− 0.0088i 0.2319

 (6)

ρ3 =


0.2779 −0.1804 + 0.0749i −0.1711 + 0.1613i −0.2397 + 0.0091i

−0.1804− 0.0749i 0.1778 0.1376− 0.0938i 0.2083 + 0.0311i
−0.1711− 0.1613i 0.1376 + 0.0938i 0.2411 0.1507 + 0.1825i
−0.2397− 0.0091i 0.2083− 0.0311i 0.1507− 0.1825i 0.3031

 (7)
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ρ4 =


0.0418 0.0605 + 0.0067i −0.0353 + 0.0698i −0.0287 + 0.0671i

0.0605− 0.0067i 0.1196 −0.0260 + 0.1465i −0.0155 + 0.1381i
−0.0353− 0.0698i −0.0260− 0.1465i 0.4481 0.4175− 0.0263i
−0.0287− 0.0671i −0.0155− 0.1381i 0.4175 + 0.0263i 0.3904

 (8)
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